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1. Introduction

“Alternative a is at least as good as alternative b . . ."

Boolean: classical YES/NO

Discrete: finite totally ordered set of (linguistic) values L

None � Very Low � Low � Medium

� High � Very High � Perfect

Fuzzy: evaluation scale is a compact real interval
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2. Boolean preference structures

Preference structure: result of

the pairwise comparison

of a set of alternatives A

by a decision maker
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2. Boolean preference structures

Preference structure: result of

the pairwise comparison

of a set of alternatives A

by a decision maker

Consists of three binary relations on A:

strict preference relation P

indifference relation I

incomparability relation J
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2. Boolean preference structures

A preference structure on a set of alternatives A is a triplet
(P, I, J) of relations in A that satisfy:

(B1) P is irreflexive, I is reflexive and J is irreflexive

(B2) P is asymmetric, I is symmetric and J is symmetric

(B3) P ∩ I = ∅, P ∩ J = ∅ and I ∩ J = ∅

(B4) P ∪ P t ∪ I ∪ J = A2
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2. Boolean preference structures

A preference structure on a set of alternatives A is a triplet
(P, I, J) of relations in A that satisfy:

(B1) P is irreflexive, I is reflexive and J is irreflexive

(B2) P is asymmetric, I is symmetric and J is symmetric

(B3) P ∩ I = ∅, P ∩ J = ∅ and I ∩ J = ∅

(B4) P ∪ P t ∪ I ∪ J = A2

(P, I, J) is a preference structure on A iff

(i) I is reflexive and I is symmetric

(ii) P (a, b) + P (b, a) + I(a, b) + J(a, b) = 1
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2. Completeness condition (B4)

(C1) co(P ∪ I) = P t ∪ J

(C2) co(P ∪ P t) = I ∪ J

(C3) co(P ∪ P t ∪ I) = J

(C4) co(P ∪ P t ∪ J) = I

(C5) co(P t ∪ I ∪ J) = P

(C6) P ∪ P t ∪ I ∪ J = A2
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2. Construction and characterization

Given a reflexive relation R in A, the triplet (P, I, J) defined by

P = R ∩ co(Rt)

I = R ∩ Rt

J = coR ∩ co(Rt)

is a preference structure on A such that

R = P ∪ I and Rc = P t ∪ J
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2. Construction and characterization

Given a reflexive relation R in A, the triplet (P, I, J) defined by

P = R ∩ co(Rt)

I = R ∩ Rt

J = coR ∩ co(Rt)

is a preference structure on A such that

R = P ∪ I and Rc = P t ∪ J

Consider a preference structure (P, I, J) on A. Define its large
preference relation R as

R = P ∪ I

then (P, I, J) can be reconstructed from R.
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3. Continuous de Morgan triplets

A t-norm T is an increasing, commutative and associative
binary operation on [0, 1] with neutral element 1

minimum operator TM(x, y) = min(x, y)

algebraic product TP(x, y) = xy

Lukasiewicz t-norm TL(x, y) = max(x + y − 1, 0)
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3. Continuous de Morgan triplets

A t-norm T is an increasing, commutative and associative
binary operation on [0, 1] with neutral element 1

minimum operator TM(x, y) = min(x, y)

algebraic product TP(x, y) = xy

Lukasiewicz t-norm TL(x, y) = max(x + y − 1, 0)

A t-conorm S is an increasing, commutative and associative
binary operation on [0, 1] with neutral element 0

maximum operator SM(x, y) = max(x, y)

probabilistic sum SP(x, y) = x + y − xy

bounded sum SL(x, y) = min(x + y, 1)
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3. Continuous de Morgan triplets

A t-norm T is an increasing, commutative and associative
binary operation on [0, 1] with neutral element 1

minimum operator TM(x, y) = min(x, y)

algebraic product TP(x, y) = xy

Lukasiewicz t-norm TL(x, y) = max(x + y − 1, 0)

A t-conorm S is an increasing, commutative and associative
binary operation on [0, 1] with neutral element 0

maximum operator SM(x, y) = max(x, y)

probabilistic sum SP(x, y) = x + y − xy

bounded sum SL(x, y) = min(x + y, 1)

An involutive negator N is an involutive decreasing permutation
of [0, 1]

standard negator Ns(x) = 1 − x
PhD School, Troina, April 11-16, 2008 – p.



3. Continuous de Morgan triplets

N -dual t-conorm of a t-norm T is the t-conorm TN :

TN (x, y) = N(T (N(x), N(y)))
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3. Continuous de Morgan triplets

N -dual t-conorm of a t-norm T is the t-conorm TN :

TN (x, y) = N(T (N(x), N(y)))

A de Morgan triplet M is a triplet of the type

(T, TN , N)

(is called continuous if T is continuous)

The Lukasiewicz triplet: (TL, SL, Ns)
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3. The Frank t-norm family

s ∈ ]0, 1[∪ ]1,∞[:

TF

s (x, y) = logs

(

1 +
(sx − 1)(sy − 1)

s − 1

)
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3. The Frank t-norm family

s ∈ ]0, 1[∪ ]1,∞[:

TF

s (x, y) = logs

(

1 +
(sx − 1)(sy − 1)

s − 1

)

limits:
lim
s→0

TF

s (x, y) = min(x, y)

lim
s→1

TF

s (x, y) = xy

lim
s→∞

TF

s (x, y) = max(x + y − 1, 0)
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3. The Frank t-norm family

s ∈ ]0, 1[∪ ]1,∞[:

TF

s (x, y) = logs

(

1 +
(sx − 1)(sy − 1)

s − 1

)

limits:
lim
s→0

TF

s (x, y) = min(x, y)

lim
s→1

TF

s (x, y) = xy

lim
s→∞

TF

s (x, y) = max(x + y − 1, 0)

TF

0 = TM, TF

1 = TP, TF

∞
= TL

PhD School, Troina, April 11-16, 2008 – p. 10



3. The Frank t-norm family

Frank t-norm family: (TF

s )s∈[0,∞]

Frank t-conorm family: (SF

s )s∈[0,∞], SF

s = (TF

s )
∗

Continuous irreducible solutions of the Frank equation:

T (x, y) + S(x, y) = x + y
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4. Additive fuzzy preference structures

Consider a continuous de Morgan triplet M = (T, S,N).

An M -FPS on A w.r.t. completeness condition (Ci),

i ∈ {1, . . . , 6}, is a triplet (P, I, J) of binary fuzzy relations in A

that satisfy:

(i) P is irreflexive, I is reflexive and J is irreflexive

(ii) P is T -asymmetric, I is symmetric and J is symmetric

(iii) P ∩T I = ∅, P ∩T J = ∅ and I ∩T J = ∅

(iv) (P, I, J) satisfies completeness condition (Ci)
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4. Completeness condition

(C1) coN(P ∪S I) = P t ∪S J

(C2) coN(P ∪S P t) = I ∪S J

(C3) coN(P ∪S P t ∪S I) = J

(C4) coN(P ∪S P t ∪S J) = I

(C5) coN(P t ∪S I ∪S J) = P

(C6) P ∪S P t ∪S I ∪S J = A2
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4. Completeness condition

pi = (P, I, J) is an M -FPS on A w.r.t. (Ci)

in general: no relationships

in the case of the Lukasiewicz triplet: i ∈ {3, 4, 5}

{p1, p2} ⇒ pi ⇒ p6
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4. Why use the Lukasiewicz triplet?

Assignment Principle: the decision maker should be able to
assign one of the degrees P (a, b), P (b, a), I(a, b) and J(a, b)
freely in the unit interval (a 6= b)
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4. Why use the Lukasiewicz triplet?

Assignment Principle: the decision maker should be able to
assign one of the degrees P (a, b), P (b, a), I(a, b) and J(a, b)
freely in the unit interval (a 6= b)

The only suitable continuous de Morgan triplet is the
Lukasiewicz triplet. (up to automorphism(s))
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4. Why use the Lukasiewicz triplet?

Assignment Principle: the decision maker should be able to
assign one of the degrees P (a, b), P (b, a), I(a, b) and J(a, b)
freely in the unit interval (a 6= b)

The only suitable continuous de Morgan triplet is the
Lukasiewicz triplet. (up to automorphism(s))

Which completeness condition to use?
We suggest (C1):

strongest condition

axiomatic constructions
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4. (Minimal) Definition

An additive fuzzy preference structure on A is a triplet (P, I, J)
of fuzzy relations in A that satisfy:

(F1) P is irreflexive, I is reflexive and J is irreflexive

(F2) P is TL-asymmetric, I is symmetric and J is symmetric

(F3) P ∩L I = ∅, P ∩L J = ∅ and I ∩L J = ∅

(F4) co(P ∪L I) = P t ∪L J
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4. (Minimal) Definition

An additive fuzzy preference structure on A is a triplet (P, I, J)
of fuzzy relations in A that satisfy:

(F1) P is irreflexive, I is reflexive and J is irreflexive

(F2) P is TL-asymmetric, I is symmetric and J is symmetric

(F3) P ∩L I = ∅, P ∩L J = ∅ and I ∩L J = ∅

(F4) co(P ∪L I) = P t ∪L J

(P, I, J) is an additive fuzzy preference structure on A iff

(i) I is reflexive and I is symmetric

(ii) P (a, b) + P (b, a) + I(a, b) + J(a, b) = 1
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5. Axiomatic constructions

Orlovski (78):

P (a, b) = max(R(a, b) − R(b, a), 0)

I(a, b) = min(R(a, b), R(b, a))

Ovchinnikov (81):

P (a, b) =

{

R(a, b) , if R(a, b) > R(b, a)

0 , otherwise

I(a, b) = min(R(a, b), R(b, a))
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5. Axiomatic considerations

Roubens & Vincke (87):

P (a, b) = min(R(a, b), 1 − R(b, a))

I(a, b) = min(R(a, b), R(b, a))

J(a, b) = min(1 − R(a, b), 1 − R(b, a))

Roubens (89), Ovchinnikov & Roubens (91), Fodor (91)
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5. Axiomatic considerations

Consider a continuous de Morgan triplet M = (T, S,N) and a
reflexive binary fuzzy relation R in A. Construct

P = R ∩T coNRt

I = R ∩T Rt

J = coNR ∩T coNRt
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5. Axiomatic considerations

Consider a continuous de Morgan triplet M = (T, S,N) and a
reflexive binary fuzzy relation R in A. Construct

P = R ∩T coNRt

I = R ∩T Rt

J = coNR ∩T coNRt

When does it hold that R = P ∪S I, i.e.

R = (R ∩T coNRt) ∪S (R ∩T Rt)?
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5. Axiomatic considerations

Consider a continuous de Morgan triplet M = (T, S,N) and a
reflexive binary fuzzy relation R in A. Construct

P = R ∩T coNRt

I = R ∩T Rt

J = coNR ∩T coNRt

When does it hold that R = P ∪S I, i.e.

R = (R ∩T coNRt) ∪S (R ∩T Rt)?

Answer: in general, never (Alsina, 1985).

PhD School, Troina, April 11-16, 2008 – p. 19



5. Axioms of Fodor and Roubens

Consider a continuous de Morgan triplet (T, S,N).

(IA) Independence of Irrelevant Alternatives:

P (a, b) = p(R(a, b), R(b, a))

I(a, b) = i(R(a, b), R(b, a))

J(a, b) = j(R(a, b), R(b, a))

(PA) Positive Association Principle: The mappings p(x,N(y)), i(x, y)
and j(N(x), N(y)) are increasing.

(S) Symmetry: The mappings i and j are symmetric.
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5. Axioms of Fodor and Roubens

(LP) Preserving Large Preference:

P ∪S I = R

P ∪S J = coNRt

Underlying functional equations:

S(p(x, y), i(x, y)) = x

S(p(x, y), j(x, y)) = N(y)
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5. Axioms of Fodor and Roubens

If (T, S,N, p, i, j) satisfies the above axioms then

(T, S,N) = (TL, SL, Ns)

(up to automorphism) and, for any (x, y) ∈ [0, 1]2:

TL(x, 1 − y) ≤ p(x, y) ≤ min(x, 1 − y)

TL(x, y) ≤ i(x, y) ≤ min(x, y)

TL(1 − x, 1 − y) ≤ j(x, y) ≤ min(1 − x, 1 − y).
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5. Axioms of Fodor and Roubens

If (T, S,N, p, i, j) satisfies the above axioms then

(T, S,N) = (TL, SL, Ns)

(up to automorphism) and, for any (x, y) ∈ [0, 1]2:

TL(x, 1 − y) ≤ p(x, y) ≤ min(x, 1 − y)

TL(x, y) ≤ i(x, y) ≤ min(x, y)

TL(1 − x, 1 − y) ≤ j(x, y) ≤ min(1 − x, 1 − y).

For any reflexive binary fuzzy relation R in A, the triplet
(P, I, J) defined by means of (p, i, j) is an AFPS on A such that

R = P ∪L I and Rc = P t ∪L J
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5. Axioms of Fodor and Roubens

Consider two continuous t-norms T1 and T2. Define p and i by

p(x, y) = T1(x, 1 − y)

i(x, y) = T2(x, y)

then (TL, SL, Ns, p, i, j) satisfies the above axioms iff ∃s ∈ [0,∞]
such that

T1 = TF

1/s

T2 = TF

s

In this case, we have that j(x, y) = i(1 − x, 1 − y).
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6. Characteristic behaviour

Given a reflexive binary fuzzy relation R in A and s ∈ [0,∞],
the triplet (P, I, J) defined by

(P, I, J) = (R ∩1/s Rd, R ∩s Rt, Rc ∩s Rd)

is an AFPS on A such that R = P ∪L I and Rc = P t ∪L J . Note
that

R(a, b) = P (a, b) + I(a, b)
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6. Characteristic behaviour

Given a reflexive binary fuzzy relation R in A and s ∈ [0,∞],
the triplet (P, I, J) defined by

(P, I, J) = (R ∩1/s Rd, R ∩s Rt, Rc ∩s Rd)

is an AFPS on A such that R = P ∪L I and Rc = P t ∪L J . Note
that

R(a, b) = P (a, b) + I(a, b)

Characteristic behaviour: Consider an AFPS (P, I, J) on A.
Define its fuzzy large preference relation as

R = P ∪L I.

How can (P, I, J) be reconstructed from R?
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6. T-norm-based constructions

An s-AFPS on A is an AFPS (P, I, J) on A that satisfies:
(D1) for s ∈ {0, 1,∞}, the condition

P ∩s P t = I ∩1/s J

(D2) for s ∈ ]0, 1[∪ ]1,∞[, the condition

sP∩sP t
+ s−(I∩1/sJ) = 2

PhD School, Troina, April 11-16, 2008 – p. 25



6. T-norm-based constructions

An s-AFPS on A is an AFPS (P, I, J) on A that satisfies:
(D1) for s ∈ {0, 1,∞}, the condition

P ∩s P t = I ∩1/s J

(D2) for s ∈ ]0, 1[∪ ]1,∞[, the condition

sP∩sP t
+ s−(I∩1/sJ) = 2

Condition (D1) is equivalent to:

(i) for s = 0: min(P (a, b), P (b, a)) = 0

(ii) for s = 1: P (a, b) P (b, a) = I(a, b) J(a, b)

(iii) for s = ∞: min(I(a, b), J(a, b)) = 0

Construction and characterization work!
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6. T-norm-based constructions

Consider a reflexive binary fuzzy relation R in A, then we can
construct the following fuzzy preference structures on A:

a 0-AFPS (P0, I0, J0):

P0(a, b) = max(R(a, b) − R(b, a), 0)

I0(a, b) = min(R(a, b), R(b, a))

J0(a, b) = min(1 − R(a, b), 1 − R(b, a))

a 1-AFPS (P1, I1, J1):

P1(a, b) = R(a, b)(1 − R(b, a))

I1(a, b) = R(a, b)R(b, a)

J1(a, b) = (1 − R(a, b))(1 − R(b, a))
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6. T-norm-based constructions

an ∞-AFPS (P∞, I∞, J∞):

P∞(a, b) = min(R(a, b), 1 − R(b, a))

I∞(a, b) = max(R(a, b) + R(b, a) − 1, 0)

J∞(a, b) = max(1 − R(a, b) − R(b, a), 0)
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7. Generator triplets (with B. De Baets)

A triplet (p, i, j) of [0, 1]2 → [0, 1] mappings is called a generator
triplet compatible with a continuous t-conorm S if for any
reflexive fuzzy relation R on A it holds that the triplet (P, I, J)
defined by:

P (a, b) = p(R(a, b), R(b, a))

I(a, b) = i(R(a, b), R(b, a))

J(a, b) = j(R(a, b), R(b, a))

is an AFPS on A such that

P ∪S I = R and P t ∪S J = Rc
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7. Generator triplets (with B. De Baets)

A triplet (p, i, j) of [0, 1]2 → [0, 1] mappings is called a generator
triplet compatible with a continuous t-conorm S if for any
reflexive fuzzy relation R on A it holds that the triplet (P, I, J)
defined by:

P (a, b) = p(R(a, b), R(b, a))

I(a, b) = i(R(a, b), R(b, a))

J(a, b) = j(R(a, b), R(b, a))

is an AFPS on A such that

P ∪S I = R and P t ∪S J = Rc

If (p, i, j) is a generator triplet compatible with a continuous
t-conorm S, then S must be nilpotent.
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7. Generator triplets

(p, i, j) is a generator triplet iff
(i) i(1, 1) = 1

(ii) i(x, y) = i(y, x)

(iii) p(x, y) + p(y, x) + i(x, y) + j(x, y) = 1

(iv) p(x, y) + i(x, y) = x
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7. Generator triplets

(p, i, j) is a generator triplet iff
(i) i(1, 1) = 1

(ii) i(x, y) = i(y, x)

(iii) p(x, y) + p(y, x) + i(x, y) + j(x, y) = 1

(iv) p(x, y) + i(x, y) = x

A generator triplet is uniquely determined by, for instance, the
generator i:

p(x, y) = x − i(x, y)

j(x, y) = i(x, y) − (x + y − 1)

TL ≤ i ≤ TM
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7. Generator triplets

(p, i, j) is a generator triplet iff
(i) i(1, 1) = 1

(ii) i(x, y) = i(y, x)

(iii) p(x, y) + p(y, x) + i(x, y) + j(x, y) = 1

(iv) p(x, y) + i(x, y) = x

A generator triplet is uniquely determined by, for instance, the
generator i:

p(x, y) = x − i(x, y)

j(x, y) = i(x, y) − (x + y − 1)

TL ≤ i ≤ TM

From any symmetrical i such that TL ≤ i ≤ TM a generator
triplet can be built: the generator i
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7. The arrival of quasi-copulas

A generator triplet (p, i, j) is called monotone if:
(i) p is increasing in the first and decreasing in the second
argument
(ii) i is increasing in both arguments
(iii) j is decreasing in both arguments
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7. The arrival of quasi-copulas

A generator triplet (p, i, j) is called monotone if:
(i) p is increasing in the first and decreasing in the second
argument
(ii) i is increasing in both arguments
(iii) j is decreasing in both arguments

A generator triplet (p, i, j) is monotone iff

i is a commutative quasi-copula

(i(0, x) = 0, i(1, x) = x, increasing and 1-Lipschitz)
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7. Frank again

Consider a generator triplet (p, i, j) such that i is a t-norm, then
the following statements are equivalent:

(i) the mapping j(1 − x, 1 − y) is a t-norm
(ii) the mapping p(x, 1 − y) is commutative
(iii) i is an ordinal sum of Frank t-norms

and also the following ones:

(iv) the mapping p(x, 1 − y) is a t-norm
(v) i is a Frank t-norm
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8. Conclusion

Definition, construction and characterization of AFPS

Generator triplets: the indifference generator i

Further work based only on i:

Propagation of transitivity-related properties
(Ph.D. Susana Díaz)

Future work: (appropriate classes of) left-continuous de
Morgan triplets – how far can we go?
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