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From Arrow’s Impossibility to Schwartz’s TEQ

Overview

• Strictly axiomatic approach to social choice
‣ Search for reasonable SCFs with a solid axiomatic foundation
‣ Choice consistency and rationalizability
‣ Variable agendas and variable electorates

• From the impossible to the possible
‣ Arrovian impossibilities
‣ Three escape routes
‣ Scoring rules
‣ Top cycle and uncovered set
‣ Minimal covering set and tournament equilibrium set

• The tractable and the intractable
‣ Polynomial-time algorithms and hardness results

2
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Choice Theory

• Let    be a universe of alternatives.

• Alternatives are chosen from feasible subsets.
‣ Throughout this talk, the set of feasible sets          contains all finite 

and non-empty subsets of    .

• A choice function is a function                             such that             
              .

• Rationality and consistency conditions impose restrictions on 
choices in variable feasible sets.
‣ Example: A choice function    with                        and             

seems unreasonable.
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S : F(U)→ F(U)
S (A) ⊆ A

U

S ({a, b, c}) = {b}S ({a, b}) = {a}S

F(U)
U
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Rational Choice

• Def. (Richter, 1966):     is rationalizable if there exists a relation    
on    such that for each feasible set    ,
                                                                      , 
where     is the strict part of    .
‣ Acyclicity of     is necessary and sufficient.

• Typical rationalizing relations (Samuelson, 1938; Herzberger, 1973)
‣ Base relation: 
‣ Revealed preference relation: 

• Typical consistency conditions (Sen, 1971)
Let        be feasible sets and               .
‣ Contraction (   ):
‣ Expansion (   ):
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P

a RS b iff a ∈ S ({a, b})
a RS b iff a ∈ S (X) for some X with b ∈ X

x ∈ A ∩ BA, B

S R
U A

S (A) = {a ∈ A : x P a for no x ∈ A}
RP

α if x ∈ S (A ∪ B) then x ∈ S (A) ∩ S (B)
γ if x ∈ S (A) ∩ S (B) then x ∈ S (A ∪ B) A Bx
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Rationality and Consistency

• Theorem (Sen, 1971):      is rationalizable iff it satisfies    and   , 
i.e., for all feasible sets        and                ,
                                                     .
‣      and      are identical and rationalize   .

• Stronger forms of rationality and consistency
‣ Rationalizability via a transitive and complete relation
‣ Weak axiom of revealed preference (WARP) (Samuelson, 1938):

‣ Theorem (Arrow, 1959): A choice function is transitively rationalizable 
iff it satisfies WARP.

- WARP ⇔ α & β+ (Bordes, 1976)

‣ Rationalizability via a quasi-transitive relation (only the strict part 
needs to be transitive)
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if B ⊆ A and S (A) ∩ B � ∅ then S (A) ∩ B = S (B)

SRS RS

A, B x ∈ A ∩ B
α γ

x ∈ S (A ∪ B) iff x ∈ S (A) ∩ S (B)

S
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From Choice to Social Choice

• Let     be a finite set of voters and          the set of all transitive 
and complete relations over   .

• A social choice function (SCF) is a function                
                                         such that                   .
‣ For a given preference profile, every SCF induces a choice function and 

all rationality and consistency conditions can be readily applied.
‣ Arrow’s (1951) impossibility theorem, as formulated for SCFs, uses 

transitive rationalizability.

[...] the arbitrariness of power of which Arrow's case of dictatorship is an extreme 
example, lingers in one form or another even when transitivity is dropped, so long as 
some regularity is demanded (such as the absence of cycles).
                                                                                     Amartya Sen (1995)
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f (R, A) ⊆ Af : R(U)N × F(U)→ F(U)

R(U)
U

N
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Independence & Monotonicity

• Desirable independence conditions
‣ IIA (Independence of Irrelevant Alternatives): Choice only depends on 

preferences over alternatives in the feasible set
‣ Neutrality: IIA & choice is independent of the names of alternatives

• Desirable conditions on choice from {a,b}
‣ Non-imposition (NI): There are preference profiles such that a and b 

are the only choice, respectively.
‣ Pareto-optimality: If a is unanimously strictly preferred to b, then b is 

not chosen
‣ Monotonicity: If a is chosen, then it is also chosen when it is reinforced 

(& NI)
‣ Positive responsiveness: If a is chosen, then it is chosen uniquely when 

it is reinforced (& NI)
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Fairness Conditions

• A coalition is decisive if it can single-handedly decide choice from 
any two-element set {a,b} (e.g., a majority of voters).
‣ Formally, if all voters in a decisive coalition strictly prefer a to b, then a 

is chosen uniquely.
‣ Pareto-optimality precisely says that the grand coalition is decisive.

• Undesirable coalitions of voters
‣ Dictator: Decisive coalition with only one element
‣ Vetoer: Voter who can force an alternative into the choice set (he can 

veto the exclusion)
- Oligarchy: Decisive coalition of vetoers

‣ Collegium: Non-empty intersection of all decisive coalitions

• Anonymity: Choice is independent of the names of the voters
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Arrovian Impossibility Results
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Anonymity Neutrality Positive
Responsiveness

Rationalizability
Condorcet/May
(1785,1952)

No Dictator IIA Pareto-Optimality Transitive
Rationalizability

Arrow (1951)

No Vetoer/Oligarchy IIA Pareto-Optimality Quasi-Transitive 
Rationalizability

Gibbard (1969)

No Vetoer IIA Positive
Responsiveness

Rationalizability Mas-Colell & 
Sonnenschein (1972)

No Vetoer Neutrality Monotonicity Rationalizability Blau & Deb (1977)

No Collegium --- Pareto-Optimality Rationalizability
Brown/Banks 
(1975,1995)

No Collegium Neutrality Positive
Responsiveness

Transitive 
Rationalizability

No Vetoer IIA Monotonicity Quasi-Transitive 
Rationalizability

No Dictator --- Pareto-Optimality Rationalizability

(WARP)

(α & γ)

w
eaker
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What now?

• Three ways to escape from these results:
‣ ignore consistency (and impose other restrictions instead)

- Smith (1973), Young (1975)

‣ only require expansion consistency
- Bordes (1976), Moulin (1986)

‣ weaken consistency conditions
- B. & Harrenstein (2009)

• From now on, we assume for convenience that individual 
preferences are linear (anti-symmetric) and there is an odd 
number of voters.
‣ some results hold without this restriction, some have been generalized 

by using additional axioms, some have not been generalized in a 
satisfactory way
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Escape Route #1
Ignore consistency

(and impose other restrictions instead)
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Interlude: Borda vs. Condorcet

• Jean-Charles Chevalier de Borda 
(1733 – 1799)
‣ mathematician, physicist, and sailor
‣ participated in the construction of the 

standard-meter (1/10.000.000 of the distance 
between the north pole and the equator)

• Marie Jean Antoine Nicolas Caritat, 
Marquis de Condorcet (1743 – 1794)
‣ philosopher and mathematician
‣ early advocate of equal rights and opponent 

of the death penalty
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Family of Scoring Rules

• For a fixed number of alternatives m, a score vector is a vector 
s=(s1, ..., sm) such that s1≥...≥sm and s1>sm.
‣ The (cumulative) score of an alternative is the sum of scores si it 

receives for being ranked ith.

• A scoring rule is an SCF that chooses those alternatives from 
feasible set A that have the highest score according to some 
scoring vector of size |A|.
‣ Examples

- Borda’s rule: s=(|A|-1, |A|-2, ..., 0)
- The score assigned by a single voter corresponds to the number of alternatives he ranks lower.

- Borda proposed this method to the French Academy of Sciences in 1770. It was then used for 20 years 
until it was abolished by Napoleon Bonaparte.

- plurality rule: s=(1, 0, ..., 0)
- anti-plurality: s=(1, ..., 1, 0)
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Family of Condorcet Extensions

• Alternative a is a Condorcet winner if, for every other 
alternative b, there is a majority of voters who prefer a to b.

• A Condorcet extension is an SCF that uniquely chooses a 
Condorcet winner whenever one exists.
‣ Example

- Copeland’s rule: Choose those alternatives that win most pairwise comparisons 
according to majority rule.
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Scoring Rules and 
Condorcet Extensions

• For two alternatives, majority rule is the only scoring rule and 
the only Condorcet extension.

• Proposition (Condorcet, 1785): Borda’s rule is no Condorcet 
extension when there are more than two alternatives.

• Theorem (Fishburn, 1973): No scoring rule is a Condorcet 
extension when there are more than two alternatives.
‣ Proof:
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6 3 4 4

s1

s2

s3

a
b
c

c
a
b

b
a
c

b
c
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Properties of Borda’s Rule

• Borda’s rule has a special role within the class of scoring rules.
‣ Borda’s rule chooses the alternatives with the highest average rank in 

individual rankings.
‣ Theorem (Smith, 1973): A Condorcet winner is never the alternative 

with the lowest Borda score. Borda’s rule is the only scoring rule for 
which this is the case.

‣ Theorem (Gehrlein et al., 1978):  Borda’s rule maximizes the 
probability over all scoring rules that a Condorcet winner is chosen 
whenever it exists.

‣ There are a number of appealing axiomatic characterizations of Borda’s 
rule (e.g., Young, 1978).

• Is there an SCF that combines the appeal of Borda’s rule and 
Condorcet’s principle?
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Variable Electorates

• One of the most remarkable results in social choice theory 
characterizes scoring rules in terms of a variable electorate.

• An SCF satisfies reinforcement when all alternatives that are 
chosen simultaneously by two disjoint sets of voters are 
precisely the alternatives chosen by the union of both sets.
‣ This is precisely the equivalent of α & γ for a variable electorate!

• Loosely speaking, an SCF satisfies continuity if negligible fractions 
of voters have no influence on the choice set.

• Theorem (Young, 1975): An SCF is a scoring rule iff it is neutral, 
anonymous, reinforcement, and satisfies continuity.
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The Dilemma of Social Choice

• Theorem (Young et al., 1978): No Condorcet extension satisfies 
reinforcement when there are more than two alternatives.

• Two centuries after Borda and Condorcet, it turns out that the 
rationales between both ideas are incompatible.

• For social welfare functions, the intersection of these two sets 
contains exactly one neutral function: Kemeny’s rule! (Young et 
al., 1978)

18

Condorcet 
extensions

SCFs satisfying 
Reinforcement
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Escape Route #2
Only require expansion consistency
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Contraction vs. Expansion

• Recap
‣ rationalizability ⇔ α & γ

‣ transitive rationalizability ⇔ α & β+ 

‣ numerous impossibility results involving various forms of 
rationalizability

• Sen (1977) showed that most of the Arrovian impossibilities 
remain intact when substituting rationalizability with contraction 
consistency (α and even substantially weakened versions of α).

• However, expansion consistency (on its own) is unproblematic.

20
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Majoritarian SCFs

• A majoritarian SCF is an SCF that satisfies anonymity, neutrality, 
positive responsiveness, and binariness (i.e., the choice set only 
depends on the pairwise comparisons within the feasible set).
‣ Choice only depends on the base relation, which is furthermore fixed 

to be the majority relation.

• The majority relation is asymmetric and complete, i.e., it can be 
represented by a tournament graph.
‣ If a is preferred to b by a majority of voters we will say that 

a dominates b (a>b)
‣ An undominated alternative is a Condorcet winner.
‣ Vertices with maximal degree are Copeland winners.
‣ Notation: dominion D(a)={b | a>b} and dominators D ̅(a)={b | b>a}
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The Top Cycle

• A dominating set is a set of alternatives such that every 
alternative in the set dominates every outside alternative.
‣ The set of all dominating sets is totally ordered by set inclusion.

• The minimal dominating set is called the top cycle (TC).
‣ also known as GETCHA or Smith set

• Theorem (Bordes, 1976): The top cycle is the smallest 
majoritarian SCF satisfying β+.

• How can we efficiently compute the top cycle?

22

(Good, 1971; Smith, 1973)

John I. Good
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TC (linear-time algorithm)
• Algorithm for computing TCa,  the minimal dominating set 

containing a given alternative a
‣ Initialize working set B with {a} and then iteratively add all alternatives 

that dominate an alternative in B until no more such alternatives can 
be found.

‣ Computing TCa for every alternative a and then choosing the smallest 
set yields an O(n3) algorithm.

• Alternatives with maximal degree (the Copeland winners) are 
always contained in TC (and linear-time computable).
‣  

23

b c

a

d e

procedure TC(A,�)
B← C ← CO(A,�)
loop

C ← �a∈C DA\B(a)
if C = ∅ then return B end if
B← B ∪C

end loop
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More on the Top Cycle

• Theorem (Deb, 1977): The top cycle consists precisely of the 
maximal elements of the asymmetric part of the transitive 
closure of the dominance relation.
‣ Alternative linear-time algorithm using Kosaraju’s or Tarjan’s algorithm 

for finding strongly connected components

• There is a first-order expression for membership in TC 
(B., Fischer, & Harrenstein; 2009):

‣ Computing TC is in AC0

• The top cycle is very large.
‣ In fact, it is so large that it may contain Pareto-dominated alternatives 

(when there are more than three alternatives).

24

TC(x) ↔ ∀y∀z (∀v (z �3 v→ z �2 v) ∧ z �2 x→ z �2 y)
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The Uncovered Set

•  Covering relation: a covers b if D(b)⊂D(a).             
‣ The covering relation is a transitive subrelation of the dominance 

relation.

• The uncovered set (UC) consists of all uncovered alternatives.
‣ UC contains the Condorcet winners of inclusion-maximal subsets that 

admit a Condorcet winner.

• Example
‣  UC = {a,b,c,d}

• Theorem (Moulin, 1986): The uncovered set is the smallest 
majoritarian Condorcet extension satisfying γ.

25

(Fishburn, 1977; Miller, 1980)

Nicholas Miller

b c

a

d e
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UC (algorithm)

• Straightforward n3 algorithm

• Equivalent characterization of UC
‣ UC consists precisely of those alternatives that reach every other 

alternative on a domination path of length at most two. 
(Shepsle & Weingast, 1984).

• Algorithm via matrix multiplication
- Fastest known matrix multiplication algorithm 

(Coppersmith & Winograd, 1990): O(n2.38)
- Matrix multiplication is believed to be feasible 

in linear time (O(n2)).

26

procedure UC(A,�)
for all i, j ∈ A do

if i � j ∨ i = j then mi j ← 1
else mi j ← 0 end if

end for
M ← (mi j)i, j∈A
U ← (ui j)i, j∈A ← M2 + M
B← {i ∈ A | ∀ j ∈ A : ui j � 0}
return B
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Escape Route #3
Weaken consistency conditions

27



From Arrow’s Impossibility to Schwartz’s TEQ

From Alternatives to Sets

• Choice functions yield sets of alternatives, yet rationality and 
consistency conditions are defined in terms of alternatives.
‣ Rationalizing relations are defined on alternatives
‣ α & γ:  An alternative in the intersection of two feasible sets is chosen 

in both sets iff it is also chosen in the union of both sets

• Redefining these conditions by making reference to the entire 
set of chosen alternatives, rather than its individual elements 
allows us to circumvent Arrovian impossibilities.
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Set-Rationalizable Choice

• Def.:     is set-rationalizable if there is a relation                            
such that for each                there is no                with                 
where     is the strict part of    .

• Rationalizing relations
‣ Base relation: 
‣ Revealed preference relation: 

• Consistency conditions
Let         be feasible sets and                .
‣ Contraction (   ):
‣ Expansion (   ):
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A, B

A RS B iff A = S (A ∪ B)
A �RS B iff A = S (X) for some X with B ⊆ X

X ⊆ A ∩ B

if X = S (A) and X = S (B) then X = S (A ∪ B)
if X = S (A ∪ B) then X = S (A) and X = S (B)

S R ⊆ F(U) × F(U)
X ∈ F(A) X P S (A)

P R
A ∈ F(U)

�α
�γ

A BX
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Stability

• A notion of stability for choice sets inspired by von Neumann & 
Morgenstern (1944)

• Let S be an arbitrary choice function.

• A set of alternatives B is S-stable in a feasible set A if
B = {a∈A | a∈S(B∪{a})}.
‣ Equivalently, B is S-stable iff

S(B)=B                               (internal stability), and
a∉S(B∪{a}) for all a∈A\B      (external stability).

‣ If every feasible set admits a unique inclusion-minimal S-stable set, we 
define     as the choice function that returns this set.

‣ Proving that a choice function     is well-defined is often very tricky.

• A choice function    is self-stable if    is well-defined and         .
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S �S S = �S

�S

B
b

a

c
S (B ∪ {a})S (B ∪ {b})

S (B ∪ {c})

�S
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Various Characterizations

• Proposition (B. et al., 2009): A choice function is quasi-transitively 
rationalizable iff it satisfies α, α̂, and γ̂.
‣ As a consequence,WARP ⇒ α̂ & γ̂.

• Theorem (B. et al., 2009): A choice function is set-rationalizable iff 
it satisfies α̂.

• Theorem (B. et al., 2009): A choice function is self-stable iff it 
satisfies α̂ and γ̂.

• Are there reasonable set-rationalizable (or even self-stable) SCFs?
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Set-Rationalizable SCFs

• Proposition (B. et al., 2009): No scoring rule satisfies α̂.
‣ Proof:

‣ The same holds for all weak Condorcet extensions and runoff scoring 
rules.

- Plurality, Borda, Kemeny, Dodgson, Maximin, Nanson, Bucklin, Hare (STV), etc. are 
not set-rationalizable.

• BUT: A handful of Condorcet extensions are set-rationalizable 
and even self-stable!
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Draft – January 3, 2010

3 2 1

a b c
c a b
b c a

Table 2: A preference profile (figures indicate numbers of agents) showing that no scoring
rule satisfies �α.

to k other alternatives—and the plurality rule—the cumulative score of an alternative
equals the number of agents by which it is ranked first.

Formally, we define a score vector of length k as a vector s = (s1, . . . , sk) in Rk such
that s1 ≥ · · · ≥ sk and si > si+1 for at least one i with 1 ≤ i < k. For example, (1, 0, 0),
(2, 1, 0), and (1, 1, 0) are the score vectors of length 3 for the plurality rule, the Borda
rule, the anti-plurality rule, respectively. Given a feasible set X of k alternatives, an
x ∈ X, and a linear preference profile R, we have s(x, i) denote the score alternative x
obtains from voter i, i.e., s(x, i) = sm if and only if x is ranked mth by i within X.
Then, the (cumulative) score s(x) of an alternative x within X given R is then defined
such that

s(x) =
�

i∈N

s(x, i).

A scoring rule is an SCF that selects from each feasible set X for each preferences profile
the set of alternatives x in X with the highest score s(x) according to some score vector s
of length |X|. Observe that no restrictions are imposed on how the scoring vectors for
different lengths are to be related.

As every scoring rule fails to select the Condorcet winner for some preference profile
(Fishburn, 1973) and coincides with the majority rule on two alternatives, they generally
do not satisfy �γ. We find that no scoring rule can satisfy property �α either. It follows
that no scoring rule is set-rationalizable.

Theorem 7. No scoring rule satisfies property �α.

Proof. Let f be a scoring rule. Let further s = (s1, s2, s3) and s� = (s�1, s�2) be its
associated score vectors of lengths 3 and 2, respectively. Without loss of generality we
may assume that s1 = 1 and s3 = 0. Consider an environment with six agents and a
linear preference profile R with preferences over A = {a, b, c} as depicted in Table 2.
Then, s(a) = 3+2s2, s(b) = 2+ s2 and s(c) = 1+3s2. Since 1 ≤ s2 ≤ 0, it can easily be
appreciated that s(a) > s(b) as well as s(a) > s(c). Hence, f(R, {a, b, c}) = {a}. Now
observe that the preferences of the same agents over the subset {a, b} are such that three
agents prefer a to b and three b to a. Accordingly, s�(a) = s�(b) and f(R, {a, b}) = {a, b}.
As c /∈ f(R, {a, b, c}) but f(R, {a, b, c}) �= f(R, {a, b}), we may conclude that f does not
satisfy �α.

Using the same example as in the proof of Theorem 7, the reader can easily verify
that various well-known Condorcet extensions—such as Kemeny’s rule, Dodgson’s rule,

14

S (R, {a, b, c}) = {a}
S (R, {a, b}) = {a, b}
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The Minimal Covering Set

• The minimal covering set is the smallest UC-stable set: 
‣ A covering set is a set of alternatives B such that a∉UC(B∪{a}) for all 

alternatives a∉B.

‣ Theorem (Dutta, 1988): The set of all covering sets is closed under 
intersection.

- A unique minimal covering set is guaranteed to exist.

• Example
‣  Covering sets: {a,b,c,d,e}, {a,b,c,d}, and {a,b,c}
‣  MC = {a,b,c}

• Theorem (Dutta, 1988): The minimal covering set is the smallest 
majoritarian Condorcet extension satisfying α̂ and γ*. 

33

(Dutta; 1988)
Bhaskar Dutta

MC =�UC

b c

a

d e
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MC (complexity)

• No obvious reason why computing MC should be in NP
‣ Verifying whether a set is a covering set is easy, verifying minimality is 

not.
‣ Checking whether a set is MC and checking whether an alternative is 

contained in MC is in coNP.
- A covering set is not minimal if there exists a proper covering subset.

• Straightforward iterative algorithms do not work
‣ start with entire set and remove alternatives

- there may be no covering sets in between entire set and MC

‣ start with singleton and add alternatives
- unclear which of the alternatives that are not covered by the current working 

set should be included
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MC (algorithm)

• Three insights needed for polynomial-time algorithm
‣ Lemma: If                    and

then                           .

- For every proper subset of MC, the lemma tells us how to find another disjoint 
and non-empty subset of MC.

‣ Lemma (Laffond, Laslier, & Le Breton; 1993): Every tournament game 
contains a unique Nash equilibrium, the support of which (the so-called 
bipartisan set BP) is contained in MC.

‣ The bipartisan set can be computed via linear programming.
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A� =
�

a∈A\B
(UC(B ∪ {a}) ∩ {a})

MC(A�) ⊆ MC(A)
B ⊆ MC(A)

B
A�

MC(A�)

MC(A)
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MC (algorithm, ctd.)

• Theorem (B. and Fischer, 2008): The minimal covering set can be 
computed in polynomial time.

36

procedure MC(A,�)
B← BP(A,�)
loop

A� ← �a∈A\B(UC(B ∪ {a}) ∩ {a})
if A� = ∅ then return B end if
B← B ∪ BP(A�,�)

end loop

procedure BP(A,�)
for all i, j ∈ A do

if i � j then mi j ← 1
else if j � i then mi j ← −1
else mi j ← 0 end if

end for
s ∈ {s ∈ Rn | � j∈A s j · mi j ≤ 0 ∀i ∈ A�

j∈A s j = 1
s j ≥ 0 ∀ j ∈ A}

B← { a ∈ A | sa > 0 }
return B
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Tournament Equilibrium Set

• Let S be an arbitrary SCF.
‣ A non-empty set of alternatives B is S-retentive, if 

S(D ̅(a))⊆B for all a∈B.

‣ Idea: No alternative in the set should be “properly” 
dominated by an outside alternative.

•    is a new SCF that yields the union of all minimal S-retentive 
sets.
‣  
‣  

- recursive definition
- unique fixed point of ring-operator
- Example: TEQ = {a,b,c}

37

a
B

(Schwartz, 1990)

Thomas Schwartz

b c

a

d e

TC = ˚TRIV

S̊

TEQ = ˚TEQ
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The Mystery of TEQ

• Theorem (Laffond et al., 1993; B., 2009): The following statements 
are equivalent:
‣ Every tournament contains a unique minimal TEQ-retentive set.
‣ TEQ satisfies α̂ and γ̂ (and thus is set-rationalizable and self-stable).
‣ TEQ satisfies monotonicity for more than two alternatives.

• Furthermore, these statements imply that TEQ is contained in MC.

• All or nothing: Either TEQ is a most appealing SCF or it is severely 
flawed.

• Theorem (B., Fischer, Harrenstein, Mair; 2010): Deciding whether 
an alternative is contained in TEQ is NP-hard.
‣ The best known upper bound is PSPACE!
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Summary & Conclusion

• Standard rationality and consistency conditions lead to 
devastating impossibility results (among which Arrow’s is the 
most prominent).

• Three ways to escape from these results:
‣ ignore consistency (and impose other restrictions instead)

- Scoring rules can be characterized by a consistency condition with respect to a 
variable electorate.

- All Condorcet extensions fail to satisfy this condition.

‣ only require expansion consistency
- TC and UC can be characterized using β+ and γ, respectively.

‣ weaken consistency conditions
- There is a small, but appealing, class of set-rationalizable SCFs, which contains 

TC, MC, and (maybe) TEQ.
- MC can be computed in polynomial time while TEQ is NP-hard.
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