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Some Questions We Will Ask 
• There are many pollutants in the air. 
• Is it possible to find one combined index of air 
pollution that takes into account all of them? 
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Some Questions We Will Ask 
• Is an airplane louder than a motorcycle? 
• Is it noisier? 
• What is the difference? 
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Some Questions We Will Ask 
• Given two devices to measure changes in water 
pollution level, which one does a better job? 
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MEASUREMENT 
• We will observe that all of these questions have 
something to do with measurement. 

• The answers are very relevant to  
public and private sector decision 
making. 

• We will apply measurement  
theory to measurement of air, 
water, and noise pollution. 
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MEASUREMENT 
• Measurement has something to do with  
numbers.  

• Our approach:  “Representational theory of 
measurement” 
• Assign numbers to “objects” being measured in such a 
way that certain empirical relations are “preserved.” 

• In measurement of temperature, we preserve a  
relation “warmer than.” 

• In measurement of mass, we preserve a relation 
 “heavier than.” 



8 

MEASUREMENT 
A: Set of Objects 
R: Binary relation on A 

aRb  a is “warmer than” b 
aRb  a is “heavier than” b 

f: A   
aRb  f(a) > f(b) 

R could be preference. Then f is a utility function (ordinal 
utility function). 
R could be “louder than.” Then f is a measure of loudness. 
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MEASUREMENT 
A: Set of Objects 
R: Binary relation on A 

aRb  a is “warmer than” b 
aRb  a is “heavier than” b 

f: A   
aRb  f(a) > f(b) 

With mass, there is more going on. There is an operation 
of combination of objects and mass is additive.  ab 
means a combined with b.  

f(ab) = f(a) + f(b). 
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MEASUREMENT 
• This can all be generalized using a formalism 
called a homomorphism. 
• It will suffice to think of a homomorphism as a 
way of assigning numbers to objects being 
measured so that certain relations and operations 
among objects are reflected in comparable relations 
among the assigned numbers.  
• Even more basically: Homomorphisms will be 
“acceptable” ways to assign numbers. 
• We will be particularly interested in finding ways 
to transform one homomorphism (acceptable way 
to measure) into another. 
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Homomorphisms: A Formalism 
• Empirical Relational System  
    Set of objects A and relations R and operations  on A. 
• Numerical Relational System  
    Set of objects B where B is a set of real numbers, plus a 
relation R* corresponding to each R on A and an operation 
* corresponding to each  on A.  
• Homomorphism from      into  
    A function f:A  B such that all relations and 
operations among elements in A are reflected in 
corresponding relations and operations among elements in 
B, e.g.,  

aRb  f(a)R*f(b) 

f(ab) = f(a)*f(b). 

A 

B 

A B 
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The Theory of Uniqueness 
Admissible Transformations 

• An admissible transformation sends one acceptable scale 
into another.    

Centigrade  Fahrenheit 
Kilograms  Pounds 

• In most cases one can think of an admissible 
transformation as defined on the range of a 
homomorphism. 

• Suppose  f is a homomorphism from     into     . 
• :f(A)  B is called an admissible transformation of f  
if           f is again a homomorphism from     into    . 

B 

B 

A 

A 
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The Theory of Uniqueness 
Admissible Transformations  

Centigrade  Fahrenheit: (x) = (9/5)x + 32 

Kilograms  Pounds: (x) = 2.2x 



15 

The Theory of Uniqueness 
• A classification of scales is obtained by studying 
the class of admissible transformations associated 
with the scale. 
• This defines the scale type. (S.S. Stevens) 
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Some Common Scale Types 
Class of Adm. Transfs. Scale Type Example 
(x) = x,  > 0  ratio  Mass 
      Temp. (Kelvin) 
      Time (intervals) 
      Loudness (sones)? 
      Brightness (brils)? 
______________________________________________ 
(x) = x+,  > 0  interval Temp (F,C) 
      Time (calendar) 
      IQ tests (standard           scores)? 
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Some Common Scale Types 
Class of Adm. Transfs. Scale Type Example 
x  y  (x)  (y) 
 strictly increasing ordinal Preference? 
      Hardness 
      Grades of leather,               wool, etc. 
      IQ tests (raw               scores)? 
_________________________________________   
(x) = x   absolute Counting 
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Meaningful Statements 
• In measurement theory, we speak of a statement as being 
meaningful if its truth or falsity is not an artifact of the 
particular scale values used. 

• The following definition is due to Suppes 1959 and 
Suppes and Zinnes 1963. 

Definition:  A statement involving numerical scales is 
meaningful if its truth or falsity is unchanged after any (or 
all) of the scales is transformed (independently?) by an 
admissible transformation. 
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Meaningful Statements 
• A slightly more informal definition: 
Alternate Definition:  A statement involving 
numerical scales is meaningful if its truth or falsity 
is unchanged after any (or all) of the scales is 
(independently?) replaced by another acceptable 
scale. 
• In some practical examples, for example those 
involving preference judgments or judgments 
“louder than” under the “semiorder” model, it is 
possible to have to scales where one can’t go from 
one to the other by an admissible transformation, so 
one has to use this definition. 

. 
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Meaningful Statements 

• We will avoid the long literature of more 
sophisticated approaches to meaningfulness. 

• Situations where this relatively simple-minded 
definition may run into trouble will be disregarded. 

• Emphasis is to be on applications of the 
“invariance” motivation behind the theory of 
meaningfulness. 
. 



22 

Meaningful Statements 
“This talk will be three times as long as the next 
talk.” 

• Is this meaningful? 
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Meaningful Statements 
“This talk will be three times as long as the next 
talk.” 

• Is this meaningful? 

I hope not! 
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Meaningful Statements 
“This talk will be three times as long as the next 
talk.” 

• Is this meaningful? 

Me too 
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Meaningful Statements 
“This talk will be three times as long as the next talk.” 
• Is this meaningful? 
• We have a ratio scale (time intervals). 

(1)   f(a) = 3f(b). 

• This is meaningful if  f  is a ratio scale.  For, an 
admissible transformation is  (x) = x,   > 0. We 
want (1) to hold iff  

(2)                   (f)(a) = 3(f)(b) 
• But (2) becomes 
(3)                        f(a) = 3f(b) 
• (1)  (3)  since  > 0. 
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Meaningful Statements 
“The high temperature today was five percent 
higher than the high temperature yesterday.” 

• Is this meaningful? 
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Meaningful Statements 
“The high temperature today was five percent 
higher than the high temperature yesterday.” 

f(a) = 1.05f(b) 

• Meaningless.  It could be true with Fahrenheit and 
false with Centigrade, or vice versa. 
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Meaningful Statements 
In general: 

• For ratio scales, it is meaningful to compare ratios: 

f(a)/f(b) > f(c)/f(d) 
• For interval scales, it is meaningful to compare 
intervals: 

f(a) - f(b) > f(c) - f(d) 
• For ordinal scales, it is meaningful to compare 
size: 

f(a) > f(b) 
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Meaningful Statements 
“I weigh 1000 times what the Statue of Liberty 
weighs.” 

• Is this meaningful? 



30 

Meaningful Statements 
“I weigh 1000 times what the Statue of Liberty 
weighs.” 
• Meaningful.  It involves ratio scales. 
It is false no matter what the unit. 
• Meaningfulness is different from truth. 
• It has to do with what kinds of assertions  
it makes sense to make, which assertions 
are not accidents of the particular choice 
of scale (units, zero points) in use. 
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Average Loudness 
• Study two groups of machines. 

• f(a)  is the loudness of machine a. 
• Data suggests that the average loudness of machines in 
the first group is higher than the average loudness of 
machines in the second group. 
a1, a2, …, an  machines in first group 
b1, b2, …, bm machines in second group. 
(1) 

• We are comparing arithmetic means. 

1 
n 

n X 

i = 1 

f ( a i ) > 
1 
m 

m X 

i = 1 

f ( b i ) 
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Average Loudness 
• Statement (1) is meaningful iff for all admissible 
transformations of scale ,  (1) holds iff 

(2) 

• Some argue that loudness (sones) define a ratio scale.  
(More on this later.) 

• Thus,  (x) = x,  > 0, so (2) becomes 

(3) 

• Then   > 0 implies (1)  (3). Hence, (1) is 
meaningful. 

1 
n 

n X 

i = 1 

' ± f ( a i ) > 
1 
m 

m X 

i = 1 

' ± f ( b i ) 

1 
n 

n X 

i = 1 

® f ( a i ) > 
1 
m 

m X 

i = 1 

® f ( b i ) 
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Average Loudness 
• Note:  (1) is still meaningful if  f  is an interval scale. 
•   

• For example, we could be comparing temperatures  f(a). 
• Here,  (x) = x + ,  > 0.  Then (2) becomes 

(4) 

• This readily reduces to (1). 

• However, (1) is meaningless if  f  is just an ordinal 
scale. 

1 
n 

n X 

i = 1 

[ ® f ( a i ) + ¯ ] > 
1 
m 

m X 

i = 1 

[ ® f ( b i ) + ¯ ] 
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Average Loudness 
• To show that comparison of arithmetic means can be 
meaningless for ordinal scales, suppose we are asking 
experts for a subjective judgment of loudness. 

• Suppose  f(a)  is measured on an ordinal scale, e.g., 5-
point scale:  5=extremely loud, 4=very loud, 3=loud, 
2=slightly loud, 1=quiet. 

• In such a scale, the numbers may not mean anything; 
only their order matters. 

Group 1:  5, 3, 1  average 3 
Group 2:  4, 4, 2  average 3.33 

• Conclude: average loudness of group 2 machines is 
higher. 
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Average Loudness 
• Suppose  f(a)  is measured on an ordinal scale, e.g., 5-
point scale:  5=extremely loud, 4=very loud, 3=loud, 
2=slightly loud, 1=quiet.  
• In such a scale, the numbers may not mean anything; only 
their order matters. 

Group 1:  5, 3, 1  average 3 
Group 2:  4, 4, 2  average 3.33 (greater) 

• Admissible transformation:  5  100, 4  75, 3  65,       
2  40, 1  30     
• New scale conveys the same information.  New scores: 

Group 1:  100, 65, 30  average 65   
Group 2:  75, 75, 40   average 63.33  

Conclude: average loudness of group 1 machines is higher. 
. 
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Average Loudness 
• Thus, comparison of arithmetic means can be 
meaningless for ordinal data. 

• Of course, you may argue that in the 5-point scale, at least 
equal spacing between scale values is an inherent property 
of the scale.  In that case, the scale is not ordinal and this 
example does not apply. 

• Note: Comparing medians is meaningful with ordinal 
scales:  To say that one group has a higher median than 
another group is preserved under admissible 
transformations. 

. 
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Average Loudness 
• Suppose each of  n  individuals is asked to rate each of 
a collection of alternative machines as to their relative 
loudness.  

•  Or we rate alternatives on different criteria or against 
different benchmarks. (Similar results with performance 
ratings, importance ratings, brightness ratings, etc.) 

• Let  fi(a)  be the rating of alternative  a  by   
individual  i  (under criterion  i).  Is it meaningful to assert 
that the average rating of alternative  a  is higher than the 
average rating of alternative  b?   
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Average Loudness 
• Let  fi(a)  be the rating of alternative  a  by   
individual  i  (under criterion  i).  Is it meaningful to assert 
that the average rating of alternative  a  is higher than the 
average rating of alternative  b?   

• A similar question arises in performance ratings, 
brightness ratings, importance ratings, etc. 

(1) 
1 
n 

n X 

i = 1 

f i ( a ) > 
1 
n 

n X 

i = 1 

f i ( b ) 
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Average Loudness 
• If each  fi  is a ratio scale, then we consider for   > 0, 

(2) 

• Clearly,  (1)  (2), so (1) is meaningful. 

• Problem: f1, f2, …, fn  might have independent units.  In 
this case, we want to allow independent admissible 
transformations of the fi.  Thus, we must consider 

(3) 

• It is easy to see that there are i so that (1) holds and (3) 
fails. Thus, (1) is meaningless. 

. 

1 
n 

n X 

i = 1 

® f i ( a ) > 
1 
n 

n X 

i = 1 

® f i ( b ) 

1 
n 

n X 

i = 1 

® i f i ( a ) > 
1 
n 

n X 

i = 1 

® i f i ( b ) 
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Average Loudness 
Motivation for considering different i:  

n = 2,   f1(a) = weight of a,  f2(a) =  height of a.  Then (1) 
says that the average of  a's  weight and height is greater 
than the average of  b's weight and height.  This could be 
true with one combination of weight and height scales and 
false with another. 
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Average Loudness 
Motivation for considering different i:  

n = 2,   f1(a) = weight of a,  f2(a) =  height of a.  Then (1) 
says that the average of  a's  weight and height is greater 
than the average of  b's weight and height.  This could be 
true with one combination of weight and height scales and 
false with another. 

• Conclusion:  Be careful when comparing 
arithmetic mean ratings. 
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Average Loudness 
• In this context, it is safer to compare geometric means 
(Dalkey). 

all  i > 0. 

• Thus, if each  fi  is a ratio scale, if individuals can change 
loudness rating scales (performance rating scales, 
importance rating scales) independently, then comparison 
of geometric means is meaningful while comparison of 
arithmetic means is not. 

. 

n 
p 
¦ n 

i = 1 f i ( a ) > n 
p 
¦ n 

i = 1 f i ( b ) $ n 
p 
¦ n 

i = 1 ® i f i ( a ) > n 
p 
¦ n 

i = 1 ® i f i ( b ) 
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Application of this Idea 

In a study of air pollution and related energy use in San 
Diego, a panel of experts each estimated the relative 
importance of variables relevant to energy demand using 
the magnitude estimation procedure. Roberts (1972, 1973). 
• Magnitude estimation: Most important gets score of 100. 
If half as important, score of 50. And so on.  
• If magnitude estimation leads to a ratio scale -- Stevens 
presumes this -- then comparison of geometric mean 
importance ratings is meaningful.  
• However, comparison of arithmetic means may not be.  
Geometric means were used. 
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Magnitude Estimation by One Expert of Relative 
Importance for Energy Demand of Variables Related to 

Commuter Bus Transportation in a Given Region 

Variable     Rel. Import. Rating 
1. No. bus passenger mi. annually   80 
2. No. trips annually    100 
3. No. miles of bus routes    50 
4. No. miles special bus lanes    50 
5. Average time home to office    70 
6. Average distance home to office   65 
7. Average speed      10 
8. Average no. passengers per bus   20 
9. Distance to bus stop from home   50 
10. No. buses in the region    20 
11. No. stops, home to office    20 
. 
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MEASUREMENT OF AIR POLLUTION 
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MEASUREMENT OF AIR POLLUTION 

• Various pollutants are present in the air: 

• Carbon monoxide (CO), hydrocarbons (HC), nitrogen 
oxides (NOX), sulfur oxides (SOX), particulate matter 
(PM).  
• Also damaging: Products of chemical reactions among 
pollutants. E.g.: Oxidants such as ozone produced by HC 
and NOX reacting in presence of sunlight. 
• Some pollutants are more serious in presence of others, 
e.g., SOX are more harmful in presence of PM. 
• Can we measure pollution with one overall measure? 
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• To compare pollution control policies, need to compare 
effects of different pollutants.  We might allow increase of 
some pollutants to achieve decrease of others. 
• One single measure could give indication of how bad 
pollution level is and might help us determine if we have 
made progress. 

Combining Weight of Pollutants: 
• Measure total weight of emissions of pollutant  i  over 
fixed period of time and sum over  i. 
e(i,t,k) = total weight of emissions of pollutant  i  (per cubic 
meter) over  tth  time period and due to  kth  source or 
measured in  kth  location. 

MEASUREMENT OF AIR POLLUTION 

A ( t ; k ) = 
X 

i 

e ( i ; t ; k ) 
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•  Early uses of this simple index  A  in the early 1970s led 
to the conclusions: 

(A)  Transportation is the largest source of air pollution, with 
stationary fuel combustion (especially by electric power 
plants) second largest.   

(B)  Transportation accounts for over 50% of all air 
pollution. 

(C) CO accounts for over half of all emitted air pollution. 

•  Are these meaningful conclusions? 

MEASUREMENT OF AIR POLLUTION 
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•  Early uses of this simple index  A  in the early 1970s led 
to the conclusions: 

(A)  Transportation is the largest source of air pollution, with 
stationary fuel combustion (especially by electric power 
plants) second largest.   

•  Are these meaningful conclusions? 

MEASUREMENT OF AIR POLLUTION 

A ( t ; k ) > A ( t ; k 0 ) 
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•  Early uses of this simple index  A  in the early 1970s led 
to the conclusions: 

(B) Transportation accounts for over 50% of all air 
pollution. 

•  Are these meaningful conclusions? 

MEASUREMENT OF AIR POLLUTION 

A ( t ; k r ) > 
X 

k 6 = k r 

A ( t ; k ) 
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•  Early uses of this simple index  A  in the early 1970s led 
to the conclusions: 

(C) CO accounts for over half of all emitted air pollution. 

•  Are these meaningful conclusions? 

MEASUREMENT OF AIR POLLUTION 

X 

t ; k 

e ( i ; t ; k ) > 
X 

t ; k 

X 

j 6 = i 

e ( j ; t ; k ) 
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All these conclusions are meaningful if we measure all  e
(i,t,k)  in same units of mass (e.g., milligrams per cubic 
meter) and so admissible transformation means multiply  e
(i,t,k)  by same constant. 

MEASUREMENT OF AIR POLLUTION 
A ( t ; k ) > A ( t ; k 0 ) 

A ( t ; k r ) > 
X 

k 6 = k r 

A ( t ; k ) 

X 

t ; k 

e ( i ; t ; k ) > 
X 

t ; k 

X 

j 6 = i 

e ( j ; t ; k ) 
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• These comparisons are meaningful in the technical sense. 
• But: Are they meaningful comparisons of pollution level 
in a practical sense? 
• A unit of mass of CO is far less harmful than a unit of mass 
of NOX.  U.S. Environmental Protection Agency standards 
based on health effects for 24 hour period allow 7800 units 
of CO to 330 units of NOX.   
• These are Minimum acute toxicity effluent tolerance 
factors (MATE criteria).  
• Tolerance factor is level at which adverse effects are 
known.  Let  (i)  be tolerance factor for  ith  pollutant.   

• Severity factor:  (CO)/(i)  or  1/(i) 

MEASUREMENT OF AIR POLLUTION 
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• One idea (Babcock and Nagda, Walther, Caretto and 
Sawyer):  Weight the emission levels (in mass) by severity 
factor and get a weighted sum.  This amounts to using the 
indices 
Degree of hazard: 

and the combined index 

Pindex: 

• Under pindex, transportation is still the largest source of 
pollutants, but now accounting for less than 50%. Stationary 
sources fall to fourth place.  CO drops to bottom of list of 
pollutants, accounting for just over 2% of the total. 

MEASUREMENT OF AIR POLLUTION 

1 
¿ ( i ) e ( i ; t ; k ) 

B ( t ; k ) = 
P 

i 
1 

¿ ( i ) e ( i ; t ; k ) 
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• These conclusions are again meaningful if all emission 
weights are measured in the same units.  For an admissible 
transformation multiplies    and e  by the same constant 
and thus leaves the degree of hazard unchanged and pindex 
unchanged. 

• Pindex was introduced in the San Francisco  
Bay Area in the 1960s.  

• But, are comparisons using pindex meaningful in the 
practical sense? 

MEASUREMENT OF AIR POLLUTION 
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• Pindex amounts to:  For a given pollutant, take the 
percentage of a given harmful level of emissions that is 
reached in a given period of time, and add up these 
percentages over all pollutants. (Sum can be greater than 
100% as a result.) 

• If 100% of the CO tolerance level is reached, this is known 
to have some damaging effects.  Pindex implies that the 
effects are equally severe if levels of five major pollutants 
are relatively low, say 20% of their known harmful levels.  

MEASUREMENT OF AIR POLLUTION 
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• Severity tonnage of pollutant  i  due to a given source is 
actual tonnage times the severity factor 1/(i).   
• In early air pollution measurement literature, severity 
tonnage was considered a measure of how severe pollution 
due to a source was. 

• Data from Walther 1972 suggests the following.  Interesting 
exercise to decide which of these  
conclusions are meaningful. 

MEASUREMENT OF AIR POLLUTION 
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1. HC emissions are more severe (have greater severity 
tonnage) than NOX emissions. 
2. Effects of HC emissions from transportation are more 
severe than those of HC emissions from industry. (Same for 
NOX.). 

3. Effects of HC emissions from transportation are more 
severe than those of CO emissions from industry.  
4. Effects of HC emissions from transportation are more 
than 20 times as severe as effects of CO emissions from 
transportation. 

5. The total effect of HC emissions due to all sources is 
more than 8 times as severe as total effect of NOX emissions 
due to all sources. 

MEASUREMENT OF AIR POLLUTION 
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Evaluation of Water Testing Equipment 
• How do we evaluate alternative possible water testing 
systems? Or pollution control systems for oil, chemicals, … 
•  A number of systems are tested on different benchmarks.   
• Their scores on each benchmark are normalized relative to 
the score of one of the systems.   
• The normalized scores of a system are combined by some 
averaging procedure.   
• If the averaging is the arithmetic mean, then the statement 
“one system has a higher arithmetic 
mean normalized score than another 
system” is meaningless:   
The system to which scores are  
normalized can determine which 
has the higher arithmetic mean. 
. 
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Evaluation of Water Testing Equipment 
• Similar methods are used in comparing performance of 
alternative computer systems or other types of machinery. 
• The following example has numbers taken out of the 
computer science literature from an article comparing 
computer systems. However, the same applies to pollution 
control equipment or other types of equipment. 
• The example is due to Fleming and Wallace (1986). 
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Equipment Evaluation  
Evaluation of Water Testing Equipment 

  417 83 66 39,449 772 

244 70 153 33,527 368 

134 70 135 66,000 369 

BENCHMARK 

R 

M 

Z 

S 
Y 
S 
T 
E 
M 

E F G H I 

Data from Heath, Comput. Archit. News (1984) 
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Equipment Evaluation 
Normalize Relative to System R 

  417 
1.00 

83 
1.00 

66 
1.00 

39,449 
1.00 

772 
1.00 

244 
.59 

70 
.84 

153 
2.32 

33,527 
.85 

368 
.48 

134 
.32 

70 
.85 

135 
2.05 

66,000 
1.67 

369 
.45 

BENCHMARK 

R 

M 

Z 

S 
Y 
S 
T 
E 
M 

E F G H I 
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Equipment Evaluation 

Take Arithmetic Mean of Normalized Scores  

  417 
1.00 

83 
1.00 

66 
1.00 

39,449 
1.00 

772 
1.00 

244 
.59 

70 
.84 

153 
2.32 

33,527 
.85 

368 
.48 

134 
.32 

70 
.85 

135 
2.05 

66,000 
1.67 

369 
.45 

BENCHMARK 

R 

M 

Z 

S 
Y 
S 
T 
E 
M 

E F G H I 
Arithmetic 
Mean 

1.00 

1.01 

1.07 
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Equipment Evaluation 

Take Arithmetic Mean of Normalized Scores  

  417 
1.00 

83 
1.00 

66 
1.00 

39,449 
1.00 

772 
1.00 

244 
.59 

70 
.84 

153 
2.32 

33,527 
.85 

368 
.48 

134 
.32 

70 
.85 

135 
2.05 

66,000 
1.67 

369 
.45 

BENCHMARK 

R 

M 

Z 

S 
Y 
S 
T 
E 
M 

E F G H I 
Arithmetic 
Mean 

1.00 

1.01 

1.07 

Conclude that system Z is best 
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Equipment Evaluation 
Now Normalize Relative to System M 

  417 
1.71 

83 
1.19 

66 
.43 

39,449 
1.18 

772 
2.10 

244 
1.00 

70 
1.00 

153 
1.00 

33,527 
1.00 

368 
1.00 

134 
.55 

70 
1.00 

135 
.88 

66,000 
1.97 

369 
1.00 

BENCHMARK 

R 

M 

Z 

S 
Y 
S 
T 
E 
M 

E F G H I 
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Equipment Evaluation 
Take Arithmetic Mean of Normalized Scores 

  417 
1.71 

83 
1.19 

66 
.43 

39,449 
1.18 

772 
2.10 

244 
1.00 

70 
1.00 

153 
1.00 

33,527 
1.00 

368 
1.00 

134 
.55 

70 
1.00 

135 
.88 

66,000 
1.97 

369 
1.00 

BENCHMARK 

R 

M 

Z 

S 
Y 
S 
T 
E 
M 

E F G H I 

Arithmetic 
Mean 

1.32 

1.00 

1.08 
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Equipment Evaluation 
Take Arithmetic Mean of Normalized Scores 

  417 
1.71 

83 
1.19 

66 
.43 

39,449 
1.18 

772 
2.10 

244 
1.00 

70 
1.00 

153 
1.00 

33,527 
1.00 

368 
1.00 

134 
.55 

70 
1.00 

135 
.88 

66,000 
1.97 

369 
1.00 

BENCHMARK 

R 

M 

Z 

S 
Y 
S 
T 
E 
M 

E F G H I 

Arithmetic 
Mean 

1.32 

1.00 

1.08 

Conclude that system R is best 
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Equipment Evaluation 

•  So, the conclusion that a given system is best  by 
taking arithmetic mean of normalized scores is 
meaningless in this case. 

• Above example from Fleming and Wallace 
(1986), data from Heath (1984) 

•  Sometimes, geometric mean is helpful. 
• Geometric mean is 

 is(xi) 

  

n  
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Equipment Evaluation 
Normalize Relative to System R 

  417 
1.00 

83 
1.00 

66 
1.00 

39,449 
1.00 

772 
1.00 

244 
.59 

70 
.84 

153 
2.32 

33,527 
.85 

368 
.48 

134 
.32 

70 
.85 

135 
2.05 

66,000 
1.67 

369 
.45 

BENCHMARK 

R 

M 

Z 

S 
Y 
S 
T 
E 
M 

E F G H I 
Geometric 
Mean 

1.00 

.86 

.84 

Conclude that system R is best 
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Equipment Evaluation 
Now Normalize Relative to System M 

  417 
1.71 

83 
1.19 

66 
.43 

39,449 
1.18 

772 
2.10 

244 
1.00 

70 
1.00 

153 
1.00 

33,527 
1.00 

368 
1.00 

134 
.55 

70 
1.00 

135 
.88 

66,000 
1.97 

369 
1.00 

BENCHMARK 

R 

M 

Z 

S 
Y 
S 
T 
E 
M 

E F G H I 
Geometric 
Mean 

1.17 

1.00 

.99 

Still conclude that system R is best 
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Equipment Evaluation 

•  In this situation, it is easy to show that the conclusion 
that a given system has highest geometric mean 
normalized score is a meaningful conclusion. 

•  Even meaningful: A given system has geometric mean 
normalized score 20% higher than another machine. 

•  Fleming and Wallace give general conditions under 
which comparing geometric means of normalized 
scores is meaningful. 

•  Research area: what averaging procedures make sense 
in what situations? Large literature.  
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Equipment Evaluation 

Message from measurement theory: 

Do not perform arithmetic operations on 
data without paying attention to whether 
the conclusions you get are meaningful. 
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Equipment Evaluation 

• We have seen that in some situations, comparing 
arithmetic means is not a good idea and 
comparing geometric means is. 

• We will see that there are situations where the 
reverse is true. 

•  Can we lay down some guidelines as to when to 
use what averaging procedure? 

• More on this later. 
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Outline 
1.  Introduction to Measurement Theory 
2.  Theory of Uniqueness of Scales of Measurement/Scale   

Types 
3.  Meaningful Statements 
4.  Averaging Judgments of Loudness 
5.  Measurement of Air Pollution: A Combined Pollution 

Index 
6.  Evaluation of Water Testing Equipment: “Merging 

Normalized Scores” 
7.  Optimization Problems in Pollution Measurement 
8.  Measurement of Noise: Introduction to Psychophysical 

Scaling 
9.  How to Average Scores 
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Climate Change and Pollution 
• Some early warning signs of climate change include 
extreme heat events, commonly associated with air 
pollution events: 

– 1995 extreme heat event in Chicago 
 514 heat-related deaths 
 3300 excess emergency  
admissions 

– 2003 heat wave in Europe 
 35,000 deaths 
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Extreme Events due to Global Warming 
• We anticipate an increase in number and severity of 
extreme events due to global warming. 
• More heat waves and associated air pollution events. 
• More floods, hurricanes. 
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Extreme Pollution Events: Evacuation 
• One response to such extreme pollution events: 
evacuation of most vulnerable individuals to climate 
controlled environments. 
• Modeling challenges: 

– Where to locate the evacuation centers? 
– Whom to send where? 
– Goals include minimizing travel time, keeping facilities to 
their maximum capacity, etc. 
– Relevance of mathematical tools of operations research – 
location theory, assignment problems, etc. 
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One Approach to Evacuation: Find the 
Shortest Route from Home to 

Evacuation Center 
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Optimization Problems  
Shortest Path Problem 

x y 

z 

2 

4 
15 

•  Problem: Find the shortest path from x to z in the network. 
•  Widely applied problem.  

 US Dept. of Transportation alone uses it billions of 
times a year. 

Numbers = some 
sort of weights or 
lengths 
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Shortest Path Problem 

x y 

z 

2 

4 
15 

•  The shortest path from x to z is the path x to y to z. 
•  Is this conclusion meaningful? 
•  It is if the numbers define a ratio scale. 
•  The numbers define a ratio scale if they are distances.  
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Shortest Path Problem 
z 

x y 2 

4 
15 

•  However, what if the numbers define an interval scale? 
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Shortest Path Problem 

x y 

z 

2 

4 
15 

•  Consider the admissible transformation  (x) = 3x + 100. 
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Shortest Path Problem 
z 

x y 106 

112 
145 

•  Consider the admissible transformation  (x) = 3x + 
100. 

•  Now we get the above numbers on the edges. 
•  Now the shortest path is to go directly from x to z. 
•  The original conclusion was meaningless. 
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Linear Programming 
•  The shortest path problem can be formulated as a linear 

programming problem. 
•  Thus: The conclusion that A is the solution to a linear 

programming problem can be meaningless if cost 
parameters are measured on an interval scale. 

•  How many people realize that? 
•  Note that linear programming is widely used in practical 

applications, e.g., to solve problems like: 
 Optimizing inventories of pollution control equipment  
 Assigning workers to pollution control jobs 
 Optimizing the size of a pollution control facility 
 Determining the amount to invest in alternative 
pollution control measures 
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Related Example: Minimum 
Spanning Tree Problem 

2 

8 

10 14 

16 

20 22 

•  A spanning tree is a tree using the edges of the graph and 
containing all of the vertices. 

•  It is minimum if the sum of the numbers on the edges 
used is as small as possible. 

15 

26 

28 



89 

Related Example: Minimum 
Spanning Tree Problem 

•  Minimum spanning trees arise in many applications. 
•  One example: Given a road network, find usable roads 

that allow you to go from any vertex to any other vertex, 
minimizing the lengths of the roads used. 

•  This problem also arises in extreme events due to global 
warming:  Find a usable road network for emergency 
vehicles in case extreme events leave flooded roads. 
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Related Example: Minimum 
Spanning Tree Problem 

2 

8 

10 14 

16 

20 22 

•  Red edges define a minimum spanning tree. 
•  Is it meaningful to conclude that this is a minimum 

spanning tree? 
. 

15 

26 

28 
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Related Example: Minimum 
Spanning Tree Problem 

2 

8 

10 14 

16 

20 22 

•  Consider the admissible transformation  (x) = 3x + 
100. 

15 

26 

28 
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Related Example: Minimum 
Spanning Tree Problem 

106 

124 

130 142 

148 

160 166 

•  Consider the admissible transformation  (x) = 3x + 
100. 

•  We now get the above numbers on edges. 

145 

178 

184 
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Related Example: Minimum 
Spanning Tree Problem 

106 

124 

130 142 

148 

160 166 

•  The minimum spanning tree is the same. 

145 

178 

184 
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Related Example: Minimum 
Spanning Tree Problem 

106 

124 

130 142 

148 

160 166 

•  Is this an accident? 
•  No: By Kruskal’s algorithm for finding the minimum 

spanning tree, even an ordinal transformation will leave 
the minimum spanning tree unchanged. 

145 

178 

184 
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Related Example: Minimum 
Spanning Tree Problem 

106 

124 

130 142 

148 

160 166 

•  Kruskal’s algorithm: 
  Order edges by weight. 
  At each step, pick least-weight edge that does not 

create a cycle with previously chosen edges. 

145 

178 

184 
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Related Example: Minimum 
Spanning Tree Problem 

• Many practical decision making problems 
involve the search for an optimal solution as in 
Shortest Path and Minimum Spanning Tree. 

•  Little attention is paid to the possibility that the 
conclusion that a particular solution is optimal 
may be an accident of the way things are 
measured. 
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Outline 
1.  Introduction to Measurement Theory 
2.  Theory of Uniqueness of Scales of Measurement/Scale   

Types 
3.  Meaningful Statements 
4.  Averaging Judgments of Loudness 
5.  Measurement of Air Pollution: A Combined Pollution 

Index 
6.  Evaluation of Water Testing Equipment: “Merging 

Normalized Scores” 
7.  Optimization Problems in Pollution Measurement 
8.  Measurement of Noise: Introduction to 

Psychophysical Scaling 
9.  How to Average Scores 
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Measurement of Noise 

    A sound has physical characteristics: 
–  Intensity (energy transported) 
–  Frequency (in cycles per second) 
– Duration 

A sound also has psychological characteristics: 
– How loud does it seem? 
– What emotional meaning does it portray? 
– What images does it suggest? 
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Measurement of Noise 
•  Since middle of 19th century, scientists have tried to 

study the relationships between physical 
characteristics of stimuli like sounds and their 
psychological characteristics. 

•  Psychophysics is the discipline that studies 
psychological sensations such as loudness, brightness, 
apparent length, apparent duration, and their relations 
to physical stimuli. 

•  Not all psychological characteristics have clear 
relationships to physical ones. E.g., emotional 
meaning. 

•  However, some seem to. 
•  We will concentrate on loudness. 
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Measurement of Noise 

•  Loudness of a sound is different from its disturbing 
effect. 

•  This disturbing effect is called noise. 
•  We will concentrate on loudness and equate noise with 

loudness. 
•  Noise has more than just disturbing effects.  
•  It has physiological effects too: 

•  Affects hearing 
•  Affects cardiovascular system  
•  May be related to stomach problems 
•  May even be related to infertility 
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Measurement of Noise 
•  Subjective judgments of loudness depend on physical 

intensity and frequency. 
•  Equal loudness contour: 

•  Duration of a sound may also enter into loudness. 
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Measurement of Noise 
•  To simplify matters, one tries to eliminate all physical 

factors but one. 
•  Deal with pure tones, sounds of constant intensity at a 

fixed frequency. 
•  Present them for fixed duration of time. 
•  Let I(a) denote the intensity of pure tone a.  
•  I(a) is proportional to the root-mean-square pressure p

(a). 
•  The common unit of measurement of intensity is the 

decibel (dB).  
•  This is 10 log10(I/I0), where I0 is a reference sound. 
•  A sound of 1 dB is essentially the lowest audible 

sound. 
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Measurement of Noise 
Some Sample Decibel Levels: 

Uncomfortably Loud: 
 Oxygen torch (121 dB) 
 Snowmobile (113 dB) 
 Riveting machine (110 dB) 
 Rock band (108-114 dB) 
 Jet takeoff at 1000 ft. (110 dB) 
 Jet flyover at 1000 ft. (103 dB) 
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Measurement of Noise 
Some Sample Decibel Levels: 

Very Loud: 
 Electric furnace (100 dB) 
 Power mower (96 dB) 
 Rock drill at 50 ft. (95 dB) 
 Motorcycle at 50 ft. (90 dB) 
 Smowmobile at 50 ft. (90 dB) 
 Food blender (88 dB) 
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Measurement of Noise 
Some Sample Decibel Levels: 

Moderately Loud: 
 Power mower at 50 ft. (85 dB) 
 Diesel truck at 50 ft. (85 dB) 
 Diesel train at 50 ft. (85dB) 
 Garbage disposal (80 dB) 
 Washing machine (78 dB) 
 Dishwasher (75 dB) 
 Passenger car at 50 ft. (75 dB) 
 Air conditioning unit at 50 ft. (60 dB) 
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Measurement of Noise 
•  Loudness of a sound a = L(a). 
•  Unit of measurement of loudness = the sone 

(1 sone = loudness of 1000 cps pure tone at 40 dB) 
•  Loudness is a psychological scale. 
•  What is the relation between L(a) and the physical 

intensity of a, I(a)? 
•  This relation usually called the psychophysical law. 

L(a) = (I(a)) 

•   is called the psychophysical function. 
•  A basic goal of psychophysics is to find the general 

form of the psychophysical function that applies in 
many cases. 
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Measurement of Noise 
Fechner’s Law 

•  First attempt to specify  for large class of 
psychological variables: Gustav Fechner (1860). 

•  Fechner argued that: 

(x) = c log x + k  
c, k constant. 

•  This is called Fechner’s Law 
•  For loudness, this would say: 

L(a) = c log I(a) + k 

•  Decibel scale is a special case of Fechner’s Law:  
Base of log is 10, c = 10, k = -10 log10 I0. 
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Measurement of Noise 
•  If L(a) = dB(a), then a doubling of the dB level of a 

sound should lead to a doubling of the perceived 
loudness.  

•  So, 100 dB should sound twice as loud as 50 dB. 
•  Is this the case? 
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Measurement of Noise 
Fletcher and Munson (1933) 

•  Assumption: loudness proportional to number of 
auditory nerve impulses reaching the brain 

•  Thus: sound delivered to 2 ears should appear twice 
as loud as same sound delivered to 1 ear. 

•  F & M found that to sound equally loud, a pure tone 
delivered to 1 ear had to be about 10 dB higher than if 
it were delivered to 2 ears. 

•  They concluded: subjective loudness doubles for 
each 10 dB increase in pressure. 

•  Thus, an increase from 50 dB to 60 dB doubles 
loudness, not an increase from 50 dB to 100 dB. 
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Measurement of Noise 
Fletcher and Munson (1933) 

•  This shows that dB does not measure loudness. 
•  Much data supports the F & M results. 

•  It also implies that Fechner’s Law  

                     L(a) = c log I(a) + k 

     can’t hold. 
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Measurement of Noise 
The Power Law 

•  S.S. Stevens (many papers): The fundamental 
psychophysical law for many psychological and 
physical variables is a power law: 

(x) = cxk 

•  Many experiments have estimated that for loudness 
and intensity, the exponent k is approximately 0.3. 

•  Is this consistent with the Fletcher-Munson 
observation? 
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Measurement of Noise 
The Power Law 

•  Note that 0.3 log102 
•  Power law: 
  L(x) = cI(x)         
   

  dB(x) = 10 log10 [I(x)/I0] 

  I(x) = I0 10(1/10)dB(x) 

(**) L(x) = cI0            [10(1/10)dB(x)] 

If dB(b) = dB(a) + 10, then letting x = b in lhs of (**) 
and taking dB(x) = dB(a) + 10 in rhs, we find that 

  L(b) = 2L(a) 
   

l o g 1 0 2 l o g 1 0 2 

l o g 1 0 2 
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Measurement of Noise 
The Power Law 

•  Data seems suggests that the power law holds for 
more than 2 dozen variables (at least approximately 
and in limited intervals), including: 
•  Brightness (in brils) 
•  Smell 
•  Taste (in gusts) 
•  Judged temperature 
•  Judged duration 
•  Presure on palm 
•  Judged heaviness 
•  Force of handgrip 
•  Vocal effort 
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Measurement of Noise 
The Power Law 

•  Power law fairly widely accepted for certain 
psychological/physical variables. 

•  It fails for things like pitch as function of frequency, 
apparent inclination, etc. 

•  We will discuss a theory that allows us to derive the 
power law. 
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Outline 
1.  Introduction to Measurement Theory 
2.  Theory of Uniqueness of Scales of Measurement/Scale   

Types 
3.  Meaningful Statements 
4.  Averaging Judgments of Loudness 
5.  Measurement of Air Pollution: A Combined Pollution 

Index 
6.  Evaluation of Water Testing Equipment: “Merging 

Normalized Scores” 
7.  Optimization Problems in Pollution Measurement 
8.  Measurement of Noise: Introduction to Psychophysical 

Scaling 
9.  How to Average Scores 
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• Sometimes arithmetic means are not a good idea.  
•  Sometimes geometric means are.  
• Are there situations where the opposite is the case?  Or 
some other method is better?   
• Can we lay down some guidelines about when to use what 
averaging or merging procedure? 
• Methods we will describe will help and also help with the 
possible psychophysical laws. 

How Should We Average Scores? 
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• Can we lay down some guidelines about when to use what 
averaging or merging procedure? 

• Let  a1, a2, …, an  be “scores” or ratings, e.g., scores on 
benchmarks for water or air pollution equipment, loudness 
ratings, etc. 

• Let  u = F(a1,a2, …, an) 

• F  is an unknown averaging function – sometimes called a 
merging function, and  u  is the average or merged score. 

How Should We Average Scores? 



118 

• Approaches to finding acceptable merging 
 functions F:  

• (1) axiomatic  
• (2) scale types  
• (3) meaningfulness 

How Should We Average Scores? 
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An Axiomatic Approach 
Theorem (Fleming and Wallace).  Suppose  F:(+)n  +                        
has the following properties: 

(1). Reflexivity:  F(a,a,...,a) = a 
(2). Symmetry:  F(a1,a2,…,an) = F(a(1),a(2),…,a(n))                                                              
for all permutations  of {1,2,…,n} 

(3). Multiplicativity:  
F(a1b1,a2b2,…,anbn) = F(a1,a2,…,an) F(b1,b2,…,bn)  
Then  F  is the geometric mean.  And conversely. 

How Should We Average Scores? 
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A Functional Equations Approach Using Scale 
Type or Meaningfulness Assumptions 

Unknown function u = F(a1,a2,…,an)  

We will use an idea due to R. Duncan Luce that he called 
the “Principle of Theory Construction”  

(We will disregard some of the  
restrictions on applicability of  
this principle, including those  
given by Luce.) 

How Should We Average Scores? 
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A Functional Equations Approach Using Scale 
Type or Meaningfulness Assumptions 

Unknown function u = F(a1,a2,…,an)  

Luce's idea (“Principle of Theory Construction”):  If you 
know the scale types of the ai and the scale type of  u  and 
you assume that an admissible transformation of each of the 
ai  leads to an admissible transformation of  u,  you can 
derive the form of  F.   

How Should We Average Scores? 
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A Functional Equations Approach 

Example: u = F(a).  Assume a and u are ratio scales. 

•  Admissible transformations of scale: multiplication by a 
positive constant. 
• Multiplying the independent variable by a positive constant 
 leads to multiplying the dependent variable by a positive 
constant A that depends on . 
• This leads to the functional equation: 
(&)                    F(a) = A()F(a), A() > 0. 

How Should we Average Scores? 
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• This leads to the functional equation: 

(&)                    F(a) = A()F(a),  > 0, A() > 0. 

By solving this functional equation, Luce proved the 
following theorem: 

Theorem (Luce 1959):  Suppose the averaging function F is 
continuous and suppose a takes on all positive real values 
and F takes on positive real values. Then  

F(a) = cak 

Thus, if both the independent and dependent variables are 
ratio scales, the only possible way to relate them is by a 
power law. 

How Should we Average Scores? 
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Theorem (Luce 1959):  Suppose the averaging function F is 
continuous and suppose a takes on all positive real values 
and F takes on positive real values. Then  

F(a) = cak 

Thus, in psychophysical scaling, if both the physical and 
psychological variables are ratio scales, the only possible 
way to relate them is by a power law. 

(x) = cxk 

What are the Possible  
Psychophysical Laws? 
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Thus, in psychophysical scaling, if both the physical 
and psychological variables are ratio scales, the only 
possible way to relate them is by a power law. 

(x) = cxk 

•  The functional equations approach can be viewed as a 
derivation of the power law in psychophysics. In particular, 
it holds if loudness defines a ratio scale. 
•  So how do you know that loudness defines a ratio scale?  
•  One of Stevens’ arguments: Because subjects can do 
“magnitude estimation” and are comfortable with ratios of 
sounds (a sounds twice as loud as b). 

What are the Possible  
Psychophysical Laws? 
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•  This result is also very general.  

•  It can be interpreted as limiting in very strict ways the 
“possible scientific laws” 

•  Other examples of power laws: 
–  V = (4/3)r3  Volume V, radius r  are ratio scales 
–  Newton’s Law of gravitation: F = G(mm*/r2), 

where F is force of attraction, G is gravitational 
constant, m,m* are fixed masses of bodies being 
attracted, r is distance between them. 

–  Ohm’s Law: Under fixed resistance, voltage is 
proportional to current (voltage, current are ratio 
scales) 

The Possible Scientific Laws 
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A Functional Equations Approach Cont’d 

Example: a1, a2, …, an are independent ratio scales,  u  is a 
ratio scale. 

F: (+)n  + 

F(a1,a2,…,an) = u  F(1a1,2a2,…,nan) = u, 

1 > 0,  2  > 0, n > 0,  > 0,  depends on a1, a2, …, 
an. 

• Thus we get the functional equation: 

(*)   F(1a1,2a2,…,nan) = A(1,2,…,n)F(a1,a2,
…,an), 
A(1,2,…,n) > 0 

How Should We Average Scores? 
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A Functional Equations Approach 

(*)   F(1a1,2a2,…,nan) = A(1,2,…,n)F(a1,a2,
…,an), 
A(1,2,…,n) > 0 

Theorem (Luce 1964):  If   F: (+)n  +  is continuous 
and  
satisfies (*), then there are  > 0, c1, c2, …, cn so that 

How Should We Average Scores? 

F ( a 1 ; a 2 ; : : : ; a n ) = ¸ a c 1 
1 a c 2 

2 : : : a c n 
n : 
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Theorem (Aczél and Roberts 1989):  If in addition  F  
satisfies reflexivity and symmetry, then = 1  and  c1 = c2 = 
… = cn = 1/n ,  so  F  is the geometric mean. 

How Should We Average Scores? 

Janos Aczél 
“Mr. Functional Equations” 
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Sometimes You Get the Arithmetic Mean 

Example:  a1, a2, …, an  interval scales with the same unit 
and independent zero points;  u  an interval scale. 

Functional Equation: 

(****)     F(a1+1,a2+2,…,an+n) =  
    A(,1,2,…,n)F(a1,a2,…,an) + B(,1,2,
…,n)  

                     A(,1,2,…,n) > 0 

How Should We Average Scores? 
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Functional Equation: 

(****)     F(a1+1,a2+2,…,an+n) =  
    A(,1,2,…,n)F(a1,a2,…,an) + B(,1,2,
…,n)  

                     A(,1,2,…,n) > 0 

Solutions to (****) (Even Without Continuity Assumed) 
(Aczél, Roberts, and Rosenbaum): 

                     1,  2, …,  n, b  arbitrary constants 

How Should We Average Scores? 

F ( a 1 ; a 2 ; : : : ; a n ) = 
n X 

i = 1 

¸ i a i + b 
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Theorem (Aczél and Roberts): 

(1).  If in addition  F  satisfies reflexivity, then   

(2).  If in addition  F  satisfies reflexivity and symmetry, 
then  i= 1/n  for all i, and b = 0,  i.e.,  F  is the arithmetic 
mean. 

How Should We Average Scores? 

P n 
i = 1 ̧  i = 1 , b = 0 : 
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Meaningfulness Approach 

• While it is often reasonable to assume you know the scale 
type of the independent variables  a1, a2, an,  it is not so 
often reasonable to assume that you know the scale type of 
the dependent variable  u.  

•  However, it turns out that you can replace the assumption 
that the scale type of  u  is  xxxxxxx  by the assumption that 
a certain statement involving  u is meaningful. 

How Should We Average Scores? 
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Back to Earlier Example:  a1, a2, …, an  are independent 
ratio scales. Instead of assuming  u  is a ratio scale, assume 
that the statement 

F(a1,a2, …, an) = kF(b1, b2, …, bn) 

is meaningful for all a1, a2, …, an, b1, b2, …, bn and  k > 0.  
Then we get the same results as before: 

Theorem (Roberts and Rosenbaum 1986):  Under these 
hypotheses and continuity of F,  

If in addition  F  satisfies reflexivity and symmetry, then  F  
is the geometric mean. 

How Should We Average Scores? 

F ( a 1 ; a 2 ; : : : ; a n ) = ¸ a c 1 
1 a c 2 

2 : : : a c n 
n : 
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• Averaging of measurements or judgments or estimates is 
commonly carried out in a variety of applied areas.  
• It is certainly relevant not only to air, water, and noise 
pollution, but to decision making about other kinds of 
pollution, such as visual pollution, thermal pollution, land 
pollution, radioactive pollution, etc. 
• Thus is it important in many applications to know what 
averaging procedures lead to meaningful conclusions. 

How Should We Average Scores? 
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There is much more analysis of a similar nature that 
can be done with the principles of measurement 
theory. There are important challenges for researchers. 


