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Abstract
We present a tutorial introduction to the area of preference handling – one of the core issues in

the design of any system that automates or supports decision making. The main goal of this tutorial
is to provide a framework, or perspective, within which current work on preference handling –
representation, reasoning, and elicitation – can be understood. Our intention is not to provide a
technical description of the diverse methods used, but rather, to provide a general perspective on
the problem and its varied solutions and to highlight central ideas and techniques.

1. Introduction

Our preferences guide our choices. Hence an understanding of the various aspects of preference
handling should be of great relevance to anyone attempting to build systems that act on behalf of
users or simply support their decisions. This could be a shopping site that attempts to help us
identify the most preferred item, an information search and retrieval engine that attempts to provide
us with the most preferred pieces of information, or more sophisticated embedded agents such as
robots, personal assistants, etc. Each of these applications strives to take actions that lead to a more
preferred state for us: better product, most appropriate articles, best behavior, etc.

Early work in AI focused on the notion of a goal—an explicit target that must be achieved—and
this paradigm is still dominant in AI problem solving. But as application domains become more
complex and realistic, it is apparent that the dichotomic notion of a goal, while adequate for certain
puzzles, is too crude in general. The problem is that in many contemporary application domains,
e.g., information retrieval from large databases or the web, or planning in complex domains, the
user has little knowledge about the set of possible solutions or feasible items, and what she typically
seeks is the best that’s out there. But since the user does not know what is the best achievable
plan or the best available document or product, she typically cannot characterize it or its properties
specifically. As a result, she will end up either asking for an unachievable goal, getting no solution
in response, or asking for too little, obtaining a solution that can be substantially improved. Of
course, the user can gradually adjust her stated goals. This, however, is not a very appealing mode of
interaction because the space of the alternative solutions in such applications can be combinatorially
huge, or even infinite. Moreover, such incremental goal refinement is simply infeasible when the
goal must be supplied off-line, as in the case of autonomous agents (whether on the web or on
Mars). Hence, what we really want is for the system to understand our preferences over alternative
choices (that is, plans, documents, products, etc.), and home-in on the best achievable choices for
us.

But what are preferences? Semantically, the answer is simple. Preferences over some domain of
possible choices order these choices so that a more desirable choice precedes a less desirable one.
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We shall use the term outcome to refer to the elements in this set of choices.1 Naturally, the set of
outcomes changes from one domain to another. Examples of sets of possible outcomes could be
possible flights, vacation packages, cameras, end-results of some robotic application (e.g, pictures
sent from Mars, time taken to complete the DARPA Grant Challenge, etc.). Orderings can have
slightly different properties, they can be total (i.e., making any pair of outcomes comparable) or
partial, strict (i.e., no two outcomes are equally preferred) or weak—the basic definitions follow—
but that is about it. One can find various discussions in the literature as to when and whether total
or weak orderings are appropriate (for an entry point, see, e.g., (Hansson, 2001b)), but this debate
is mostly inconsequential from our perspective, and we make no commitment to one or the other.

Definition 1. A preference relation over a set Ω is a transitive binary relation � over Ω. If for every
o, o′ ∈ Ω either o � o′ or o′ � o then � is a total order. Otherwise, it is a partial order (i.e., some
outcomes are not comparable). A preference relation is strong if it is anti-symmetric (i.e., if o � o′

then o′ � o), otherwise it is weak.
Given a weak ordering �, we can define the induced strong ordering � as follows: o � o′ IFF

o � o′, but o′ � o. Finally, if o � o′ and o′ � o then o ∼ o′, i.e., o and o′ are equally preferred.

Unfortunately, while the semantics of preference relations is pretty clear, working with prefer-
ences can be quite difficult, and there are a number of reasons for that. The most obvious issue is
the cognitive difficulty of specifying a preference relation. Cognitive effort is not an issue when all
we care about is a single, naturally ordered attribute. For instance, when one shops for a particular
iPhone model, all she cares about might be the price of the phone. When one drives to work, all she
cares about the choice of route might be the driving time. However, typically our preferences are
more complicated, and even in these two examples often we care about the warranty, shipping time,
scenery, smoothness of driving, etc. Once multiple aspects of an outcome matter to us, ordering
even two outcomes can be cognitively difficult because of the need to consider tradeoffs and inter-
dependencies between various attributes, as many readers surely know from their own experience.
As the size of the outcome spaces increases, our cognitive burden increase, and additional compu-
tational and representational issues come in. How do we order a large set of outcomes? How can
the user effectively and efficiently communicate such an ordering to the application at hand? How
do we store and reason with this ordering efficiently?

Work in preference handling attempts to address these issues in order to supply tools that help
us design systems acting well on our behalf, or help us act well. Preference elicitation methods
aim at easing the cognitive burden of ordering a set of outcomes, or finding an optimal item. These
methods include convenient languages for expressing preferences, questioning strategies based on
simple questions, and more. Preference representation methods seek ways of efficiently represent-
ing preference information. The two are closely related because a compact representation requires
less information to be specified, making its elicitation easier. Preference handling algorithms at-
tempt to provide efficient means of answering common queries on preference models.

In the rest of this article, we consider the overall process of preference handling, focusing on
the basic questions involved and the key concepts. A number of basic concepts play a central role in
our discussion, and these are models, queries, languages, interpretation, representation, and model
selection. Two other central concepts are structure and independence. These concepts will be
introduced gradually through concrete examples. They are by no means new or specific to the area

1. For readers familiar with decision-theory, this term comes with some baggage, and so we will note that at this stage,
we focus on choice under certainty.
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of preference handling, but using them properly is crucial for a good understanding and a useful
discourse. The choice of examples is admittedly somewhat biased to our own, but we believe that
these choices serve the purpose of this tutorial well.

When evaluating the ideas described in this tutorial, the reader should bear in mind that there are
many types of decision contexts in which preference handling is required. Each such context bring
different demands, and one solution may be great for one context, but less so in another. We be-
lieve preference handling settings can be, very roughly, divided into three classes. The first involves
online applications with lay users, best exemplified by various on-line product selecting problems.
Here users are reluctant to provide much information, time, and effort; there is no room for user
”training”; information is typically qualitative, and no technical knowledge should be expected of
the user. Preference handling techniques in this area must make the most of natural-language like
statements, and be very wise in their selection of questions. The second involves system configura-
tion and design. In these applications preferences drive the behavior of some system the user cares
about. In these applications we can expect more effort from the user, and the input language may be
a bit more technical. Preference handling techniques for such problems can be more sophisticated,
but must still focus on enabling the user to naturally express his domain knowledge. Finally, there
are complex real-world decision problems that require the assistance of a decision-analyst. Here, we
require tools such as probabilistic modeling and utility functions. Preference handling techniques
should provide the analyst tools that will make it easier for her to elicit these complex inputs and
efficiently work with them.

Structurally, the tutorial is divided into two parts. The first and central part focuses on preference
representation methods. It considers different complete preference models, languages that describe
them, and some representational issues. In many application, however, we either don’t need or
won’t get a complete preference model of the user. Thus, the second part deals with the question
of what to do when the system is given only partial information about the preference model, and
how to obtain as much of the most important parts of the model from the user. At the end of each
subsection we provide both bibliographic notes on the material described in it, as well as pointers
to related topics.

BIBLIOGRAPHIC NOTES

Work on preference models, algorithms, and representation appears in many areas. Discussion of preference models are

abundant in the philosophical literature (Hansson, 2001a; Krantz, Luce, Suppes, & Tversky, 1971; von Wright, 1963;

Halldén, 1957), in economics and game-theory (K.J.Arrow & Raynaud, 1986; Debreu, 1954; von Neumann & Mor-

genstern, 1947; Fishburn, 1969), in mathematics (Birkhoff, 1948; Davey & Priestley, 2002), in operations research and

decision analysis (Fishburn, 1974; Wald, 1950; Bouyssou, Marchant, Pirlot, Tsoukias, & Vincke, 2006), in psychol-

ogy (Tversky, 1967, 1969; Kahneman & Tversky, 1979, 1984), and in various disciplines of compute science: AI (Doyle

& Thomason, 1999; Doyle, 2004), databases (Agrawal & Wimmers, 2000; Kießling, 2002; Chomicki, 2002), HCI (Gajos

& Weld, 2005; Chen & Pu, 2007), electronic commerce (Sandholm & Boutilier, 2006a), and more.

2. Modeling Preferences

Two key questions arise when one approaches a modeling task, namely

(1) What is the model?

(2) What questions/queries do we want to ask about this model.
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To achieve clarity and proper focus, these questions should be answered early on.
A model is a mathematical structure that attempts to capture the properties of the physical,

mental, or cognitive paradigm in question. The purpose of the model is to provide a concrete proxy
to the, sometimes abstract, paradigm of interest. As such, the model must have intuitive appeal,
because it lends meaning to the query answers we compute. Returning to the topic of our discussion,
a natural model for preferences is pretty clear—it is an ordering� over the set of possible outcomes,
Ω. The answer to the second question varies with our application. Typical examples for queries of
interest are finding the optimal outcome, finding an optimal outcome satisfying certain constraints,
comparing between two outcomes, ordering the set of outcomes, aggregating preferences of multiple
users, finding a preferred allocation of goods, etc. Once we have a model and a query, we need
algorithms that compute an answer to the query given the model. In our tutorial, algorithms will
take the back seat, but of course, as computer scientists, we realize that ultimately we must provide
them.

The key point is that a preference model must be specified for each new user and/or each new
application (that is, a new set of possible outcomes). Obtaining, or eliciting, the information speci-
fying the model is thus one of the major issues in the process of preference handling. One simple,
but ineffective, approach to preference elicitation is to ask the user to explicitly describe the model,
that is, an ordering. Clearly, this is impractical unless Ω is very small, and thus we must find an
alternative tool that implicitly specifies the model in a compact way.2 This tool is the language—a
collection of possible statements that, hopefully, make it easy to describe common, or natural mod-
els. To give meaning to these statements we need an interpretation function mapping sets of such
statements to models.

Figure 1: The Meta-Model

Putting things together, we now have the five basic elements of our meta-model: the model
which describes the structure we really care about; the queries, which are questions about the model
we need to answer; the algorithms to compute answers to these queries; the language which lets
us implicitly specify models; and an interpretation function that maps expressions in the language
into models. These concepts are depicted and interconnected graphically in Figure 1 in which
the semantics of the directed arcs is “choice dependence”. For instance, as we discuss later, the
choice of language depends big time on our assumptions about the preference models of the users.

2. One possibility is to elicit only a partial model and use it to answer queries. We discuss this direction in Section 3.

4



Similarly, the algorithms developed for handling queries about the preferences are typically tailored
down to the specifics of the language in use. In what follows, we discuss a few concrete instances
of this meta-model. This discussion comes to relate the meta-model to some specific approaches to
preference handling, and, synergetically, relate different approaches to each other.

2.1 Value Functions, Structure, and Independence

Let us start with the simplest concretization of the meta-model in which the model is a weak total
order �, and the language is simply the model itself. On the positive side, the model is nice because
it is always possible to answer common questions such as ”what is the optimal outcome?” or ”which
of two outcomes is better?” In addition, this combination of model and language makes the choice
of interpretation entirely trivial as it should simply be set to the identity function. On the negative
side, however, the choice of language here is obviously poor. For instance, imagine having to order
hundreds of digital cameras accessible via some online electronics store with their multitude of
attributes.

So we are going to gradually try to improve the language. First, rather than specifying an explicit
ordering of the outcomes, we can ask the user to associate a real value with each outcome. In other
words, the language now takes the form of a value function V : Ω → <, the interpretation function
is still simple, notably o � o′ ⇔ V (o) ≥ V (o′), and the overall concretization of the meta-model
this way is depicted in Figure 2. At first, this appears an ill-motivated choice. Indeed, having to
associate a real value with each outcome seems hardly easier than ordering the outcomes. In fact,
while sometimes one may find it more convenient to, e.g., assign a monetary value to each outcome
rather than order Ω explicitly, most people will probably consider “outcome quantification” to be a
more difficult task. However, the main utility of this move is conceptual, as it gives us a clue as to
how things might be really improved: While the value function V can always be specified explicitly
in the form of a table, there may be more convenient, compact forms for V . If such a compact form
exists, and this form is intuitive to the user, then the complexity pitfall of eliciting user preferences
on an outcome-by-outcome basis can be eliminated.

Figure 2: Weak Total Order
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But why would V have a compact and intuitive form? Of course, if we treat outcomes as
monolithic objects, e.g., camera23, camera75, etc., then such a compact form of V is not something
we would expect. However, as the digital camera example suggests, outcomes of typically have
some inherent structure, and this structure is given by a set of attributes. For example, flights
have departure and arrival times, airline, cost, number of stop-overs, etc. When we purchase a
flight ticket, what we care about are the values of these attributes. In the reminder of this tutorial,
unless stated otherwise, we assume that we are working with such outcomes. That is, each outcome
has some set of attributes, and our choice among these outcomes is driven by the value of these
attributes. Formally, we assume the existence and common knowledge of a set of attributes X =
X1, . . . , Xn such that Ω = X = ×ni=1Dom(Xi), where Dom(Xi) is the domain of attribute Xi.
The domains of the attributes are assumed to be finite, although handling infinite yet naturally
ordered domains is typically very much similar.

2.1.1 PREFERENTIAL INDEPENDENCE

Although the ability to describe an outcome by means of some preference-affecting attributes X is
a necessary condition for a value function to be compactly representable, in itself it is not enough.
An additional working assumption we need is that typical user preferences exhibit much regularity
with respect to the given attributes X. The informal notion of “preference regularity” is formally
captured by the notion of preferential independence.

Let Y,Z be a partition of X, that is, Y and Z are disjoint subsets of attributes whose union is
X. We say that Y is preferentially independent of Z if for all y1,y2 ∈ Dom(Y) and for every
z ∈ Dom(Z),

y1z � y2z implies that for all z′ ∈ Dom(Z) : y1z′ � y2z′.

Intuitively, this means that preferences over Y-values that do not depend on the value of Z, as long
as that value is fixed. That is, if, when we fix Z to z, I weakly prefer y1z to y2z, then when we
fix Z to some other value z′, I still weakly prefer y1z′ to y2z′. For example, if my preference for
a car’s color is the same regardless of the brand, e.g., I always prefer blue to red to white, then we
can say that the color of the car is preferentially independent from its brand. (Here we assumed that
color and brand are the only two preference-affecting attributes.) Similarly, for most people, price
is preferentially independent of all other attributes. That is, given two outcomes that are similar.
except for their price, most people would prefer the cheaper one, no matter what fixed concrete
value the other preference-affecting attributes take in these outcomes. Importantly, note that when
Y is preferentially independent of Z we can meaningfully talk about the projection of� to Y. Even
more importantly, preferential independence of Y from Z allows the user to express her preferences
between many pairs of outcomes in Ω in terms of Y only. For example, if my preference for a car’s
color is the same regardless of the brand, preference of blue to red implies preference of blue Toyota
to red Toyota, blue BMW to red BMW, etc.

Unlike (the more widely known notion of) probabilistic independence, preferential indepen-
dence is a directional notion. If Y is preferentially independent of Z it does not follow that Z is
preferentially independent of Y. To see this, suppose that cars have two attributes: price (cheap
or expensive) and brand (BMW or Toyota). I always prefer a cheaper car to an expensive one for
any fixed brand, that is, I prefer a cheap Toyota to an expensive Toyota, and a cheap BMW to an
expensive BMW. However, among cheap cars, I prefer Toyotas, whereas among expensive cars, I
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prefer BMW. In this case, the ordering modeling my preferences is

(cheap Toyota) � (cheap BMW) � (expensive BMW) � (expensive Toyota).

While here price is preferentially independent of brand, brand is not preferentially independent of
price.

A weaker notion of independence is that of conditional preferential independence. Let Y,Z,C
be a partition of X. We say that Y is conditionally preferentially independent of Z given C = c
if, when we project the ordering to outcomes in which C = c, we have that Y is preferentially
independent of Z. More explicitly, for all y1,y2 ∈ Dom(Y) and for every z ∈ Dom(Z)

y1zc � y2zc implies that for all z′ ∈ Dom(Z) : y1z′c � y2z′c.

We say that Y is preferentially independent of Z given C if for every c ∈ Dom(C) we have that
Y preferentially independent of Z given C = c. Thus, in the case of conditional preferential in-
dependence, our preference over Y values does not depend on Z values for any fixed value of C.
Note that the preference ordering over Y values can be different given different values of C, but
for any choice of C value, the ordering is independent of the value of Z. As an example, suppose
that Y,Z,C are, respectively, brand (BMW or Toyota), mileage (low or high), and mechanical
inspection report (good or bad). Given a good inspection report, I prefer BMW to Toyota, regard-
less of the mileage, perhaps because I generally like BMWs, but feel there is no point in a BMW
whose mechanical condition is not good. Thus, I have (BMW,low,good) � (Toyota,low,good) , and
(BMW,high,good) � (Toyota,high,good). On the other hand, given a bad mechanical inspection re-
port, I prefer Toyota to BMW, as they are cheaper to fix, and more reliable. Thus, (Toyota,low,bad)
� (BMW,low,bad), and (Toyota,high,bad) � (BMW,high,bad). We see that once the value of the
mechanical inspection report is fixed, my preference for brand is independent of mileage, yet the
actual preference may change depending on the value of the mechanical inspection report.

2.1.2 COMPACT VALUE FUNCTIONS AND ADDITIVITY

The strong intuition obtained from the examples in the previous section is that user preferences in
many domains exhibit much preferential independence of this or another kind. The question now is
how can we leverage such structure. In what follows we’ll see at least two answers to this question,
and here we’d like to focus on the effect of preferential independence on the structure of the value
function.

First, given an attributed representation of the outcome space Ω = ×i=1,...,nDom(Xi), we can
focus on value functions V : ×i=1,...,nDom(Xi) → <. As we noted earlier, this in itself buys as a
language for specifying V , but not the compactness—the size of an explicit tabular representation
of V would still be

∏n
i=1 |Dom(Xi)|. However, depending on the actual preference ordering of the

user, more compact forms of V are possible. Probably the best-known such form is that of a sum of
functions over single attributes, that is,

V (X1, . . . , Xn) =
n∑
i=1

Vi(Xi).

Functions V that have this form are said to be additively independent. Intuitively, it seems that such
factored form corresponds to some form of independence. Indeed, suppose that we know that a user
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preference ordering is captured by V (Color,Brand) = V1(Color) + V2(Brand). Clearly, for any fixed
value of color, the preference of the user over brands is identical, because the choice of color simply
fixes V1. Thus, brand is preferentially independent of color, and similarly, color is preferentially
independent of brand. In fact, if V (x1, . . . , xn) =

∑
i=1,...n Vi(xi), then for any attribute subset

Y of X, Y is preferentially independent of X \Y. This strong form of independence within X is
called mutual independence.

Value functions in a “factored” form offer one major advantage: they are much easier to specify,
and thus much easier to elicit from the users. To see the potentially huge benefit here, note that, if V
is known to be additively independent over n boolean attributes, its specification requires 2n values
only, as opposed to 2n values for a tabular, unstructured representation. Some forms of reasoning,
too, are much simpler. For instance, finding the optimal outcome with respect to an additively
independent V can be done in time O(n) by independently maximizing each of the sub-functions
of V . In contrast, the same task with respect to the same function but in an unstructured, tabular
form requires exhaustive search in time O(2n). But an additive independent form is very limiting,
too. Basically, it implies that our preferences are unconditional, that is, the preference ordering over
attribute values is identical no matter what values the other attributes have. Thus, if you prefer your
coffee with milk, then you must prefer your tea with milk, too. Or, if you like a manual transmission
in your sports car, you must like it in your minivan, too. Even worse, the strength of preference over
attribute values is also fixed—informally, if the added value of milk in your coffee (as opposed to
none) is greater than the added value of sugar (as opposed to none), then the same goes for tea.

2.1.3 GENERALIZED ADDITIVITY

While additively independent value functions seem a limiting choice of language for preference
specification, it does seem that our preferences satisfy many independence properties. For example,
the only attributes that affect whether I prefer an isle seat to a window seat on the plane are the
duration of the flight and the route. Or, the only attribute that affects how much milk I want in my
hot drink is the type of drink, not the amount of sugar, the glass, etc. To capture such (weaker than
additive) forms of independence, we have to shift our language to more expressive functional forms
of value functions.

A more general form of additive independence that allows us to be as general as we wish, but
not more than that, is that of generalized additive independence (GAI). The generalized additive
form of a value function V is

V (X1, , . . . , Xn) =
k∑
i=1

Vi(Zi),

where Z1, . . . ,Zk ⊆ X is a cover of the preference-affecting attributes X. In other words, V is
a sum of k additive factors, Vi, whre each factor depends on some subset of the attributes X, and
the attribute subsets associated with different factors need not be disjoint. By allowing for factors
containing more than one attribute we enable capturing preferentially-dependent attributes. By
allowing factors to be non-disjoint we might substantially reduce factor sizes by enabling different
factors to be influenced by the same variable, without having to combine their associated variables
into a single, larger factor. For example, the value of a vacation may depend on the quality of
facilities and the location. How I assess each may depend on the season—in the summer I prefer a
place near the beach, while in the winter I prefer a major city; in the summer I want large outdoor
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pools and terraces, while in the winter I prefer indoor pools, saunas, and large interiors. By allowing
the language of GAI value functions, V (Location,Facilities,Season) can now be given in the form
V1(Location,Season) + V2(Facilities,Season).

Note that, in contrast to the language of additively independent functions, the language of GAI
functions is fully general. If we choose k = 1 and Z1 = X, we can represent any value function. In
the other extreme, if we choose k = n and Zi = {Xi}, we obtain the language of additively inde-
pendent value functions. Considering the user efforts required at the stage of preference elicitation,
the useful tradeoff between expressiveness and compactness seems to lie somewhere in between,
with factor size (i.e., |Zi|) being is relatively small, and the number of factors, k, being also not too
large. However, even with this sub-language of GAI value functions, answering queries may be-
come much harder than with the language of fully-additive value functions. This issue brings us to
introducing the final component of our meta-model, namely the representation of the user-provided
information.

The representation is a structure that captures all the information in the the model, and is in-
tended to be used directly by our query-answering algorithms. A natural choice for representation is
the language itself—after all, the language is designed to facilitate efficient, concise characterization
of the model. Indeed, in many cases, the language is used as the representation, and the algorithms
operate on it. Much work in knowledge representation and reasoning in AI seeks to find various
classes of languages for which efficient inference or optimization algorithms exist. Naturally, these
classes cannot describe every model concisely, but often they can describe some important, or nat-
ural models concisely. Sometimes, however, it is useful to take the input expression and slightly
transform or augment it to obtain a representation that provides more intuitive means for analyzing
the complexity of query answering, and developing efficient query-answering algorithms. Taking
a look across various reasoning tasks in AI, typically such a representation comes in a form of an
annotated graph, describing dependencies between different components of the problem. Indeed,
graphical representations have been found useful for various preference models as well. These
representations are compiled from the language (or in some cases, they augment the language as
input devices), and inference and optimization algorithms make strong use of the properties of these
graphical structures. In particular, the complexity of the algorithms can often be bounded by some
graph-topological parameters of these graphs.

GAI value functions V provide us with the first example of this type. The language in this case
is a set of tables describing the sub-functions of V . Using these tables, that is, using the language as
the actual representation manipulated by the algorithms, it is easy to compute the value of any out-
come and thus, to compare any two outcomes with respect to the preferences of the user. However,
computing the optimal outcome, that is, finding the value of X that maximizes V is more difficult.
To deal with such queries, it is useful to maintain a GAI-network (Gonzales & Perny, 2004). A GAI-
network is an annotated graph whose nodes correspond to the attributes in X. An edge connects the
nodes corresponding to a pair of attributes Xi, Xj ∈ X if Xi and Xj occur jointly in some factor,
that is, {Xi, Xj} ⊆ Zl for some l ∈ {1, . . . , k}. Assuming no redundant factors, each of the cliques
in this graph corresponds to a factor in V , and it is annotated with a table describing the values of
different instantiations of this factor. Here is an example of the graphical core of a GAI-network:
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Figure 3: Meta-model for GAI value functions.

On the left-hand side we see a GAI value function, and on the right hand side, we see the cor-
responding GAI-network. In the constraint optimization literature, this structure is called a cost
network (Dechter, 2003), and the problem of finding an assignment with maximal cost for such a
network is well studied. Importantly, the algorithms used to solve this problem utilize the graphical
structure of the network. This problem is equivalent to that of computing an optimal assignment
to X with respect to a GAI value function. Consequently, the same algorithms can be used here,
and they benefit from a representation of the value function in the form of a cost, or GAI, network.
Putting things together, in the case of GAI value functions, we see that it is better to store the input
in an intermediate representation which is as a cost/GAI network. The updated meta-model with
the components associated with GAI value functions is depicted in Figure 2.1.3.

BIBLIOGRAPHIC NOTES

Value functions originate in the decision-theory literature, e.g., (Wald, 1950). The notion of preferential independence is

discussed in depth by (Keeney & Raiffa, 1976) who also consider their relation to additive forms. Generalized Additive

independence was introduced by (Fishburn, 1969), and was later made popular in the AI community by (Bacchus &

Grove, 1995). GAI value functions are essentially identical to weighted CSPs (Dechter, 2003), i.e., CSPs in which a

value is associated with each possible assignment to a constrained set of variables. In fact, the optimization problem of

finding the optimal assignment to a GAI value function/cost network/weighted CSP is identical to that of finding most

probable explanation (MPE) in graphical probabilistic models such as Bayes Nets or Join-trees (Pearl, 1988; Lauritzen &

Spiegelhalter, ). Indeed, there is general close correspondence between probabilistic reasoning and preferences. Techni-
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cally, a joint probability distribution over random variables x1, . . . , xn also describes an ordering over the set of possible

assignments. While the joint probability form is multiplicative, the logarithm is additive, and looks much like a additive

value function. Value (and utility) functions can be normalized to look like probabilities, but there are corresponding

notions of marginal probability and conditional probability in the case of preferences (although see (Shoham, 1997) for a

slightly different perspective).

Value functions map tuples to integers, or reals. More generally, mappings to other structures can be defined, as

has been done in the framework of soft constraints (Bistarelli, Montanari, & Rossi, 1997; Bistarelli, Fargier, Montanari,

Rossi, Schiex, & Verfaillie, 1999). This formalism can be viewed as generalizing the notion of GAI, as it allows for both

new ranges for the function and aggregation and comparison operators other than addition and maximization.

Value functions over the Cartesian product of a set of attribute domains are one way of combining preference for

different aspects of the problem. One can think of each factor in a value function as representing one criteria for selecting

elements. Alternatively, one way to induce attributes on an object is to rate it according to multiple criteria. Multi-criteria

decision making is an important field of operations research and decision analysis which is concerned with the question of

how to work with multiple, possibly conflicting criteria without necessarily combining them into a single value function

(or more generally, a total order). See (Bouyssou et al., 2006) for a detailed description of techniques in this area.

2.2 Partial Orders and Qualitative Languages

The language provided by GAI value functions for describing total orders is clearly much more
convenient than an explicit ordering of the set of outcomes. However, the effort required to specify
them is still too large for many applications, and the quantitative information the users are required
to provide is typically not very intuitive for them. Therefore, while system designers may be willing
to spend the time and effort required to specify a value function, casual, lay users, such as shoppers
at online stores, are highly unlikely to do so.

So what properties would we like a language to have so that lay users will feel comfortable ex-
pressing their preferences or answering preference queries?3 First, such a language must be based
upon information that users find cognitively easy to reflect upon and express. Second, the informa-
tion communicated in such language should be reasonably easy to interpret. Third, the language
should allow a quick (and therefore, compact) specification of “natural” preference orderings. Fi-
nally, it should be possible to efficiently answer queries about the user preferences. Considering this
list of expectations, it appears unavoidable that such a language be based on pieces of qualitative
information about the model. Indeed, while quantitative information appears much harder to intro-
spect upon, natural language statements, such as “I prefer SUVs to minivans,” or “I like vanilla”,
appear quite often in our daily conversations (as opposed, say, to the ”vanilla is worth $5.2 to me”).

So what types of qualitative statements of preference can we expect users to provide? One
simple class of statements corresponds to explicit comparison between alternatives, such as “I like
this car more than that one,” or “I prefer this flight to that flight.” Similar statements are example-
critiquing statements of the form “I want a car like this, but in blue.” These statements are very easy
to interpret, in part because they indicate an ordering relation between two alternative, completely
specified outcomes. However, because these statements are very specific, they provide only a small
amount of information about the preference model of the user. Another class of qualitative prefer-
ence statements are generalizing statements, such as “In a minivan I prefer automatic transmission
to manual transmission”, or perhaps a more extreme “I prefer any red car to any blue car.” Such

3. Note that the term preference query denotes queries made to users regarding their preferences, while just queries
denote the questions we wish to answer using the preference model.
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statements are as natural in our daily speech as the more concrete comparison statements, yet they
provide much more information because a single generalizing statement implicitly encodes many
comparisons between concrete outcomes. Syntactically, generalizing preference expressions take
the form

S = {s1, . . . , sm} = {〈ϕ1 =1 ψ1〉, · · · , 〈ϕm =m ψm〉},

where each si = ϕi =i ψi is a single preference statement, with

• ϕi, ψi being some logical formulas over X,

• =i ∈ {�,�,∼}, and

• �, �, and ∼ have the standard semantics of strong preference, weak preference, and prefer-
ential equivalence, respectively.

For an illustation, the statements:

s1 ”SUV is at least as good as a minivan”

s2 ”In a minivan, I prefer automatic transmission to manual transmission”

can be written as

- (Xtype = SUV ) � (Xtype = minivan)

- (Xtype = minivan ∧Xtrans = automatic) � (Xtype = minivan ∧Xtrans = manual)

By adding such generalizing statements into our language, we facilitate more compact com-
munication of the preference model. This benefit, however, can come with a price at the level of
language interpretation because the precise meaning that a user puts into generalizing statements is
not always clear. While the statement ”I prefer any vegetarian dish to any meat dish” is easy to
interpret, the statement: ”In a minivan I prefer automatic transmission to manual transmission” can
be understood in numerous ways. For instance, under what is called the totalitarian semantics, this
statement gets interpreted as ”I always prefer a minivan with an automatic transmission to one with
a manual transmission” (that is, regardless of the other properties the two cars may have). While
sometimes reasonable, in general it assumes too much about the information communicated by the
statement. Another possible interpretation is ”I prefer a typical/normal minivan with automatic
transmission to a typical/normal minivan with a manual transmission.” Of course, we now have to
define “typical” and “normal,” itself is a thorny issue. Yet another possible interpretation, under
what is called ceteris paribus (”all else being equal”) semantics, is ”I prefer a minivan with auto-
matic transmission to one with a manual transmission, provided all other properties are the same.”
This is probably the most conservative natural interpretation of such generalizing statements, and
as such, it is also the weakest. That is, it provides the weakest constraints on the user’s preference
model. But because it is conservative, it is also unlikely to reach unwarranted conclusions, which
makes it probably the most agreed-upon general scheme for statement interpretation. However, the
list of alternative interpretations that has been suggested in the literature on preferences and in the
area of non-monotonic reasoning is much longer, and the only solid conclusion we can probably
draw from this situation is that the role of the interpretation function becomes very important in
meta-models relying on qualitative statements of preference.
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Figure 4: Meta-Model for CP-Nets

With this picture in mind, in the rest of this section we consider an specific instance of a complete
meta-model in which a qualitative language is used. Specifically, we consider the language of
statements of preference on the values of single attributes. This specific language underlies the
preference specification approach called CP-networks (Boutilier, Brafman, Domshlak, Hoos, &
Poole, 2004a), and the components of this meta-model instance are described in Figure 4.

The model of user preferences assumed in the CP-networks approach is that of partial orders
over outcomes. The reason is practical. Total orders are difficult to specify. Ultimately, to specify
a total order, we need information that allows us to compare any two outcomes. That is quite a lot
of information, and generally it is unlikely that casual users will be ready to provide it. In addition,
in practice we often don’t need to compare every pair of outcomes. For instance, this information
might not be essential for the tasks of identifying the most preferred outcomes, ordering reasonably
well a given set of outcomes, etc.

The language employed in the CP-networks approach is the language of (possibly conditioned)
preference statements on the values of single attributes. For instance, in the statement “I prefer
black sports cars to red sports cars,” the preference is expressed over attribute Ext-Color, with
the value of Category conditioning the applicability of the statement only to pairs of sports cars.
Formally, the language of CP-networks consists of preferences expressions of the form

S ⊆ {y ∧ xi � y ∧ xj | X ∈ X,Y ⊆ X \ {X}, xi, xj ∈ Dom(X),y ∈ Dom(Y)}.

Note that Y can be any subset of attributes excluding the referent attribute X , and each statement
y∧xi � y∧xj in the expression says that, in some context captured by assigning y to Y, the value
xi is preferred to xj for X .

The interpretation function used in the CP-networks corresponds to the ceteris paribus inter-
pretation of individual statements, and then transitive closure of the preference orderings induced
by these statements. Specifically, a statement y ∧ xi � y ∧ xj is interpreted as communicat-
ing a preference ordering in which outcome o is preferred to outcome o′ whenever o and o agree
on all attributes in X \ {X}, they both assign the value y to Y, and o assigns xi to X while o′

assigns xj to X . For example, consider the statement s1 in Figure 5, which can be written as:
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Figure 5: CP-net Example: Statements, CP-Net, Induced Preference Relation

Xcategory = minivan ∧ Xext−color = red � Xcategory = minivan ∧ Xext−color = white. s1 in-
duces the following preference ordering on the tuples in the table on the top right: t1 � t3 and
t2 � t4. These relationships follow from the ceteris paribus semantics because both t1, t3 and t2, t4
are minivans and they both assign the same value to all other attributes (Int-Color in this case).
However, t1’s Ext-Color is preferred to t3’s. In contrast, t1 � t4 does not follow from s1 because t1
and t4 assign different values to Int-Color. Considering now a set of statements as a single coherent
preference expression, the interpretation function in the CP-networks approach takes the transitive
closure of the orderings induced by each of the statements si. For example, we saw that s1 induces
t2 � t4. From s4 we can similarly deduce t1 � t2 because these are two red cars whose other
attributes (Category in this case) are the same. Thus, the preference ordering induced by the overall
expression provides us with t1 � t4.

The last conceptual component of the meta-model is the representation of the input information.
In the CP-networks approach, the preference expression is represented using an annotated digraph
(that gives the name to the approach). In this digraph, nodes correspond to outcome attributes,
and edges capture the conditioning structure of the preference statements. Specifically, for each
statement y ∧ xi � y ∧ xj we add an edge from each node representing an attribute Y ′ ∈ Y to
the node representing attribute X , because our preference for X values depends on the value of Y ′.
Finally, each node is annotated with all statements that describe preferences for its value. Figure 5
depicts the CP-network induced by statements {s1, . . . , s5}. For example, because of statement s1
in which the preference for exterior color depends on category, Category is a parent of Ext-Color in
the network. In that figure we can also see the relevant preference statements in the table of each
node. On the lower right-hand side of this figure we see the induced preference relation. Note that
for clarity, we introduced only the ordering relations that follow directly from the statements and
just a few of the relations obtained by transitive closure.
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Recall that earlier we emphasized the notion of independence. How does it come into play in
CP-networks? The answer is that it is a by-product of the interpretation semantics. Notice how
the ceteris paribus semantics and the notion of conditional preferential independence are closely
related. In both some context is fixed, and then the order over values of some attribute set is iden-
tical regardless of the (fixed) value of the remaining attributes. In CP-networks, the attribute sets
are a node, its parents, and all other nodes, and ceteris paribus interpretation forces the attribute
associated with a node to be preferentially independent of all other attributes given the value of the
parent attributes.

But what does the graphical structure of CP-networks really buys us? While users need not be
aware of this structure, it was shown to play an important role in computational analysis of various
queries about the preference model. First, the graph structure helps us ensure statement consistency.
In general, a preference statement is inconsistent if it induces a cycle of strict-preferences in the
preference ordering. In that case, we can prove that o � o for some outcome o. In the case of
CP-networks, we know that if the CP-net is acyclic, then the preference statement it represents must
be consistent. Note that the acyclicity of the network can be recognized in time linear in |X|—this
is probably the simplest example of a query that can be efficiently answered by using the graphical
representation of the input expression. Second, when the network is acyclic, we can topologically
sort its nodes. This topological ordering is a standard sub-routine in various algorithms that operate
on CP-networks. For instance, this ordering can be used to find an optimal outcome in time linear
in |X|.4 Third, it can be shown that the complexity of comparison queries, that is, answering the
query ”does o � o′ hold”, varies depending on the structure of the network from polynomial time
to PSPACE-complete.

Finally, given the complexity of comparisons, it appears that finding a preferentially consistent
total order of a given set of outcomes would be difficult as well. By a consistent total order we
mean a total order such that if o � o′ holds then o will appear before o′ in that order. Surprisingly,
perhaps, this is not the case, and we can consistently order a set of outcomes quickly. The reason
for this is that we have more flexibility in doing this. For two given outcomes, o, o′, a comparison
query asks whether o � o′ holds. In contrast, an “ordering query” asks for a consistent ordering
of o, o′. To order o before o′, we need only know that o ⊀ o′, which is easier to check. In fact, an
ordering query needs only establish that one of o � o′ or o′ � o holds. When the CP-network is
acyclic we can do this in time linear in |X|. Of course, it is not obvious that given that ordering
two outcomes is easy, so is ordering an arbitrary number of outcomes, as there may be some global
rather than local constraints involved. But fortunately, the same ideas apply, and we can order a set
of N items in O(N log(N)|X|) time.

Altogether, we see that the graphical representation in CP-nets holds much useful information
about the induced preference order. This examples provides good evidence that representation de-
serve a careful attention as an important component of the preference handling meta-model.

BIBLIOGRAPHIC NOTES

CP-nets were introduced in (Boutilier et al., 2004a; Boutilier, Brafman, Domshlak, Hoos, & Poole, 2004b) and have

generated various extensions, enhancements, and analysis, such as (Wilson, 2004; Rossi, Venable, & Walsh, 2004; Gold-

4. When the CP-net is fully specified, i.e., an ordering over the domain of each attribute is specified for every possible
assignment to the parents, we know that a single most preferred assignment exists. When the CP-net is not fully
specified, or when we have additional hard constraints limiting the feasible assignments, then a number of Pareto-
optimal assignments may exist – i.e., assignments o such that for o ⊀ o′ for any other feasible o′.

15



smith, Lang, Truszczynski, & Wilson, 2005; Brafman, Domshlak, & Shimony, 2006). Preference languages and logics

have been discussed by philosophers (Hansson, 2001a) and AI researchers (Brewka, Niemelä, & Truszczynski, 2003; Tan

& Pearl, 1994; Doyle & Wellman, 1994; Boutilier, 1994). In fact, the best known interpretation for non-monotonic logics

is known as the preference semantics (Shoham, 1987), and thus most nonmonotonic logics, such as (Kraus, Lehmann, &

Magidor, 1990; McCarthy, 1980; Reiter, 1980), can be viewed as expressing preference statements, usually associated

with aggressive interpretations that attempt to deduce as much information as possible.

Graphical models play an important role in many areas of AI, most notably probabilistic reasoning (Pearl, 1988) and

constraint satisfaction (Dechter, 2003). An early use in preference modeling appeared in (Bacchus & Grove, 1995), where

is was used to model independence in utility functions. More recent models include expected-utility networks (La Mura

& Shoham, 1999) which provide a model that combines preference and probabilities combined, GAI-networks which

model GAI utility functions (Gonzales & Perny, 2004), and CUI networks which use build on the notion of conditional

utility independence to provide more compact representations for certain utility functions (Engel & Wellman, 2006).

2.3 Preference Compilation

So far, we have seen two general approaches to preference specification. The more quantitative
value function-based specification are very simple to interpret and support efficient comparison
and ordering operations. However, they are a based on an input language that few users will find
natural. The qualitative models that utilize generalizing statements attempt to provide users with
intuitive input expressions, however, it is not always clear how to interpret these statements (e.g.,
”I like Chinese restaurants”), comparisons may be difficult, and depending on the class of input
statements, ordering may be difficult too. Things can become particularly hairy if we want to
allow diverse types of input statements. On the one hand, this is clearly desirable, as it gives more
flexibility to the users. On the other hand, the interpretation and interaction between heterogeneous
statements may not be easy to specify. Likewise, developing efficient query-answering algorithms
for such heterogeneous expressions becomes much more problematic.

Preference compilation techniques attempt to make the best of both worlds by mapping diverse
statements into a single, well-understood representation, notably that of compact value functions.
Generally speaking, this mapping translates qualitative statements into constraints on the space of
possible value function. As a simple example, if I say ”car A is preferred to car B,” then this puts
a constraint on V in the form of V (A) > V (B). Typically these constraints are consistent with
multiple value functions, and depending on the method, we then answer queries by using one of
the consistent value functions. Note that by working with one specific consistent value function,
we are committing to one of many total orders that extend the partial order described by the input,
i.e., we are making additional, not necessarily warranted assumptions about the user’s preference.
Depending on the application and the types of queries we want to answer this may or may not be
appropriate. We return to this issue later in this tutorial.

In what follows we describe two classes of techniques for value function compilation. One is
more canonical, following the classical works on conjoint measurement, whereas the other is based
on more novel ideas, as well as on some computational techniques used extensively in the area of
discriminative machine learning.

2.3.1 STRUCTURE-BASED COMPILATION

One of the advantages of generalizing statements is that a single statement can express much infor-
mation. Thus, with a compact structure, such as a CP-network, we can express much information
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Figure 6: Preference Compilation

about the ordering of outcomes. If we were to compile a set of such statements into an arbitrary
value function, we would lose this conciseness—we might get a structure that is exponentially large
in |X|, and therefore expensive to store and work with. Structure-based compilation attempts to
maintain the beneficial compact structure of input statements in the resulting value function so that
time and space complexity remains low. Another reason for maintaining a compact target function
is that it possesses many independence properties. These properties seem desirable, as they are
usually implicitly implied by the input statements.

The general paradigm of structure-based compilation works as follows. We would like to show
that some class of statements can be mapped into some class of value functions and that this mapping
can be done efficiently. Let’s consider a very simple example to illustrate this idea. For that, we
restrict ourselves to a simple language of unconditional preference statements over single attributes
such as ”I prefer red cars to blue cars.” Next, we specify a target class of value functions, and
in our case this will be the class of additively independent value functions. Note that this class
of functions satisfies the desired goal of mapping into compact value functions—each additively
independent value function requires only O(n) space as we need to associate a numeric value with
(and only with) every attribute value. For example, if we have an attribute Color with values blue,
red, and black, we will have a function Vcolor associated with this attribute and we must specify
Vcolor(blue),Vcolor(red ),Vcolor(black ). Finally, we must specify a mapping from our preference
expressions to the selected target class of functions. The mapping usually corresponds to mapping
each statement to a set of constraints on the value function. For example, ”I prefer red cars to
blue cars” maps into Vcolor(blue) < Vcolor(red ). Once we generate the entire set of constraints,
any values for the parameters that satisfy these constraints is a valid value function. For example
Vcolor(blue)= 10, Vcolor(red )= 15 is a valid value function with respect to the sole statement as
above.

At this point we want to show that this mapping works in general. That is, if we have a consistent
set of statements S in the given language, then there exists an assignment to the appropriate set of
parameters that yields a value function V representing the preference order induced by S.5 For

5. Note that, technically, a concrete representation theorem would require some definition of consistency at the level of
the input statements.
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instance, in this particular case, it is trivial to show that given consistent orderings over the values of
individual attributes, we can come up with an additively independent value function that is consistent
with these orderings. In general, representation theorems of interest usually (1) define a concrete
class of input statements; (2) define the structure of the resulting value function (as a function
of some properties of the input statements), and show that it is not too large; (3) prove that, for
consistent input expressions in the chosen class, there exist value functions consistent with these
expressions and obeying the selected structure. Finally, we also need a compilation theorem, that
is, a theorem that shows that this mapping process can be performed efficiently.

Naturally, there are more interesting results than the very simple example considered here. For
example, (Brafman & Domshlak, 2008) show that it is possible to compile to compact GAI value
functions rather complicated, heterogeneous expressions consisting of

• conditional preference statements over single attributes, e.g., ”In sports car from model year
2008 and beyond, I prefer the color red to blue,”

• conditional statements of attribute importance, e.g., ”Given that I’m flying in business class
at night, the airline choice is more important than the seating assignment,” and

• pairwise comparisons of concrete outcomes, e.g., ”Your car is better than mine.”

The compilation scheme for this language is already much more involved and thus we won’t get
into its detailed discussion. In general, however, the area of structure-based preference compilation
is still largely unexplored, and we believe that many interesting results in this direction are still to
be discovered.

2.3.2 STRUCTURE-FREE COMPILATION

While the amount of concrete results on structure-based preference compilation is still limited, it
appears that the structure-based approach has two important limitations in general. The first is that a
particular target structure for the value function is assumed. As we know, such structure is intimately
tied with the notion of independence. Thus, in essence, the structure based approach attempts to
augment the user expression with additional independence assumption. These assumptions may not
be valid. They may even be inconsistent with the user’s statements. The second limitation is that
our ability to provably model heterogeneous types of statements is limited. That is, the languages
for which we have representation and compilation theorems are limited.

The two assumptions are closely related. Because we insist on a special structure with its related
independence assumptions, we lose our modeling flexibility, and consequently the expressive power
of input statements we can handle. However, we insisted on such structure for a reason – we wanted
a compactly representable value functions. The structure-free compilation approach removes the
inherent independence assumptions of the structure-based approach while maintaining our ability
to efficiently compute the value of each outcome. It does this by utilizing kernel-based methods,
popular in machine learning (Muller, Mika, Ratsch, Tsuda, & Scholkopf, 2001). Of course, there is
no entirely free lunch, and some other assumptions are hidden behind these technique—and we will
try to understand them later on.

The basic idea behind structure-free compilation is as follows: starting with the original n at-
tributes X, we schematically define a much larger (exponential in n) space of new attributes. These
attributes, called features in what follows, correspond to all possible combinations of attribute val-
ues. The key property of the high-dimensional space defined by these features is that any value
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function defined in terms of the original set of attributes has a additively independent decompo-
sition over the new features. The value of an outcome corresponds to the dot-product between a
vector of weights, one associated with each feature, and the vector of feature values provided by the
outcome. Computing this dot-product explicitly is infeasible, as these vectors’ length is exponen-
tial in n. However, under certain conditions, dot-products can be computed efficiently using kernal
functions, and this is exactly what is exploited here. We now provide a more detailed explanation.

The structure-free approach works by taking a first step that is rather unintuitive—it maps the
original problem where we work with n given attributes into a problem in which we have exp(n)
attributes. Assuming here that the attributes X are all binary-valued, the outcomes Ω described in
terms of X are schematically mapped into a space F = <4n using a certain mapping Φ : Ω 7→ F .
The mapping Φ relates the attributes X and dimensions of F as follows. Let F = {f1, · · · , f4n}
be a labeling of the dimensions of F , and D =

⋃n
i=1Dom(Xi) = {x1, x1, · · · , xn, xn}, be the

union of attribute domains in X. Let val : F → 2D be a bijective mapping from the dimensions of
F onto the power set of D , uniquely associating each dimension fi with a subset val(fi) ⊆ D , and
vice versa. Let Var(fi) ⊆ X denote the subset of attributes “instantiated” by val(fi). For example,
if val(fi) = {x2, x3, x17}, then Var(fi) = {X2, X3, X17}. Given that, for each x ∈ X and fi ∈ F,

Φ(x)[i] =

{
1, val(fi) 6= ∅ ∧ val(fi) ⊆ x
0, otherwise

(1)

That is, geometrically, Φ maps each n-dimensional vector x ∈ X describing an outcome to the 4n-
dimensional vector in F that uniquely encodes the set of all projections of x onto the subspaces of
X . For example, suppose that we have three attributes describing cars: Color (red, blue), Category
(sedan, minivan), New (new, used). In this case, the features fi will correspond to red, red ∧ new,
sedan ∧ used, etc., and we would map a car (red, used, sedan) into a truth assignment to features
that assigns true to the features associated with {red}, {used}, {sedan}, {red,used}, {red,sedan},
{used,sedan}, {red,used,sedan}.

Let us now consider the compilation of preference expressions in terms of constraints on ad-
ditively independent value functions in the new space F . Assuming here that the referents of the
statements in S correspond to propositional logic formulas over X, consider an arbitrary com-
parative statement ϕ � ψ. Let Xϕ ⊆ X (and similarly Xψ) be the variables involved in ϕ, and
M(ϕ) ⊆ Dom(Xϕ) be the set of all ϕ’s models in the subspace of Ω defined by Xϕ. For instance, if
X = {X1, . . . , X10}, and ϕ = X1 ∨X2, then Xϕ = {X1, X2}, and M(ϕ) = {x1x2, x1x2, x1x2}.
Given that, each statement ϕ � ψ is compiled into a set of |M(ϕ)| × |M(ψ)| linear constraints

∀mϕ ∈M(ϕ),∀mψ ∈M(ψ).
∑

fi:val(fi)∈2mϕ

wi >
∑

fj :val(fj)∈2
mψ

wj (2)

where 2m denotes the set of all non-empty value subsets of the local model m. For example,
statement (X1 ∨X2) � (¬X3) (e.g., “It is more important that the car is powerful or fast than not
having had an accident”) is compiled into

wx1 + wx2 + wx1x2 > wx3

wx1 + wx2 + wx1x2 > wx3

wx1 + wx2 + wx1x2 > wx3

(3)
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Putting together such constraints resulting from compiling all the individual preference statements
in the expression, we obtain a constraint system C corresponding to the entire expression S. At first
view, solving C poses numerous complexity issues. First, though this constraint system is linear,
it is linear in the exponential space <4n . Second, the description size of C, and, in fact, of each
individual constraint in C, can be exponential in n. Interestingly, it turns out that these complexity
issues can be overcome by using some duality techniques from optimization theory (Bertsekas,
Nedic, & Ozdaglar, 2003) and Reproducing Kernel Hilbert Spaces (RKHS) (Kimeldorf & Wahba,
1971). The bottom line is that these techniques allow for computing a solution for C (corresponding
to the desired value function V : F 7→ <), and subsequently computing the values of V on the
outcomes Ω, without requiring any explicit computation in <4n .6

BIBLIOGRAPHIC NOTES

The idea of finding factored value functions that represent some preference relation is discussed at length in (Keeney &

Raiffa, 1976). Conjoint measurement theory (Green & Rao, 1971; Green, Krieger, & Wind, 2001) specifically considers

the problem of generating a value function describing a user (or a populations) preference based on answers to preference

queries. Most of this work seeks an additive independent model, though some extensions exist (Bouyssou & Pirlot, 2005).

Compilation methods were investigated in AI by (McGeachie & Doyle, 2004; Domshlak & Joachims, 2007; Brafman

& Domshlak, 2008) Much recent work in the machine learning community is devoted to rank learning problems, where

we attempt to learn a ranking function on some input based on examples. See for example (Crammer & Singer, 2003;

Radlinski & Joachims, 2007; Burges, Shaked, Renshaw, Lazier, Deeds, Hamilton, & Hullender, 2005).

2.4 Uncertainty and Utility Functions

In our discussion so far, we assumed that our preferences were over outcomes that we can obtain
with certainty. For example, when we ordered digital cameras (e.g., based on their zoom, number of
mega-pixels, and cost) our implicit assumption was that we actually have a choice among concrete
cameras. This may sound completely obvious, but consider the following situation. My company
offers a new perk – each week it will buy me a lottery ticket, but I have to choose which lottery to
participate in (e.g., California Lottery, Nevada, British Columbia, Upper Saxon, etc.). So I’m faced
with the following decision problem: determine the most desirable lottery from a set of possible
lotteries. Each lottery offers a certain set of possible prizes, and to make things simple, we assume
that the odds for each prize are know. Alternatively, suppose that I’m spending the weekend in
Vegas, and I love playing roulette-style games. I know that different hotels have different such
games with different prizes and different odds, and I want to choose the best place to gamble.

Gambling and lotteries may sound like insignificant applications of preference theories. It turns
out, however, that the concept of a lottery, or a gamble, is far more general than ”real” lotteries.
Basically, a lottery represents a (possibly available to us) choice that can lead to various concrete
outcomes, but where we do not know ahead of time which outcome will prevail. For example,
consider the problem of selecting a digital camera. If the attributes we care about are indeed, mega-
pixels, zoom, and cost, then no lottery is involved because we can directly obtain the outcome we
select. But what if we also care about reliability, defined as length of time until the camera starts to
mal-function? Needless to say that we cannot really select the value of this attribute. Instead, we
might be able to associate with this attribute a probability distribution over its values. Similarly, what

6. Presenting the computational machinery here is simply infeasible, and thus the reader is referred to (Domshlak &
Joachims, 2007).
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if what we care about in a flight is its actual (in contrast to the published!) arrival time. Again, we
cannot select a concrete arrival time simply because we don’t control it. What we could do is, e.g.,
choose the airline based on its past record. Thus, a flight is a lottery over arrival times (among other
things), and by selecting different flights we are selecting different lotteries. Similarly, consider an
actuation command sent to one of NASA’s rovers on Mars. We don’t really know ahead of time how
it will affect the rover. This depends on the complex dynamics of the rover itself, the terrain, and the
current weather conditions on Mars. None of these parameters are known precisely. Hence, when
we choose to send this command, we’re actually choosing a lottery over various concrete changes
of the rover’s state.

It is clear that lotteries over concrete outcomes are a general model of choice under uncertainty,
i.e., the problem of choosing among actions with uncertain outcomes. But this begs the question:
how can we work with preferences over such choices? Clearly, if we’re able to order the set of
possible lotteries, we’re done. However, it’s really unclear how to even approach this problem.
This is where von-Neumann and Morgenstern’s theory of utilities (von Neumann & Morgenstern,
1947) comes in. This seminal theory explains how we can associate a real value with each concrete
outcome—its utility—such that one lottery is preferred to another if and only if the expected utility
of its outcomes is greater than that of the other.

This result seems magical, and in some sense it is, but does come with a price. First, note that
simply ordering the outcomes is not going to be enough. We will have to work harder and come
up with something like a value function. However, whereas in a value function we really care only
about the relative ordering of outcomes’ values, in a utility function the actual value plays a sig-
nificant role. In addition, the whole technique holds only when the target ordering over lotteries
satisfies certain properties. On the positive side, these properties make a lot of sense, that is, you
would expect a ”reasonable” decision maker to satisfy these postulates. On the negative side, it is
well known that peoples’ orderings often do not satisfy these properties, and a lot depends on fram-
ing issues. There’s been a lot of work on this topic, especially by economists, who have attempted
to come up with weaker or simply different properties (and there’s a very nice and accessible text
book on this topic (Kreps, 1988)). Here, however, we’ll stick to the classical result.

Formally, our model here has the following elements:

• Ω – Set of possible concrete outcomes

• L = Π(Ω) – Set of possible lotteries (that is, probability distirbutions) over Ω.

• L ⊆ L – Set of available lotteries over Ω (that is, possible choices or actions)

If l ∈ L and o ∈ Ω, we use l(o) to denote the probability that lottery l will result in outcome o.
Our first step will be to assume that we seek an ordering over the entire family Π(Ω). This

makes things simpler mathematically. The actual elicitation technique is affected by the size of Ω
only.

Our second step is to define the notion of a complex lottery. Imagine that my employer has
now added a new meta-lottery to its list of offered lotteries. In this lottery, we win lottery tickets.
Say, with probability 0.4 we get a California lottery ticket, and with probability 0.6 we get a Nevada
lottery ticket. A fundamental assumption we’re going to make is that this new lottery is equivalent to
a simple lottery. For example, suppose the California lottery gives out $1,000,000 with probability
0.1, and nothing otherwise, while the Nevada lottery gives out $2,000,000 with probability 0.05, and
nothing otherwise. We can transform the new complex lottery into a simple lottery by looking at the
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joint distribution. Thus, the probability that we get $1,000,000 is 0.1 ∗ 0.4 = 0.04; the probability
that we get $2,000,000 is 0.05 ∗ 0.6 = 0.03 and the probability that we get nothing is 0.93.

Next, we present the three properties that preference over lotteries must be satisfy for the von-
Neumann Morgenstern Theorem to hold:

Axiom 1: Order � is a Total Weak Order. For every l, l′ ∈ L at least one of l � l′ or l′ � l holds.

Axiom 2: Independence/Substitution For every lottery p, q, r and every a ∈ [0, 1] if p � q then

ap+ (1− a)r � aq + (1− a)r

Axiom 3: Archimedean/Continuity If p, q, r are lotteries s.t. p � q � r then ∃a, b ∈ (0, 1) such
that

ap+ (1− a)r � q � bp+ (1− b)r

Let’s take a closer look at each one of these axioms. The first is pretty straightforward: We
must agree that, in principle, any two lotteries are comparable. The second axiom is a bit harder to
parse, yet it formalizes a very intuitive assumption about preferences over lotteries. Basically, the
second axiom says that if you prefer oranges at least as much as apples then, no matter how you
feel about carrots, you’ll like a lottery that gives you an orange with probability p and a carrot with
probability 1− p at least as much as a lottery that gives you an apple with probability p and a carrot
with probability 1− p. Thus, in both lotteries we get a carrot with the same probability, but with the
remaining probability, the first lottery gives us a more preferred outcome, and so we like it better.

To understand the third axiom imagine that you strictly prefer oranges to apples and apples to
carrots. Imagine that we slightly ”dilute” your oranges by making a lottery that gives you oranges
with probability 1− a and carrots with probability a. The axiom says that there is always (possibly
very small, but still positive) such a dilution for which you still prefer this this lottery to getting
apples for sure. It is not surprising that this is called the continuity axiom. Similarly, if we take
the carrots and only slightly improve them by giving you some chance of getting an orange, there
is always such a prospect that is still worse than getting apples for sure. Intuitively, this axiom is
implying that nothing can be too bad (e.g., hell) or too good (e.g., heaven) so that just a little bit of
it could transform a good thing into an arbitrarily bad one, or a bad thing into an arbitrarily good
one.

Turns out that these three axioms together buy us a lot. Specifically, the von-Neumann Mor-
genstern theorem states that a binary relation over L satisfies Axioms 1-3 above if and only if there
exists a function U : Ω → < such that

p � q ⇔
∑
o∈Ω

U(o)p(o) ≥
∑
o∈Ω

U(o)q(o). (4)

Moreover, U is unique upto affine (= linear) transformations.
Once again, the meta-model instantiated for the setup of preferences over lotteries is depicted in

Figure 7. Note that, in practice, the existence of the utility function should be somehow translated to
obtaining that function. One way for that is as follows. First, we order the set of concrete outcomes.
Because utilities are unique up to affine transformations, we can fix an arbitrary value for the best
and worst outcomes. We’ll use 1 for the best and 0 for the worst. Next, we need to assign a value to
every other outcome. Let ob denote the best outcome and ow denote the worst outcome. Consider an
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Figure 7: Meta Model for Utility Functions

arbitrary outcome o. The utility of o is given by the value p determined in response to the following
question: For what value p is it the case that you are indifferent between getting o for sure and a
lottery in which you obtain ob with probability p and ow with probability 1− p.

For example, suppose that we’re ordering food. Restaurants are characterized by two attributes:
whether they sell junk-food or healthy food, and whether the food is spicy or not. Here are the steps
we take to generate the utility function:

1. Order outcomes best to worst: (unspicy, healthy) � (spicy,junk-food) � (spicy,healthy) �
(unspicy, junk-food)

2. Assign utility to best and worst outcomes: U (unspicy,healty) := 1; U (unspicy, junk-food) :=
0;

3. Ask for values p and q such that

(a) (spicy,healthy) ∼ p(unspicy,healthy)+(1-p)(unspicy,junk-food)
(b) (spicy,junk-food) ∼ q(unspicy,healthy)+(1-q)(unspicy,junk-food)

4. Assign: U (spicy,healthy) := p; U (spicy,junk-food) := q.

Although we see that there is a clear methodology for assigning utilities to outcomes, it is
apparent that we can’t expect lay users to be able to come up with these answers without much
help. Indeed, specifying a utility function is much harder, cognitively, than specifying an ordering,
and direct utility elicitation is not likely to be very useful in online setting. Current research in the
area attempts to cope with this limitation in at least three different ways. First, it is possible to use
here as well the structural assumptions such as generalized additive independence to decompose
the specification of complex utility functions. Second, by using data from previous users, one can
learn about typical utility functions, and later calibrate them using information about the current
user. Finally, one can exploit knowledge about the current decision problem to characterize only the
information about the user’s utility function required to address the current decision problem. We
shall consider some of these issues in the next section.
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3. Preference Elicitation

Our discussion so far has focused on models and languages for representing preferences. Some of
the languages discussed were motivated by the need to make the preference specification process
more rapid and more accessible to lay users. However, in many problem domains we can’t expect
to obtain perfect information about the user’s preferences because of the time and effort involved.
Thus, the first question that arises is what can we do with partial information. Next, given that we
can expect only partial information, we would like to obtain the most useful information possible
given the user’s time and effort limitations. Thus, the second question is how to make the elicitation
process effective.

3.1 Working with Partial Specifications

The abstract problem of working with a partial specification has close similarities to the basic prob-
lem of statistical machine learning, in particular to classification. In classification problems, we
must classify objects based on partial knowledge of the true model underlying the classification.
In the standard setting of the classification problem, this partial knowledge corresponds to a set of
properly classified objects from the space of all possible objects. Given such partial knowledge, the
process of classification typically boils down to inferring either a single classification model, or a
(possibly weighted) set of such models, from the space of all models in the chosen model class. The
latter set of possible models is called a hypothesis space. Our situation is somewhat similar—our
hypothesis space corresponds to the set of all possible preference model instances. For example,
if our models are total orders, then these would be all possible total orders over the relevant set of
outcomes. Or if our model is some GAI value function with a particular set of factors, then the
hypothesis space includes all possible factor values. We, too, are given only partial information,
and have to make decisions based on this information only. However, our situation with respect
to the partial information is not exactly the same as in the standard setting of statistical machine
learning. The main difference stems from the form in which the partial knowledge is obtained. In
statistical machine learning the partial knowledge is given by the examples of the concept to be
learned, and the examples are assumed to be sampled from independent and identically-distributed
random variables reflecting the topology of the object space. In contrast, our partial knowledge
is typically given by a set of more global constraints on the original hypothesis space, with the
constraints corresponding to some restrictions on values, some relationships between attractiveness
of outcomes, generalizing statements, etc. In that sense, while being very similar to the inference
process in statistical machine learning, our inference process is closer to more general settings of in-
ference via constraint optimization such as, e.g., inference about probability distributions in (Shore
& Johonson, 1980).

Figure 8 relates this discussion and the concepts involved to our meta-model. When we have a
complete specification, the inference process leaves us with a single model, as shown in Figure 9.
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Figure 8: Model selection process.

However, in most practical situations, multiple models are consistent with the data, and we must
specify how information is mapped into the model space. One of the basic choices we must make
is whether a prior distribution is defined over the hypothesis space or not.

Figure 9: Selection With Full Information

3.1.1 THE MAXIMUM LIKELIHOOD APPROACH

Suppose we have a prior distribution over models. In many situations, this is quite natural. Con-
sider, for example an e-commerce site visited by many consumers. As data from multiple users
accumulates, the site can form a reasonable probabilistic model of user preferences. This distribu-
tion can be used as a prior over the hypothesis space. Now, two standard models for selecting model
parameters can be used. In the maximum-likelihood method, we start with a prior distribution over
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the preference models, and update this distribution using the user statements. Typically, the user
statements simply rule out certain models, and the probability mass is divided among the remaining
models. At this point, the most likely model consistent with the user statements is selected and used
for the decision process.

For example, suppose that we are helping the user select a digital camera and she cares only
about two features: number of mega-pixelsM , and its weightW . Suppose that our hypothesis class
contains only additive value functions of the form cm·M+cw·W . We have a prior distributions pm,w
over cm and cw. Suppose that all we know is that the user prefers some camera with parameters
(m1, w1) to another camera with (m2, w2). From this we can conclude that cmm1 + cww1 >
cmm2 + cww2, that is, cm(m1−m2) > cw(w2−w1). The value function selected according to the
maximum likelihood principle will have the coefficients ĉm, ĉw such that:

(ĉm, ĉw) = argmax(cm,cw){prm,w(cm, cw) : cm(m1−m2) > cw(w2 − w1)}

Let’s consider some of the models we discussed earlier in light of the maximum-likelihood
approach, starting with CP-nets. One of the special features of CP-nets is that there is always a
default model – namely, the model that satisfies all and only the preference relations derived from
the input statements. Thus, in CP-nets, the prior distribution could be any distribution, while the
posterior distribution over partial orders � is

p(�) ∼

{
1, � assumes all and only all the information in N
0, otherwise

Evidently, this is not a very interesting application of the maximum likelihood principle.
Next, consider the structured value function compilation. Suppose that p(V ) is our prior dis-

tribution over value functions. Then, the posterior distribution is obtained by removing elements
that are inconsistent with the constraints and renormalizing (that is, doing standard probabilistic
conditioning). The situation with structureless value compilation approach is the same, except that
it requires a concrete prior

p(V ) ∼ −e||wV ||2

where w is the vector of coefficients of a high-dimensional linear value function. Notice that the
picture we have in both of the compilation approaches can be illustrated as follows.

That is, we start with a large weighted hypothesis space (i.e., a prior distribution over models),
obtain information from the user that usually rules out some of the models, ending up with a subset
of the original hypothesis space, from which we need to select a single model—the model with
highest weight, possibly requiring some other selection criteria to break ties.
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3.1.2 THE BAYESIAN APPROACH

The Bayesian approach is identical to the maximum likelihood approach, except that instead of
selecting the most probable model and answering queries using it, this method maintains the entire
posterior probability distribution and uses all models to answer a query, weighted by their respective
probability. Thus, considering the picture above, we work with the entire intermediate purple set,
but giving different weight to different elements.

As a simple example, let O be a set of total orders – our hypothesis space – and let p : O → <
be the posterior distribution over O obtained after updating our prior with the user’s input. Suppose
that we want to answer the query ”o1 ≺ o2?” We answer positively if p({o ∈ O : o1 ≺ o2}) >
p({o ∈ O : o1 ⊀ o2}).

Although conceptually elegant, the Bayesian approach often requires the specification of another
element to answer queries. The problem is that it is not always clear how to use the posterior
probability to answer queries. For example, suppose we seek an optimal outcome. One approach
we might take would be to assign to each outcome the sum of probabilities of all models in which
this outcome is ranked highest, and return the outcome with highest score. Thus, intuitively, the
total value associated with an outcome is the probability that it is the best one.

Now, imagine that we have n possible outcomes, and our posterior model puts all of its weight
on n− 1 equally likely different orderings. The top element in each of these orderings is different,
but the second element is always the same outcome o. Thus, o’s weight in this case would be 0, but
intuitively it appears to be the best choice. To address this problem we can add a scoring function.
The scoring function assigns a score to each possible answer within each model. The best answer
is then the one with the highest expected score. In the above example, we implicitly used a score of
1 for an the outcome ranked highest and 0 for all other outcomes. We could have used a different
score, such assigning n− j + 1 to the outcome ranked jth, obtaining a different result.

Let’s consider the earlier example of the purchase of digital camera. Recall, we have a distri-
bution pm,w over cm and cw, and a constraint due to our single observation that cm(m1 −m2) >
cw(w2 − w1). Let’s use mC and wC to denote the number of mega-pixels and the weight of some
camera C. The score associated with camera C in a particular model with coefficients cm, cw is:
cmmC + cwwC . Thus, the expected score of a camera is

α

∫
{cm,cw:cm(m1−m2)>cw(w2−w1)}

pm,w(cm, cw)(cmmC + cwwC)dcmdcw,

where α is some normalizing constant. Thus, the best camera is the one that maximizes this value,
that is,

argmaxC is a camera

∫
{cm,cw:cm(m1−m2)>cw(w2−w1)}

pm,w(cm, cw)(cmmC + cwwC)dcmdcw.

A natural scoring function when our hypothesis class if utility functions is the utility of an
outcome. Consider the case of a probability distribution over utility functions, and suppose we seek
the optimal choice. Each choice is associated with a value in each model – its expected utility within
that model. But we also have a distribution over models, thus, we can use the expected expected
utility, that is, replacing

p � q ⇔
∑
o∈Ω

U(o)p(o) ≥
∑
o∈Ω

U(o)q(o)
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with
p � q ⇔

∑
U

p(U)
∑
o∈Ω

U(o)p(o) ≥
∑
U

p(U)
∑
o∈Ω

U(o)q(o). (5)

3.1.3 REGRET-BASED SCORES

Although prior distributions over preference models are natural in some cases, they are difficult to
obtain in others. Without them, we need to replace the notion of the ”most probable model” by
some notion of ”best” model. One attractive way to do this is using the concept of regret.

Again, suppose that our target class is the class of value or utility functions. We have a set
of possible candidates, as in the structure-based compilation approach, and we need to select one.
Suppose the the user’s true (and unknown) value function is V , and suppose that we select some
function V̂ . How bad can this be? This depends on V, V̂ and the query we are trying to answer.
Suppose that we are trying to find the most preferred outcome. If both V and V̂ have the same
most preferred outcome, then we’re very happy. But suppose that o is the most preferred outcome
according to V , and ô is the most preferred outcome according to V̂ . In that case, we’re going to
recommend ô to the user, instead of o. How unhappy would this make the user? Well, the user
values o at V (o) and ô at V (ô), so we could quantify the user’s regret at getting ô instead of o by
V (o)− V (ô). Thus, we can also view this as the regret associated with selecting V̂ instead of V .

As an example, consider the following table of value functions for a domain with four possible
outcomes.

V1 V2 V3 V4

o1 1 4 2 2
o2 2 3 4 3
o3 3 3 3 4
o4 4 1 1 3

Suppose that V1 is the true value function, but we select V2. V2 assigns the highest value to o1. The
true value of o1 is 1. The true optimal value is 4, assigned to o4. Our regret is thus 4− 1 = 3.

When we select V̂ as the value function, we don’t know what the true value function V is, so
we can’t compute V (o)− V (ô). A cautious estimate would consider the worst case scenario. This
is called the maximal regret. More formally, if V is the set of candidate value functions, then

Regret(V̂ |V) = max
V ∈V

(V (argmaxo V (o))− V (argmaxo′ V̂ (o′))), (6)

that is, the worst case across all choices of V of the difference between the value according to V of
the best V outcome and the best V̂ outcome. For instance, considering our example above we see
that our maximal regret at having chosen V2 would be if the true value function is V1.

Given the notion of regret, an obvious choice of a value function among the set of alternative
possible values functions is the one that minimizes regret. Specifically, the minmax regret value
function Ṽ satisfies

Ṽ = argmin
V ∈V

Regret(V |V). (7)

In our example, V3 and V4 minimize max regret because we can see that the maximal regret asso-
ciated with V1, V2, V3, V4 is 3, 3, 2, 2, respectively. Thus, V4 would be the choice that minimizes
regret. Notice that in our case, this is equivallent to saying that selecting outcome o3 is the choice
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that minimizes regret. Indeed, rather than talk about the regret associated with a value function, we
can more simply (and more generally) talk about the regret associated with a particular answer to
the query at hand. This regret is a function of the set of candidate value functions.

Regret-based criteria can be used in different contexts. When a probability distribution over
possible models is not given, we can use minmax regret to select a single model or select an optimal
answer. When a probability distribution over models is available, we still need to associate a score
with each possible answer to a query. The maximal regret can be used to score an answer in a model,
and expected regret can be used to rate different answers. Thus, in our above example, if we asso-
ciate a distribution of (0.5, 0.1, 0.1, 0.3) with {V1, V2, V3, V4}, we can compute the expected regret
associated with each outcome. For example, the regret associated with the choice o1 is 3, 0, 2, 2.
Taking expectation, we obtain 2.3.

Finally, a word of caution. Although minmax regret is an intuitive choice criteria, its semantics
is problematic, as there is no clear meaning associated with measures of difference in value or
utility, except for special cases of what are known as measurable value functions (Krantz et al.,
1971). Thus, it is best thought of as an intuitive heuristic method.

3.2 Preference Elicitation

Our discussion so far on preference specification took a user-driven perspective—the information
flow was considered to be uni-directional: from the user to the system. Under the assumption of
eventual acquisition of the complete model of user preferences there is no real difference between
purely user-driven and mixed-initiative preference specification. This is not the case, however, with
partial model acquisition, and in what follows we consider preference specification in that setting
more closely.

Clearly, if we can get only part of the model, then which part we get is quite important. In fact, to
answer certain queries accurately, a partial model suffices, provided it is has the right information.
Preference elicitation is a process driven by the system that aims at improving the quality of the
information it has about the user’s preferences while decreasing the user’s cognitive burden as much
as possible.

The main benefit of the system-driven setting is that questions can be asked sequentially and
conditionally. The questions we ask at each point take into account the answers we received earlier,
as well as the query. There are a number of ways to approach this problem. When, as often is the
case, the task is to recognize an optimal outcome of interest, k-item queries are often used. In this
case, the user is shown k alternative choices and is asked to either select the best one among them,
or to rank them. When the user selects an item out of k, she is basically giving an answer to k − 1
explicit comparisons (i.e., telling us that the chosen outcome is at least as preferred as the k − 1
other outcomes). Each such answer eliminates all orderings inconsistent with these answers.

A simple way of implementing this approach is by considering all possible total orders as pos-
sible hypothesis, and then ruling them out as information is obtained. For example, if the choice is
among five items o1, . . . , o5 and k = 2, we simply ask the user to compare pairs of items. If, for
example, the user indicates that o2 � o3 and o1 � o4, orderings of the form . . . , o4, . . . , o1, . . . and
. . . , o3, . . . , o2, . . . are eliminated.

However, this is a slow process that is likely to require many iterations. A more efficient pro-
cess utilizes a smaller hypothesis space, e.g., one that is based on some GAI-decomposition. In
that case, each query farther constrains the possible values of the value function factors, and some
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generalization is taking place, i.e., one can rule out additional orderings. For example, suppose that
the choice depends on two attributes, location and facility, and I learned that the user prefers a spa
in Barcelona to a spa in Madrid. Without farther assumptions, only orderings that are inconsistent
with this choice can be ruled out. However, if we assume that the value function is additive, or if we
assume preferential independence, then we can also rule out orderings in which a rented apartment
in Madrid is preferred to an otherwise similar apartment in Barcelona.

The above process appears somewhat ad-hoc, and a more principled approach is desirable. In
particular, even if we decide to use k-item queries, it is not clear how to select which query to
ask. This problem can be approached from a decision-theoretic perspective. As we noted earlier,
preference elicitation is a sequential process. We start with some target query and (possibly empty)
knowledge of the agent’s preferences and we can ask the user various questions. Typically, we
don’t know ahead of time how many questions the users will agree to answer, and so we must have
a response to the original query at each point.

To have a well-posed sequential decision problem we need to model the state of the system and
to have a valuation for alternative states as a start. The most natural way to model the system’s
state is in terms of some beliefs over a set of possible preference ordering. This takes us back to
issues we considered in the context of partial models. In that setting, too, we needed to represent a
set of possible models, possibly with some probability distribution defined over them, and to assign
a valuation to each such set. The same answers we gave there can be used here, too. Thus, the
system’s state could be modeled as a set of possible orderings or value functions. We can farther
refine this model by introducing a distribution over preference models to capture our uncertainty.
The value of a model depends on the query at hand, but again, considering the problem of optimal
choice, we can use measures such as expected utility-loss or maximal regret.

At this point, we can start using standard ideas from decision theory to analyze the problem of
preference elicitation. Let’s start with a context in which we can pose a single preference query.
What is the most appropriate query? This problem is analogous to the problem of selecting an
observation in a decision context. That is, we have some beliefs about the current state of the world
and we need to make a decision. The value of this decision depends on the actual state of the world,
yet before we make the decision, we can observe the value of some feature of the current state.
Which feature should we observe?

The answer given in decision theory is that we should compute the value of information associ-
ated with each feature we could observe and observe the feature with maximal value of information.
The value of information of a feature is a measure of how much ”happier” we would be if we
learned the value of this feature. Considering a setting where our beliefs are captured using a distri-
bution p over the state of the worlds, the value of information of feature f is computed as follows:
Let s denote some state of the world, and let V (s, a) denote the value of doing a at state s. Re-
call that for us s would denote some preference model, and a would be an answer to the query at
hand, such as ”what is the best item?” Given the distribution p, V (p, a) is the expected value of
a according to p, i.e., Ep[V (s, a)]. Let ap denote the action with the highest expected value, i.e.,
ap = argmaxaEp(V (s, a)). Now we can define the value of query q given belief state p. Suppose
that q has k possible answers, r1, . . . , rk. Let pi denote the probability p conditioned on ri. Let ai
denote the best action according to pi. The value of information of query q is

V I(q) =
∑
i

p(ri)V (pi, ai)− V (p, a).
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Thus, the value of a query is some aggregate of the value of the world after we get an answer
to that query. The value of the world, in our case, would be how happy we would be making the
best decision in that world. For example, when we assume a probability distribution over possible
preference models, and we evaluate such a distribution in terms of its minmax regret value, then the
best query is the one that will minimize the expected minmax regret value of the resulting state.

We illustrate these ideas using the example we used earlier. We have four possible value function
over four objects.

V1 V2 V3 V4

o1 1 4 2 2
o2 2 3 4 3
o3 3 3 3 4
o4 4 1 1 3

Our current beliefs are: pr(V1) = 0.5, pr(V2) = 0.1, pr(V3) = 0.1, pr(V4) = 0.3. The score we
give each outcome in each state is simply its value. In our current state (as captured by our current
beliefs) the outcomes have the following expected value: 1.7,2.3,3.3,3.1. Thus, the best choice is
o3 with value 3.3. Suppose that we can ask a query of the form: ”what is the value of outcome o?”,
and let’s see the what is the value of asking: ”what is v(o4).” There are 3 possible answers, with the
following probabilities according to our current beliefs: 4 with probability 0.5, 1 with probability
0.2, and 3 with probability 0.3. If we get the answer ”v(o4) = 4” then we conclude that V1 is the
only possible value function. The best action at that point (i.e., the best answer to the query) would
be to choose o4 with a value of 4. If we learn that ”v(o4) = 1” then our posterior belief will assign
V2 and V3 probability of 0.5 each. At this point, the best action/answer would be o2 with expected
value of 3.5. Finally, if we learn that ”v(o4) = 3” we conclude that the value function is V4 and
choose o3 and obtain a value of 4. We can now compute the expected value of our state following
the observation of v(o4), i.e., 0.5 · 4 + 0.2 · 3.5 + 0.3 · 4 = 3.9. Thus the value of query v(o4) is
3.9-3.3=0.6. You can verify for yourself that this query has the highest value of information (among
queries of this structure).

In the above example we assumed a distribution over possible models. However, similar ideas
(though perhaps less well founded) can be applied when do not use a prior. In that case, a natural
metric is minimal regret loss. Asking, as above, for the value of o4, if we learn that it is 4 or that it
is 3, we know the precise value function. In that case, our regret is 0. If we learn that v(o4) = 1,
then both V2 and V3 are possible. In that case, our minimal regret is 1 (obtained by suggesting item
o2). Thus, recalling from an earlier discussion that our minimal regret when all four value functions
were possible was 2, the minimal regret loss associated with the question v(o4) =? is 2-1=1.

Using the idea of value of information, we can decide which query to asks, but this answer has
two weaknesses. It deals with a single query, rather than a sequence of queries, and it ignores the
cognitive effort required to answer this query. For both problems we can use well-known solutions
from decision theory. The second problem is relatively easy to deal with, provided we have some
way of assigning cost to each query. Then, rather than talk about value of information, we can talk
about net value of information (NVI), where

NV I(q) = V I(q)− Cost(q).

For the first problem there are two standard solutions. The first is to act greedily, or myopically,
and always pose the query with maximal NVI. This myopic behavior might not lead to an optimal
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sequence. For example, suppose we have two queries to ask. There may be one query that has
large V I say 1 and high cost, say 0.4, but following which, most queries have little value, almost
0. On the other hand, there is a query with moderate V I , say 0.5, but no cost, following which
we can pose another similar query. However, it is computationally relatively cheap to compute the
myopic selection. The other option is to try to compute the optimal sequential choice. Typically,
this requires knowing the number of queries ahead of time (although this can be overcome) and
while an optimal querying strategy results, the computational cost are exponential in the number of
steps.

Finally, there is a very elegant model that captures all the above considerations nicely, although
it comes with a heavy computational price tag. According to this model, the problem of prefer-
ence elicitation is best modeled using a partially observable Markov decision process (POMDP). A
POMDP has four key elements: a set S of possible states of the world, a set A of possible actions,
a set Ω of possible observations, and a reward function R. Intuitively, we are modeling a decision
maker that at each decision point can select an action from A. This action affects the state of the
world, but that state is not directly observable to the agent. Instead, the agent can observe an ele-
ment in Ω, which is a, possibly noisy, feature of the current state. Actions can have cost or generate
rewards, and that cost or reward may depend on the state of the world in which they are executed.
Because the agent cannot directly observe the state of the world, what it does observe induces a
distribution over the state of the world, called its belief state.

The POMDP framework is really perfect for modeling the intricacies of the elicitation process.
The possible states of the world correspond to possible preference models in our hypothesis space,
e.g, value functions, or value functions with a particular factorization. The actions can be divided
into two types: queries, which model the queries we can ask the agent, and actions, which can be
used to model the actions we will eventually take on behalf of that agent. These actions could model
a final selection of an item of choice, or they could model more intricate choices that the system
might face whose evaluation requires knowledge of the agent’s value function. The observations
correspond to responses the user might make to the system’s queries. Finally, the reward function
models the cost of some of the queries (capturing their cognitive cost, for example) and the possible
value to the agent of actions such as selecting one particular item. Naturally, the value of an item
depends on the agent’s preferences, i.e., on the current state of the world. We can also model the
probability that the agent will no longer agree to answer questions by adjusting the state space.
Once a POMDP model is formulated, there are standard techniques for solving it. However, exact
solution methods are impractical, and approximate solution methods work well for only moderately
large state spaces. Thus, to apply this idea, we will have to limit ourself to a few hundreds of
possible preference models, at least if are to rely on the current state of the art.

Starting with an initial belief state, i.e., a distribution over the preference models, the policy
generated by solving the POMDP will tell us what query to ask next. In some precise sense, this
is the best query we could ask at this point taking all issues into considerations. Once the agent
responds to this query, our distribution over models will be updated, and again, we can use the
model to decide on our next query.

The result of a good preference elicitation strategy is a decision, or query response that maxi-
mizes the value of the resulting choice while minimizing the effort to the user. The POMDP model
is the theoretically best motivated, but the other options can also lead to good strategies. Making
these approaches practical is an on-going research issue that involves many aspects of the prob-
lem. These start with modeling the initial belief state. This initial distribution is often obtained by
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learning the preferences of a large population of users. Next, there is the problem of representing
this distribution compactly. In general, the number of possible preference models is very large, thus,
some parametric model is desirable. Next, there is an issue of modeling the cognitive burden of each
query. Finally, computational techniques for obtaining approximately optimal elicitation strategies
are needed. For example, the preference elicitation POMDP has special structure and properties
that could be exploited by the solution algorithm.

BIBLIOGRAPHIC NOTES

Preference elicitation and value of information have been first studies in the areas of decision analysis and psychology,

where it remains a topic of great importance (Tversky, 1972; Keeney & Raiffa, 1976; Howard & Matheson, 1984; French,

1986). This line of research has been extended in artificial intelligence, with a focus on automating the process of pref-

erence elicitation (Ha & Haddawy, 1997, 1999; Torrens, Faltings, & Pu, 2002; Pu & Faltings, 2004; Faltings, Torrens, &

Pu, 2004; Braziunas & Boutilier, 2005; Payne, Bettman, & Johnson, 1993; Smith & McGinty, 2003). Casting preference

elicitation for policy optimization as a properly defined decision process was first suggested in (Chajewska, Koller, &

Parr, 2000; Chajewska, Getoor, Norman, & Shahar, 1998), and then extended in (Boutilier, 2002) which suggested the

POMDP-based formulation. Preference elicitation under the minmax-regret model selection criterion has been studied

in (Boutilier, Patrascu, Poupart, & Schuurmans, 2006; Braziunas & Boutilier, 2007). Note that here our discussion is

focused on handling user preferences in “single-agent” settings; for an overview of recent works on preference elicitation

in multi-agent settings such as in (combinatorial) auctions see (Sandholm & Boutilier, 2006b).

4. Conclusion

The importance of preference handling techniques for many areas of artificial intelligence and de-
cision support systems is apparent. This area poses conceptual challenges, cognitive challenges,
computational challenges, and representational challenges. A large body of work on this topic has
accumulated. But there is ample room for additional ideas and techniques. Indeed, aside from the
classical work of von-Neuman and Morgenstern and techniques in the area of conjoint measurement
theory, which basically deal with eliciting the value of additive value functions, most of the ideas
described in this tutorial have yet to filter to real-world applications.

In this context, it is important to recall our three rough categories of applications. In the case of
the online consumer world, we believe the technology for more sophisticated online sales assistants
is ripe. Although it may perhaps not be universally applicable, we believe that there are markets
in which more sophisticated online assistants would be highly appreciated. Naturally, many issues
affect their acceptance beyond the sheer power of the preference elicitation technology they provide.
In the case of application design, we believe that more work on tools, and much education is required
for ideas to filter through. Finally, in the area of decision analysis, some techniques for better
elicitation of GAI utility functions, a well as qualitative techniques for preparatory analysis could
play an important role.
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