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1. Examples and motivations

Compromise search in multiobjective optimization
Equity in multiagent assignment problems
Robustness in optimization under uncertainty

Examples and motivations
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Compromise search in multiobjective
(combinatorial) optimization

Augmented
Tchebycheff
distance



3

5

Fairness in multiagent
assignment/transportation problems

• Paper assignment problems [e.g., Goldsmith and Sloan 07, Wang et al.08]

• Allocation of indivisible goods [e.g. Bouveret and Lang, 05]

• Matching in social networks (e.g. Meetic)
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Robustness in optimization under uncertainty

1 - Examples and motivations Spanning trees
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Multiobjective combinatorial optimization
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Some references in MOCO
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The number of Pareto-optimal solutions exponentially grows with 
the size of the graph (number of nodes)

Pareto-optimal paths: an intractable problem
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Pareto-optimal spanning trees: an intractable problem

The number of Pareto-optimal solutions exponentially grows with 
the size of the graph (number of nodes)
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Exploration of Pareto-optimal solutions
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Preference models for vector optimization
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2. Using decision models in multiobjective
combinatorial optimization: a research program

….
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ChoquetRDUWOWAOWATchebEUSSDLorenzε-ParetoPareto
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2.1 Lorenz-optimal paths
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Aim: favouring well-balanced cost distributions

2 – A decision theoretic approach
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Generalized Lorenz dominance

2 – A decision theoretic approach

• Lorenz dominance refines Pareto dominance
• Favours well-balanced solutions (transfer principle)

(11,  9, 10)  >L (6,  10, 15)   because (11,  21, 30)  >P (15,  25, 31)
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L-optimality: complexity issues

4 – Algorithms
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L-dominance and the Bellman principle

(3, 5)      (4, 5) (5, 9)       (6, 9)

4 – Algorithms
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A simple label-setting algorithm

5 – Numerical tests

(13, 9)

(11, 11)

[Martins’84]

L= (12,20)

L= (13,22)
L= (11,22)

20

Numerical tests for L-optimal paths

5 – Numerical tests

# L-opt time (s)

(random instances, graph density ~ 50%)
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Refining Lorenz dominance

2 – A decision theoretic approach
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OWA as a measure of inequality

2 – A decision theoretic approach
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2. OWA-optimal assignment/transportation
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Fair assignment problems

Min OWA

≤ m
≤ p
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An example: WS vs OWA 
in multiagent assignment problems

WS-opt

OWA-opt

WS = 14/5

WS = 16/5
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LP formulation of OWA-optimization

(Ogryczak, 07)

Lk(y) =
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A mixed-integer LP formulation 
of the OWA-optimal assignment problem

≤ m
≤ p
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Numerical tests with Cplex for OWA assignment

Times (in seconds) for fair assignment problems with n agents, costs in {1, …, 20}

Times (in seconds) for paper assignment problems with n reviewers, 3n papers

costs in {1, …, 5}, matrix density 20%, max nb of paper per agent = 5.
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2.3 Choquet-optimal spanning trees
[Galand, Perny, Spanjaard, 08]
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The Choquet Expected Disutility model



16

31

CED includes multiple models as special cases

32

Compromise search, fairness or 
uncertainty aversion 
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Compromise search, fairness or 
uncertainty aversion 
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Compromise search, fairness or 
uncertainty aversion 
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Complexity of Choquet optimization

4 – Algorithms
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Failure of the greedy approach with Choquet

Idem for OWA, WOWA, Yaari’s model, RDU, Lorenz, SSD…

4 – Algorithms

Choquet optimal edge:     a  (2, 2)

Completion:  a ∪ b  (5, 3) a ∪ c    (3, 5) sub-optimal

b ∪ c  is clearly better with (4, 4)
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An important notion: the core of a capacity

5 – Numerical tests
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Capacity in the core provide default approximations 

5 – Numerical tests

Shapley

Max entropy
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A1: Branch and Bound (spanning trees)

Requires a lower bound (must be easily computable)

4 – Algorithms

noyes edge e?

2) Solved in polytime
2), 3) p chosen in the core

Improving bounds

40

Numerical tests

5 – Numerical tests
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A2 :The ranking approach for ST

Requires a stopping conditions

4 – Algorithms
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Stopping condition of the ranking approach

5 – Numerical tests
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Example 1/2
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Example 2/2
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3. Approximation of Pareto-optimal Knapsacks
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3. Approximation of preferred solutions

The case of Pareto dominance
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Approximation = covering of the Pareto set
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Existence of covering with bounded size (PY00)
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An example using Hansen’s graphs
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Project selection, product design, team configuration, resource allocation…

[Perny et Spanjaard, 

ECAI’08]

Application to biobjective knapsack problems
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Approximation of preferred solutions for
decision models refining Pareto dominance
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Conclusion (main messages)
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Still some work to do…
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Recent publications of our team on this topic

Near Admissible Algorithms for Multiobjective Search
Perny, Patrice; Spanjaard, Olivier; ECAI-08 (2008) pp. 490-494 

Search for Choquet-optimal paths under uncertainty
Galand, Lucie; Perny, Patrice,  UAI’07, pp. 125-132, 

State Space Search for Risk-averse Agents 
Perny, Patrice; Spanjaard, Olivier; Storme, Louis-Xavier; IJCAI’07, pp. 2353-2358

A decision-theoretic approach to robust optimization in multivalued graphs 
Perny, Patrice; Spanjaard, Olivier; Storme, Louis-Xavier; 
Annals of Operations Research (2006) Vol. 147, 1, pp. 317-341

Search for Compromise Solutions in Multiobjective State Space Graphs
Galand, Lucie; Perny, Patrice; ECAI’06, pp. 93-97.


