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Outline of the Topics
• Scoring rules
• Prediction markets
• Auctions: clean and oversimplifying view
• Auctions: messy but closer to reality
• Information aggregation results



Information Aggregation
• Surveys
• Opinion Polls
• Aggregating votes / ratings / review scores / …
• Eliciting and aggregating expert opinions
…

Issues:
• info quantity
• info quality
• representativeness
• incentives



Single Data Point Info Quality
• stats
• machine learning

Add incentives:

Example:  Binary event E (thumbs up/down, yes/no, 0/1)
Elicit probability estimate of E=1: p.

Brier score: B(p)= 1-(E-p)2

If r reported instead of p:
E[B(r)|p]= p(1-(1-r)2)+(1-p)(1-r2)

maximized at r=p           ( d/dr : 2p(1-r)-2(1-p)r )

Truthful reporting maximizes Brier score 



Scoring Rules

• Consider a probability forecast for a discrete event with n
possible outcomes (“states of the world”).

• Let ei = (0, ..., 1, ..., 0) denote the indicator vector for 
the ith state (where 1 appears in the ith position).

• Let  p = (p1, ..., pn)  denote the forecaster’s true subjective 
probability distribution over states.

• Let  r = (r1, ..., rn)  denote the forecaster’s reported 
distribution (if different from p).

(Also, let q = (q1, ..., qn)  denote a baseline distribution
upon which the forecaster seeks to improve.)

Slide thx to R.Nau



Proper Scoring Rules

• The scoring rule S is [strictly] proper if 
S(p) ≥ [>] S(r, p) for all r [≠p], i.e., if the forecaster’s 
expected score is [uniquely] maximized when she reports 
her true probabilities.

• S is [strictly] proper iff S(p) is a [strictly] convex function 
of p.

• If S is strictly proper, then it is uniquely determined from  
S(p) by McCarthy’s (1956) formula:

S(r, p) = S(r) + ∇S(r) · (p − r)

Slide thx to R.Nau



Common scoring rules
The three most commonly used scoring rules are:

• The quadratic scoring rule: 

S(p, ei ) = − (||ei − p||2)2

• The spherical scoring rule: 

S(p, ei ) = pi /||p||2
• The logarithmic scoring rule:

S(p, ei ) = ln( pi )

Score vector lies on the surface 
of a pseudosphere centered at 
the origin

Score is squared Euclidean 
distance between p and ei

Slide thx to R.Nau



Scoring, Cross-entropy, Utility…

• Scoring rules are reward functions for defining subjective 
probabilities and eliciting them in forecasting applications 
and experimental economics (de Finetti, Brier, Savage, 
Selten...)

• Cross-entropy, or divergence, is a physical measure of 
information gain in communication theory and machine 
learning (Shannon, Kullback-Leibler...)

• Utility maximization is the decision maker’s objective in 
Bayesian decision theory and game theory (von Neumann 
& Morgenstern, Savage...)

Slide thx to R.Nau



Connections (Jose et al. 08)

• Any decision problem under uncertainty may be used to 
define a scoring rule or measure of divergence between 
probability distributions.

• The expected score or divergence is merely the expected-
utility gain that results from solving the problem using the 
decision maker’s “true” (or posterior) probability 
distribution p rather than some other “baseline” (or prior) 
distribution q.

• These connections have been of interest in the recent 
literature of robust Bayesian inference and mathematical 
finance.

Slide thx to R.Nau



Specific results (Jose et al. 08)
• Connections among the best-known parametric families of 

generalized scoring rules, divergence measures, and utility 
functions.

• The expected scores obtained by truthful probability 
assessors turn out to correspond exactly to well-known 
generalized divergences.

• They also correspond exactly to expected-utility gains in 
financial investment problems with utility functions from 
the linear-risk-tolerance (a.k.a. HARA) family.

• These results generalize to incomplete markets via a 
primal-dual pair of convex programs.

Slide thx to R.Nau



p

Q

p precise probability of a risk averse decision maker with utility 
function u

Q = set of imprecise probabilities of risk neutral opponent/market

Finding the payoff vector x to maximize Ep[u(x)] s.t. Eq[x] ≤ 0 is 
equivalent (dual) to finding q in Q to minimize the divergence S(p||q) 

q

Slide thx to R.Nau



Betting
Standard truth-telling incentive:

Put your money where your mouth is

Example revisited: Binary event E (thumbs up/down, yes/no, 0/1)
Let p be the probability estimate of E=1.
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Betting
Standard truth-telling incentive:

Put your money where your mouth is

Example revisited: Binary event E (thumbs up/down, yes/no, 0/1)
Let p be the probability estimate of E=1.

Contract: $1 paid if E=1, $0 paid if E=0.
E[Contract]=p$.

► Buy Contract if Contract price < p
► Sell Contract if Contract price >p.

IF willing to bet money
IF no discounting 
IF risk-neutral 
IF trading counterparty exists



Prediction Markets
Binary event E (thumbs up/down, yes/no, 0/1)

Contract: $1 paid if E=1, $0 paid if E=0.  

IF willing to bet money, no discounting, risk-neutral: E[Contract]=p$.

► Buy Contract if Contract price < p   (bid, do you want to bid p?)
► Sell Contract if Contract price >p.   (ask, do you want ask p?)

“Little details”
• How the market clears?
• How the price forms?

Does the information aggregate? 
What information?
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Market Clearing
Bid (willing to buy up to the bid price): 

b1 ≥ b2 ≥ b3 ≥ … ≥ bk ≥ …≥ bn

Ask (willing to sell for at least the asking price):

a1 ≤ a2 ≤ a3 ≤ … ≤ ak ≤ … ≤ am

• Market clears at the largest k such that ak ≤ bk.

• At what price?

Match: [a1,b1], [a2,b2], …, [ak,bk]

Any price possible for any pair. 

(e.g., pay your bid and/or get your ask)

If uniform price, must be in [ak,bk]



Image from intrade.com



Double Auction
Bid (willing to buy up to the bid price): 

b1 ≥ b2 ≥ b3 ≥ … ≥ bk ≥ …≥ bn

Ask (willing to sell for at least the asking price):

a1 ≤ a2 ≤ a3 ≤ … ≤ ak ≤ … ≤ am

Uniform price must be in [ak,bk].

Buyers perspective:

b1 ≥ b2 ≥ b3 ≥ … ≥ bk ≥…ak….

If price in [ak,bk), “winners” bid values don’t affect the price.

(Analogous for the seller)



Auctions?
Use of Auctions
• Procedures for allocation and pricing

Incomplete information
Self-interested parties

• Theoretical models for price formation

• Theoretical models for market interactions

Literature
• Historically, microeconomic theory

• INFORMS Journals: 100+ papers from 2003 (Mgmt.Sci. 45).

• Also thousands of recent CS papers (combinatorial auctions, ad 
auctions, optimization)



Auctions Everywhere
• Procurement. GE, CombineNet, FreeMarkets(Ariba), etc.
• Transportation. truck/bus routes, containers, airport 

takeoff/landing rights, etc.
• Government controlled resources/rights. oil-leases, timber, 

frequencies,... (also: privatization sales)
• Commodities. electricity, pollution rights/credits,...
• Finance. government bonds (T-bills), IPOs, acquisitions, ...
• Advertising. sponsored search (Google, Yahoo, etc.), internet 

ads (e.g., AdSense) traditional media ads.
• Retail. eBay, uBid,..., alternative (online) sales channel
• Other ("traditional"). construction contracts, real estate 

(foreclosures), art, cars, ..., flowers, fish, tobacco, cattle, ...

E-Business revolution redefined what is possible.



Basic Auction Models
Standard setup:

single seller
n bidders (buyers)

• English auction (ascending auction)

• Dutch auction (descending auction)

• Sealed-bid first-price auction

• Sealed-bid second-price auction

Important for procurement: reverse auctions



Equilibria
v = bidder's value (private info)
v(j) = jth highest value   (so, v(1) ≥ v(2) ≥ … ≥ v(n) )

Equilibria:

• 2nd price auction: 

• 1st price auction:  



Equilibria
v = bidder's value (private info)
v(j) = jth highest value   (so, v(1) ≥ v(2) ≥ … ≥ v(n) )

Equilibria:

• 2nd price auction: b(v) = v
(Bidding truthfully is a dominant strategy)

• 1st price auction:  



Equilibria
v = bidder's value (private info)
v(j) = jth highest value   (so, v(1) ≥ v(2) ≥ … ≥ v(n) )

Equilibria:

• 2nd price auction: b(v) = v
(Bidding truthfully is a dominant strategy)

• 1st price auction:  b(v) = E[v(2) | v = v(1)]



Equilibria
v = bidder's value (private info)
v(j) = jth highest value   (so, v(1) ≥ v(2) ≥ … ≥ v(n) )

Equilibria:

• 2nd price auction: b(v) = v
(Bidding truthfully is a dominant strategy)

• 1st price auction:  b(v) = E[v(2) | v = v(1)]

Strategic equivalence:
English ⇔ 2nd price
Dutch   ⇔ 1st price



Equilibria
v = bidder's value (private info)
v(j) = jth highest value   (so, v(1) ≥ v(2) ≥ … ≥ v(n) )

Equilibria:

• 2nd price auction: b(v) = v
(Bidding truthfully is a dominant strategy)

• 1st price auction:  b(v) = E[v(2) | v = v(1)]

Strategic equivalence:
English ⇔ 2nd price
Dutch   ⇔ 1st price

Note: If v's also independent, then  E[price] = v(2) for all formats.



Beautiful Theorems

text

The Revelation Principle [Myerson 79, others] 
For any (auction) mechanism, there exists an (auction) mechanism
in which truthful reporting (bidding) is an equilibrium and all 
outcomes are the same as in the equilibrium of the original (auction) 
mechanism.

The Revenue Equivalence Theorem [Myerson 81]
Suppose bidders' values are independent and i.i.d., and bidders are 
risk neutral. Then any symmetric and increasing equilibrium for any
auction such that

- bidder with v = v(1) wins the object
- bidder with v = 0 pays zero

yields the same expected revenue to the seller.



Theory Disconnect

Auctions proposed by theory, often not found in practice

Auctions used in practice often not found in theory

• overly simplistic bidder information/valuation structures
• fixed supply and demand assumption



Basic Multi-item Auctions
one-shot auctions
n bidders, k items

unit demand

Discriminatory auction (1st price auction analogue)

Uniform auction (2nd price auction analogue)



Basic Multi-item Auctions
one-shot auctions
n bidders, k items

unit demand

Discriminatory auction (1st price auction analogue)
• k highest bidders win
• Winners pay what they bid

Uniform auction (2nd price auction analogue)



Basic Multi-item Auctions
one-shot auctions
n bidders, k items

unit demand

Discriminatory auction (1st price auction analogue)
• k highest bidders win
• Winners pay what they bid

Uniform auction (2nd price auction analogue)
• k highest bidders win
• Every winner pays price equal to the highest losing bid

Lowest clearing price:  (k+1)st price.



Valuation Structure
Value of an item to bidder j:

u(V,Xj)
with:
• u increasing in both variables  

• V is a r.v. with commonly known pdf.

• Xj has a pdf f(x|v) satisfying MLRP: 

(x>x’& v>v’) ⇒ f(x|v)/f(x’|v’) ≥ f(x’|v)/f(x|v’) 

Special cases:
• Common value: u(V,X)= V (have private signal xi, value is common)
• Affiliated private values: u(V,X)=X

• IPV: no uncertainty in V









Common Value

•Value of an item: v
(V is a r.v. with commonly known pdf.)

•Each bidder gets a private signal xj.

Xj has a pdf f(x|v) satisfying MLRP: 
(x>x’& v>v’) ⇒ f(x|v)/f(x’|v’) ≥ f(x’|v)/f(x|v’)

Winner’s curse!

Assuming for simplicity f(x|v) symmetric around v:
x(1)≥ x(2)≥ … ≥ x(n)

So, E[x(1)] > v and cannot just bid x(1).



Symmetric Increasing Equilibrium
For bidder’s signal  x and another signal y define:  

v(x,y)=E[ v | x,Y(k),n-1=y]
where Y(k) is the kth order statistic of n-1 other signals, with conditional 
pdf fk,n-1(y|x) and conditional cdf Fk,n-1(y|x)

bd(x) = ∫
x 
v(t,t)(fk,n-1(t|t)/Fk,n-1(t|t))exp[- ∫t 

x
(fk,n-1(s|s)/Fk,n-1(s|s))ds]dt

Need v(x,y) increasing. Sufficient condition: MLRP

(x>x’& v>v’) ⇒ f(x|v)/f(x’|v’) ≥ f(x’|v)/f(x|v’) 

Uniform Auction SIE Candidate
bu(x) = v(x,x) = E[ v | x, Y(k)=x]

Discriminatory  Auction SIE Candidate

(bd(x))’ = (v(x,x)-bd(x)) (fk,n-1(x|x)/Fk,n-1(x|x))



Uniform Signals
Let x be drawn from a uniform distribution on [v-1/2,v+1/2]

Let u(v,x)= λv+(1- λ)x (convex mix of private and common values)

bu(x) = x - λ(1/2-k/n)

bd(x) = x - λ(1/2-k/n)-k/n



Uniform Signals
Let x be drawn from a uniform distribution on [v-1/2,v+1/2]

Let u(v,x)= λv+(1- λ)x (convex mix of private and common values)

bu(x) = x - λ(1/2-k/n)

bd(x) = x - λ(1/2-k/n)-k/n

Private values (λ=0):  
bu(x)=x   bd(x)=x-k/n

Common value (λ=1): 

bu(x)=x-1/2+k/n, bd(x)= x-1/2



Revenue Rankings

But…

• IPV: Revenue Equivalence Theorem

• risk-averse bidders: Discriminatory ≥ Uniform (Holt ’80, Maskin& 
Riley ’84)

• multi-demand: Discriminatory ≥ Uniform (Back&Zender ’93)

• participation uncertainty: Discriminatory ≥ Uniform (P&Tsetlin ’08)

The Revenue Ranking Theorem  [Milgrom & Weber 82] 
In the unique symmetric equilibrium and for risk neutral bidders, 
the expected revenue in the uniform auction is at least as large as 
the expected revenue in the corresponding discriminatory auction. 



Information Aggregation
Each bidder has a private signal xi .

If these signals were public, could we get a good estimate of v?

Can an auction aggregate privately held information and 
provide a good estimate of v?

Specifically, is auction price a good estimate of v?

Assumptions: symmetric equilibrium behavior 

Issues: equilibrium existence and uniqueness



IA Definition 
Let An(kn) denote an auction with n bidders and kn items and let Pn
denote the unique symmetric equilibrium price in An(kn).

Information Aggregation.  
An auction (format) aggregates information if for any sequence of 
auctions, An(kn) with n→∞, and for every ε>0, Pr(|Pn-V|> ε) → 0

• Case of uniform auctions and kn=k: aggregation not likely

Theorem [Wilson 77, Milgrom 81]
Uniform auction for k items aggregates information if and only if  
for any v,v’ such that v<v’: infx f(x|v)/f(x|v’) = 0

Very strong and totally unrealistic condition on signal distribution.



IA and Double Largeness 
• If large number of bidders, then there ought to be a large number of 
items if we even want to hope for information to aggregate

Theorem [Pesendorfer and Swinkels 97]  
Uniform auction for kn items aggregates information if and only if

kn →∞ & (n-kn)→∞

Theorem [Kremer 02]  
Suppose the amount of information in any one signal is limited. 
•Discriminatory auctions do not aggregate information. 
•English auctions aggregate information whenever corresponding 
uniform auctions aggregate information. 

What about other auction formats?



Participation Uncertainty

N potential risk neutral bidders

Stochastic process Ω={(n1,p1),(n2,p2),…(nm,pm)}

Ω is assumed to be common knowledge (sorry)
(Matthews 87, McAfee & McMillan 87)

• How about uncertainty about k?



Supply/Demand Uncertainty

N potential bidders

Stochastic process Ω={(n1,k1,p1),(n2,k2,p2),…,(nm,km,pm)}

NOTE: 

If ni bidders participate, the probability of bidder participating is ni/N.

However, if a bidder participates, the probability of ni bidders is:

pini/Σpjnj



Uniform SIE

• Critical: 
v(x,y) = E[v | my signal is x and pivotal signal is y]

If v(x,y) is increasing in both variables, then b*(x)=v(x,x)

• Weights: 
probability of ni bidders conditional on bidding and on 
being tied with a  pivotal rival.

Theorem [Harstad, P., Tsetlin]
In a uniform auction with supply/demand uncertainty 
a symmetric increasing equilibrium might not exist. 
When it does, it is a weighted average of
equilibrium bidding functions with fixed n and k.



IA with Supply/Demand Uncertainty

• Does not hold for discriminatory auctions

• Note: information aggregation can be restored by keeping  
supply/demand (k/n) ratio constant

• Full asymptotic extraction: E[k(V-price)] converges to zero          

Theorem [Harstad, P. and Tsetlin]
For a sequence of common value uniform auctions with risk 
neutral bidders, the auction price in the increasing symmetric 
equilibrium converges to common value if and only if 
max(ki/ni) – min(ki/ni) converges to zero.



n1 =100      n2 = 200
k1 =  20      k2 = ?
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# of bidders is unknown

# of bidders is known

Uniform Common Value Auction
X ~ U[v-1/2,v+1/2]

Note: Auction Cost per item = E[(v-price)]



IA and Prediction Markets
Does the information aggregate? 

What information?

• double auction vs. uniform auction
• unit demand 
• valuation structure
• SIE?
• k/n ratio constant as n grows?
• convergence rates? (sqrt(k) convergence rate, Hong&Shum 04)
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Issues

• Localized computing on a network structure
• Sequential decisions
• Quality of Information

(beyond scoring or monetary incentives)
• Voting, Cooperative Games?



Auction Theory: Handle with Care
• valuation structures are rarely IPV

• supply/demand uncertainty is important

• implications for auction format choice

• managing supply: many open issues

• implications for pricing decisions 

• need to get closer to practice (e.g., ad auctions)
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