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What we want to introduce

Constraint Programming
Using ECLiPSe Language
With Saros Eclipse IDE
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Constraint Programming (CP)

Solve hard combinatorial problems
With minimal programming effort
Exploit strategies and heuristics
Understand and control problem solving
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ECLiPSe Language

Open source constraint programming language
Flexible toolkit to develop/use constraints
Contains different constraint solvers
Here: Use of finite domains/(mixed) integer programming

Helmut Simonis Introduction 6



Constraint Programming
Chapter Overview

Chapter Details

Aims and Outcomes

Understand what constraint programming is
How constraint programs can be applied to a problem
Which application problems are good candidates for CP
How to write/run/analyze simple ECLiPSe programs
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You should already know about...

No hard requirements
Basic understanding of programming assumed
Useful to have some background in one of:

Network Management
Integer Programming
Combinatorial Optimization
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Choices of materials

Slides PDF files for computer viewing
Contains animations of visualization
Large file sizes

Handout PDF files for printing
2 slides per page
Does not contain all animations

Transcript Text of presentation as articles
Video Video presentation with audio (640x480 pixels)

iPhone Video presentation tuned for iPhone display
(480x320 pixels)
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Chapters

Introduction (You are here) Video iPhone Slides Handout

First Steps - Hello World Video iPhone Slides Handout

Application Overview Video iPhone Slides Handout

Basic Constraint Reasoning Video iPhone Slides Handout

Global Constraints Video iPhone Slides Handout

Search Strategies Video iPhone Slides Handout

Optimization Video iPhone Slides Handout

Symmetry Breaking Video iPhone Slides Handout

Choosing the Model Video iPhone Slides Handout

Customizing Search Video iPhone Slides Handout

Limits of Propagation Video iPhone Slides Handout

Systematic Development Video iPhone Slides Handout

Visualization Techniques Video iPhone Slides Handout

Finite Set and Continuous Variables Video iPhone Slides Handout

Network Applications Video iPhone Slides Handout

More Global Constraints Video iPhone Slides Handout

Adding Material Video iPhone Slides Handout
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Applications

Application Overview Video iPhone Slides Handout

SEND+MORE=MONEY Video iPhone Slides Handout

Sudoku Video iPhone Slides Handout

N-Queens Video iPhone Slides Handout

Routing and Wavelenght Assignment Video iPhone Slides Handout

Balanced Incomplete Block Designs Video iPhone Slides Handout

Sports Scheduling Video iPhone Slides Handout

Progressive Party Video iPhone Slides Handout

Costas Array Video iPhone Slides Handout

SONET/SDH Ring Design Video iPhone Slides Handout

Network Applications Video iPhone Slides Handout

Car Sequencing Video iPhone Slides Handout
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Introduction

Aims and Outcomes
Overview of chapters
Hyperlinks to all materials

Video iPhone Slides Handout
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First Steps - Hello World

How to install ECLiPSe and Saros
Writing a first program
Running the program
Where to find information

Video iPhone Slides Handout
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Application Overview

Why constraint programming is interesting
Solving industrial problems with CP
Main application areas

Assignment
Scheduling
Network problems
Transportation
Personnel Assignment

Video iPhone Slides Handout

Helmut Simonis Introduction 14

file:../first/VIDEO/web/web.html
file:../first/VIDEO/iphone/iphone.m4v
file:../applications/VIDEO/web/web.html
file:../applications/VIDEO/iphone/iphone.m4v


Constraint Programming
Chapter Overview

Chapter Details

Basic Constraint Reasoning - SEND+MORE =
MONEY

Finite Domain variables
CP: Variables + Constraints + Search
Bounds reasoning on arithmetic constraints
Simple visualizers

Video iPhone Slides Handout
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Global Constraints - Sudoku

Modellimg the Sudoku puzzle
One model, different behaviours
Global constraint: alldifferent
Bounds and domain consistency
A domain consistent alldifferent

Video iPhone Slides Handout
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Search Strategies - N Queens

How to search for a solution
Variable and value choice
How to avoid deep backtracking
Partial search strategies

Video iPhone Slides Handout
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Optimization - Routing and Wavelength Assignment

Optimization
Graph algorithms library
Integer Programming with eplex

Problem decomposition
Routing and Wavelength Assignment in Optical Networks

Video iPhone Slides Handout
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Symmetry Breaking - Balanced Incomplete Block
Designs

Balanced Incomplete Block Designs
Planning Experiments and Testing Features
Problems with highly symmetrical structure
Symmetry Breaking with lex constraints

Video iPhone Slides Handout
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Choosing the Model - Sports Scheduling

Complex sports scheduling problem
How to decide which model to use
Improving reasoning by channeling

Video iPhone Slides Handout
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Customizing Search - Progressive Party

Scheduling Meetings between Teams
Teams only meet once
Capacity Limits
Build customized search routines tailored to problem
Problem decomposition: decide which problem to solve

Video iPhone Slides Handout
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Limits of Propagation - Costas Array

Antenna/Sonar Design
Hard Benchmark Problem
Naive Enumeration works best
When clever reasoning doesn’t pay off
Cautionary Tale

Video iPhone Slides Handout
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Systematic Development

Developing Programs
Testing
Profiling
Documentation

Video iPhone Slides Handout
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Visualization Techniques

How to visualize constraint programs
Variable Visualizers
Understanding Search Trees
Constraint Visualizers
Complex Visualizations

Video iPhone Slides Handout
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Finite Set and Continuous Variables - SONET Design
Problem

Finite set variables
Continuous domains
Optimization from below
Advanced symmetry breaking
SONET design problem without inter-ring traffic

Video iPhone Slides Handout
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Network Applications

Overview of Network Applications
Traffic Placement
Capacity Management
Network Design
Using Advanced Techniques

Video iPhone Slides Handout
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More Global Constraints - Car Sequencing

New global constraints: gcc and sequence

Choosing a better search strategy

Video iPhone Slides Handout
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Adding Material

How to add new chapters
Copying template files
Configuring templates
Adding frames to body
Integrating with other chapters

Video iPhone Slides Handout
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Branch from here to all materials
Choose presentation form which suits you
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What we want to introduce

How to install ECLiPSe
Installing Saros
Writing a first program
Running the program
Where to find information
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What is the common element amongst

The production of Mirage 2000 fighter aircraft
The personnel planning for the guards in all French jails
The production of Belgian chocolates
The selection of the music programme of a pop music
radio station
The design of advanced signal processing chips
The print engine controller in Xerox copiers

They all use constraint programming!
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Constraint Programming - in a nutshell

Declarative description of problems with
Variables which range over (finite) sets of values
Constraints over subsets of variables which restrict possible
value combinations
A solution is a value assignment which satisfies all
constraints

Constraint propagation/reasoning
Removing inconsistent values for variables
Detect failure if constraint can not be satisfied
Interaction of constraints via shared variables
Incomplete

Search
User controlled assignment of values to variables
Each step triggers constraint propagation

Different domains require/allow different methods
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Constraint Satisfaction Problems (CSP)

Different problems with common aspects
Planning
Scheduling
Resource allocation
Assignment
Placement
Logistics
Financial decision making
VLSI design
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Characteristics of these problems

There are no general methods or algorithms
NP-completeness
Different strategies and heuristics have to be tested.

Requirements are quickly changing:
Programs should be flexible enough to adapt to these
changes rapidly.

Decision support required
Co-operate with user
Friendly interfaces
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Benefits of CLP approach

Short development time
Fast prototyping
Refining of modelling
Same tool used for prototyping/production

Compact code size
Ease of understanding
Maintenance

Simple modification
Changing requirements
No need to understand all aspects of problem

Good performance
Fast answer
Good results
Optimal solutions rarely required
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Assignment
Network Management
Scheduling
Transport
Personnel Planning

Overview

Production
sequencing
Production
scheduling
Satellite tasking
Maintenance
planning
Product blending
Time tabling
Crew rotation
Aircraft rotation

Transport
Personnel
assignment
Personnel
requirement
planning
Hardware design
Compilation
Financial problems
Placement
Cutting problems

Stand allocation
Air traffic control
Frequency
allocation
Network
configuration
Product design
Production step
planning
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Assignment
Network Management
Scheduling
Transport
Personnel Planning

Tools Used (Prolog Based Constraint Languages)

CHIP
1986-1990 ECRC, Munich, Germany
1990-today COSYTEC, Orsay, France

ECLiPSe
1984-1996 ECRC
1996-2004 IC-Parc, PTL, London
2004-today Cisco Systems
a.k.a. Sepia (ECRC)
a.k.a. DecisionPower (ICL)
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Assignment
Network Management
Scheduling
Transport
Personnel Planning

Five central topics

Assignment
Parking assignment
Platform allocation

Network Configuration
Scheduling

Production scheduling
Project planning

Transport
Lorry, train, airlines

Personnel assignment
Timetabling, Rostering
Train, airlines
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Assignment
Network Management
Scheduling
Transport
Personnel Planning

Stand allocation

HIT (ICL)
Assign ships to berths in container harbor
Developed with ECRC’s version of CHIP

Then using DecisionPower (ICL)
Early version of ECLiPSe

First operational constraint application (1989-90)
APACHE (COSYTEC)

Stand allocation for airport
Refinery berth allocation (ISAB/COSYTEC)

Where to load/unload ships in refinery
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Assignment
Network Management
Scheduling
Transport
Personnel Planning

APACHE - AIR FRANCE (COSYTEC)

Stand allocation system
For Air Inter/Air France
Roissy, CDG2
Packaged for large airports

Complex constraint problem
Technical constraints
Operational constraints
Incremental re-scheduler

Cost model
Max. nb passengers in contact
Min. towing, bus usage

Benefits and status
Quasi real-time re-scheduling
KAL, Turkish Airlines
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Assignment
Network Management
Scheduling
Transport
Personnel Planning

Network configuration

BoD (PTL)
Locarim (France Telecom, COSYTEC)

Cabling of building
Planets (UCB, Enher)

Electrical power network reconfiguration
Load Balancing in Banking networks (ICON)

Distributed applications
Control network traffic

Water Networks (UCB, ClocWise)
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Assignment
Network Management
Scheduling
Transport
Personnel Planning

BoD - Schlumberger (IC-Parc/PTL)

Bandwidth on Demand
Provide guaranteed QoS
For temporary connections
Video conferences
Oil well logging

World-wide, sparse network
Bandwidth limited
Do not affect existing traffic
Uses route generator module for MPLS-TE

Model extended with temporal component

First version delivered February, 2003
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Assignment
Network Management
Scheduling
Transport
Personnel Planning

ISC-TEM - Cisco Systems

Traffic Engineering in MPLS
Find routes for demands satisfying bandwidth limits
Path placement algorithm developed for Cisco by PTL and
IC-Parc (2002-2004)
Internal, competitive selection of approaches
Strong emphasis on stability
Written in ECLiPSe
PTL bought by Cisco in 2004
Part of team moved to Boston
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Assignment
Network Management
Scheduling
Transport
Personnel Planning

LOCARIM - France Telecom

Intelligent cabling system
For large buildings
Developed by

COSYTEC
Telesystemes

Application
Input scanned drawing
Specify requirements

Optimization
Minimize cabling, drilling
Reduce switches
Shortest path

Status
Operational in 5 Telecom sites
Generates quotations
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Assignment
Network Management
Scheduling
Transport
Personnel Planning

Production Scheduling

Amylum (OM Partners)
Glucose production

Cerestar (OM Partners)
Glucose production

Saveplan (Sligos)
Production scheduling

Trefi Metaux (Sligos)
Heavy industry production scheduling

Michelin
Rubber blending, rework optimization
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Assignment
Network Management
Scheduling
Transport
Personnel Planning

PLANE - Dassault Aviation

Assembly line scheduling
Mirage 2000 Fighter
Falcon business jet

Two user system
Production planning 3-5 years
Commercial what-if sales aid

Optimisation
Balanced schedule
Minimise changes in production rate
Minimise storage costs

Benefits and status
Replaces 2 week manual planning
Operational since Apr 94
Used in US for business jets
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Assignment
Network Management
Scheduling
Transport
Personnel Planning

FORWARD - Fina

Oil refinery scheduling
Developed by

TECHNIP
COSYTEC

Uses simulation tool
Forward by Elf

Schedules daily production
Crude arrival→
Processing→ Delivery
Design, optimize and simulate

Product Blending
Explanation facilities
Handling of over-constrained problems

Status
Operational since June 94
Operational at FINA, ISAB, BP
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Assignment
Network Management
Scheduling
Transport
Personnel Planning

MOSES - Dalgety

Animal feed production
Feed in different sizes/
For different species
Human health risk

Contamination
BSE

Strict regulations
Constraints

Avoid contamination risks
Machine setup times
Machine choice (quality/speed)
Limited storage of finished products
Very short lead times (8-48 hours)
Factory structure given as data

Status
Operational since Nov 96
Installed in 5 millsHelmut Simonis Application Overview 21
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Assignment
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Transport

By Air
AirPlanner (PT)
Daysy (Lufthansa)
Pilot (SAS)

By Road
Wincanton (IC-Parc)
TACT (SunValley)
EVA (EDF)

By Rail
CREW (Servair)
COBRA (NWT)
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Transport
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AirPlanner (IC-Parc)

Based on the Retimer project for BA
Consider fleet of aircraft
Shifting some flights by small amount may allow better use
of fleet
Many constraints of different types limit the changes that
are possible
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Assignment
Network Management
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Transport
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Wincanton (IC-Parc)

Large scale distribution problem
Deliver fresh products to supermarkets
Direct deliveries/warehousing
Combining deliveries
Capacity constraints
Tour planning
Workforce constraints
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Assignment
Network Management
Scheduling
Transport
Personnel Planning

CREW - Servair

Crew rostering system
Assign service staff to TGV
Bar/Restaurant service
Joint design COSYTEC/GSI

Problem solver
Generates tours/cycles
Assigns skilled personnel

Constraints
Union, physical, calendar

Status
Operational since Mar 1995
Cost reduction by 5%
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Assignment
Network Management
Scheduling
Transport
Personnel Planning

Personnel Planning

RAC (IC-Parc)
OPTISERVICE (RFO)
Shifter (ERG Petroli)
Gymnaste (UCF)
MOSAR (Ministère de la JUSTICE)

Helmut Simonis Application Overview 26



Introduction
Success Stories for Constraint Programming

Conclusions

Assignment
Network Management
Scheduling
Transport
Personnel Planning

RAC

Personnel dispatching
On-line problem

Change plan as new requests are phoned in
Typical constraints for workforce

Duty time
Rest periods
Max driving time
Response time

Operational/Strategic use
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Assignment
Network Management
Scheduling
Transport
Personnel Planning

OPTI SERVICE - RFO

Assignment of technical staff
Overseas radio/TV network
Radio France Outre-mer
Joint development:

GIST and COSYTEC
250 journalists and technicans

Features
Schedule manually,
Check, Run automatic
Rule builder to specify cost formulas
Minimize overtime, temporary staff
Compute cost of schedule

Status
Operational since 1997
Installed worldwide in 8 sites
Developed into generic tool
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Assignment
Network Management
Scheduling
Transport
Personnel Planning

Nurse Scheduling

GYMNASTE
Time tabling
Personnel assignment
Provisional and reactive planning (1-6 weeks)
Developed by COSYTEC with partners

PRAXIM/Université Joseph Fourier de Grenoble

Pilot site Grenoble
Also used at hôpital de BLIGNY (Paris)
Advantages :

Plan generation in 5 minutes
User/personnel preferences
Decrease in days lost
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Conclusions

Constraint Programming useful for many domains
Large scale industrial use in

Assignment
Network Management
Production Scheduling
Transport
Personnel Planning
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Good approach for specialized, complex problems

3D camera control in movie animation
Finding instable control states for robots
Optimized register allocation in gcc
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Key advantages

Easy to prototype/develop
Using modelling to understand problem
Expressive power
Add/remove constraints as problem evolves
Customized search exploiting structure and knowledge
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1 Problem

2 Program

3 Constraint Setup

4 Search

5 Lessons Learned
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Problem
Program
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Search

Lessons Learned

What we want to introduce

Finite Domain Solver in ECLiPSe
Models and Programs
Constraint Propagation and Search
Basic constraints: linear arithmetic, alldifferent, disequality
Built-in search: Labeling
Visualizers for variables, constraints and search
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Problem Definition

A Crypt-Arithmetic Puzzle
We begin with the definition of the SEND+MORE=MONEY
puzzle. It is often shown in the form of a hand-written addition:

S E N D
+ M O R E
M O N E Y

Helmut Simonis Basic Constraint Reasoning 5
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Rules

S E N D
+ M O R E
M O N E Y

Each character stands for a digit from 0 to 9.
Numbers are built from digits in the usual, positional
notation.
Repeated occurrence of the same character denote the
same digit.
Different characters denote different digits.
Numbers do not start with a zero.
The equation must hold.
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Model

Each character is a variable, which ranges over the values
0 to 9.
An alldifferent constraint between all variables, which
states that two different variables must have different
values. This is a very common constraint, which we will
encounter in many other problems later on.
Two disequality constraints (variable X must be different
from value V ) stating that the variables at the beginning of
a number can not take the value 0.
An arithmetic equality constraint linking all variables with
the proper coefficients and stating that the equation must
hold.
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Problem
Program

Constraint Setup
Search

Lessons Learned

General Program Structure

:- module(sendmory).
:- export(sendmory/1).
:- lib(ic).
sendmory(L):-

L = [S,E,N,D,M,O,R,Y],é Variables
L :: 0..9,
alldifferent(L),é Constraints
S #\= 0, M #\= 0,
1000*S + 100*E + 10*N + D +
1000*M + 100*O + 10*R + E #=
10000*M + 1000*O + 100*N + 10*E + Y,
labeling(L).é Search
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Lessons Learned

Choice of Model

This is one model, not the model of the problem
Many possible alternatives
Choice often depends on your constraint system

Constraints available
Reasoning attached to constraints

Not always clear which is the best model
Often: Not clear what is the problem

Alternative 1 Alternative 2

Helmut Simonis Basic Constraint Reasoning 9

Problem
Program

Constraint Setup
Search

Lessons Learned

Running the program

To run the program, we have to enter the query
sendmory:sendmory(L).

Result
L = [9, 5, 6, 7, 1, 0, 8, 2]
yes (0.00s cpu, solution 1, maybe more)
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Lessons Learned

Question

But how did the program come up with this solution?
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Problem
Program

Constraint Setup
Search

Lessons Learned

Domain Definition
Alldifferent Constraint
Disequality Constraints
Equality Constraint

Domain Definition

L = [S,E,N,D,M,O,R,Y],
L :: 0..9,

[S, E , N, D, M, O, R, Y ] ∈ {0..9}
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Domain Definition
Alldifferent Constraint
Disequality Constraints
Equality Constraint

Domain Visualization

Rows =
Variables

Columns = Values

Cells= State

0 1 2 3 4 5 6 7 8 9
S
E
N
D
M
O
R
Y
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Search

Lessons Learned

Domain Definition
Alldifferent Constraint
Disequality Constraints
Equality Constraint

Alldifferent Constraint

alldifferent(L),

Built-in of ic library
No initial propagation possible
Suspends, waits until variables are changed
When variable is fixed, remove value from domain of other
variables
Forward checking
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Lessons Learned

Domain Definition
Alldifferent Constraint
Disequality Constraints
Equality Constraint

Alldifferent Visualization

Uses the same representation as the domain visualizer

0 1 2 3 4 5 6 7 8 9
S
E
N
D
M
O
R
Y
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Problem
Program
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Search

Lessons Learned

Domain Definition
Alldifferent Constraint
Disequality Constraints
Equality Constraint

Disequality Constraints

S #\= 0, M#\= 0,

Remove value from domain

S ∈ {1..9}, M ∈ {1..9}

Constraints solved, can be removed
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Domain Definition
Alldifferent Constraint
Disequality Constraints
Equality Constraint

Domains after Disequality

0 1 2 3 4 5 6 7 8 9
S
E
N
D
M
O
R
Y
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Problem
Program

Constraint Setup
Search

Lessons Learned

Domain Definition
Alldifferent Constraint
Disequality Constraints
Equality Constraint

Equality Constraint

Normalization of linear terms
Single occurence of variable
Positive coefficients

Propagation
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Lessons Learned

Domain Definition
Alldifferent Constraint
Disequality Constraints
Equality Constraint

Normalization

1000*S+ 100*E+ 10*N+ D
+1000*M+ 100*O+ 10*R+ E

10000*M+ 1000*O+ 100*N+ 10*E+ Y
is transformed into

1000*S+ 91*E+ D
+ 10*R

9000*M+ 900*O+ 90*N+ Y
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Problem
Program

Constraint Setup
Search

Lessons Learned

Domain Definition
Alldifferent Constraint
Disequality Constraints
Equality Constraint

Simplified Equation

1000∗S +91∗E +10∗R +D = 9000∗M +900∗O +90∗N +Y

Helmut Simonis Basic Constraint Reasoning 20



Problem
Program

Constraint Setup
Search

Lessons Learned

Domain Definition
Alldifferent Constraint
Disequality Constraints
Equality Constraint

Propagation

1000 ∗ S1..9 + 91 ∗ E0..9 + 10 ∗ R0..9 + D0..9︸ ︷︷ ︸
1000..9918

=

9000 ∗M1..9 + 900 ∗O0..9 + 90 ∗ N0..9 + Y 0..9︸ ︷︷ ︸
9000..89919

Deduction:
M = 1, S = 9, O ∈ {0..1}

Why? Skip
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Search

Lessons Learned

Domain Definition
Alldifferent Constraint
Disequality Constraints
Equality Constraint

Consider lower bound for S

1000 ∗ S1..9 + 91 ∗ E0..9 + 10 ∗ R0..9 + D0..9︸ ︷︷ ︸
9000..9918

= 9000 ∗M1..9 + 900 ∗O0..9 + 90 ∗ N0..9 + Y 0..9︸ ︷︷ ︸
9000..9918

Lower bound of equation is 9000
Rest of lhs (left hand side) (91 ∗E0..9 + 10 ∗R0..9 + D0..9) is
atmost 918
S must be greater or equal to 9000−918

1000 = 8.082
otherwise lower bound of equation not reached by lhs

S is integer, therefore S ≥ d9000−918
1000 e = 9

S has upper bound of 9, so S = 9
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Domain Definition
Alldifferent Constraint
Disequality Constraints
Equality Constraint

Consider upper bound of M

1000 ∗ S1..9 + 91 ∗ E0..9 + 10 ∗ R0..9 + D0..9︸ ︷︷ ︸
9000..9918

= 9000 ∗M1..9 + 900 ∗O0..9 + 90 ∗ N0..9 + Y 0..9︸ ︷︷ ︸
9000..9918

Upper bound of equation is 9918
Rest of rhs (right hand side) 900 ∗O0..9 + 90 ∗ N0..9 + Y 0..9

is at least 0
M must be smaller or equal to 9918−0

9000 = 1.102

M must be integer, therefore M ≤ b9918−0
9000 c = 1

M has lower bound of 1, so M = 1
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Lessons Learned

Domain Definition
Alldifferent Constraint
Disequality Constraints
Equality Constraint

Consider upper bound of O

1000 ∗ S1..9 + 91 ∗ E0..9 + 10 ∗ R0..9 + D0..9︸ ︷︷ ︸
9000..9918

= 9000 ∗M1..9 + 900 ∗O0..9 + 90 ∗ N0..9 + Y 0..9︸ ︷︷ ︸
9000..9918

Upper bound of equation is 9918
Rest of rhs (right hand side) 9000 ∗ 1 + 90 ∗ N0..9 + Y 0..9 is
at least 9000
O must be smaller or equal to 9918−9000

900 = 1.02

O must be integer, therefore O ≤ b9918−9000
900 c = 1

O has lower bound of 0, so O ∈ {0..1}

Helmut Simonis Basic Constraint Reasoning 24



Problem
Program

Constraint Setup
Search

Lessons Learned

Domain Definition
Alldifferent Constraint
Disequality Constraints
Equality Constraint

Propagation of equality: Result

0 1 2 3 4 5 6 7 8 9
S - - - - - - - - Y

E
N
D
M Y - - - - - - - -
O 6 6 6 6 6 6 6 6

R
Y
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Domain Definition
Alldifferent Constraint
Disequality Constraints
Equality Constraint

Propagation of alldifferent

0 1 2 3 4 5 6 7 8 9
S
E
N
D
M
O
R
Y

O = 0, [E , R, D, N, Y ] ∈ {2..8}
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Domain Definition
Alldifferent Constraint
Disequality Constraints
Equality Constraint

Waking the equality constraint

Triggered by assignment of variables
or update of lower or upper bound
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Lessons Learned

Domain Definition
Alldifferent Constraint
Disequality Constraints
Equality Constraint

Removal of constants

1000 ∗ 9 + 91 ∗ E2..8 + 10 ∗ R2..8 + D2..8 =

9000 ∗ 1 + 900 ∗ 0 + 90 ∗ N2..8 + Y 2..8

1000 ∗ 9 + 91 ∗ E2..8 + 10 ∗ R2..8 + D2..8 =

9000 ∗ 1 + 900 ∗ 0 + 90 ∗ N2..8 + Y 2..8

91 ∗ E2..8 + 10 ∗ R2..8 + D2..8 = 90 ∗ N2..8 + Y 2..8
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Domain Definition
Alldifferent Constraint
Disequality Constraints
Equality Constraint

Propagation of equality (Iteration 1)

91 ∗ E2..8 + 10 ∗ R2..8 + D2..8︸ ︷︷ ︸
204..816

= 90 ∗ N2..8 + Y 2..8︸ ︷︷ ︸
182..728

91 ∗ E2..8 + 10 ∗ R2..8 + D2..8 = 90 ∗ N2..8 + Y 2..8︸ ︷︷ ︸
204..728

N ≥ 3 = d204− 8
90

e, E ≤ 7 = b728− 22
91

c
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Domain Definition
Alldifferent Constraint
Disequality Constraints
Equality Constraint

Propagation of equality (Iteration 2)

91 ∗ E2..7 + 10 ∗ R2..8 + D2..8 = 90 ∗ N3..8 + Y 2..8

91 ∗ E2..7 + 10 ∗ R2..8 + D2..8︸ ︷︷ ︸
204..725

= 90 ∗ N3..8 + Y 2..8︸ ︷︷ ︸
272..728

91 ∗ E2..7 + 10 ∗ R2..8 + D2..8 = 90 ∗ N3..8 + Y 2..8︸ ︷︷ ︸
272..725

E ≥ 3 = d272− 88
91

e
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Domain Definition
Alldifferent Constraint
Disequality Constraints
Equality Constraint

Propagation of equality (Iteration 3)

91 ∗ E3..7 + 10 ∗ R2..8 + D2..8 = 90 ∗ N3..8 + Y 2..8

91 ∗ E3..7 + 10 ∗ R2..8 + D2..8︸ ︷︷ ︸
295..725

= 90 ∗ N3..8 + Y 2..8︸ ︷︷ ︸
272..728

91 ∗ E3..7 + 10 ∗ R2..8 + D2..8 = 90 ∗ N3..8 + Y 2..8︸ ︷︷ ︸
295..725

N ≥ 4 = d295− 8
90

e
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Domain Definition
Alldifferent Constraint
Disequality Constraints
Equality Constraint

Propagation of equality (Iteration 4)

91 ∗ E3..7 + 10 ∗ R2..8 + D2..8 = 90 ∗ N4..8 + Y 2..8

91 ∗ E3..7 + 10 ∗ R2..8 + D2..8︸ ︷︷ ︸
295..725

= 90 ∗ N4..8 + Y 2..8︸ ︷︷ ︸
362..728

91 ∗ E3..7 + 10 ∗ R2..8 + D2..8 = 90 ∗ N4..8 + Y 2..8︸ ︷︷ ︸
362..725

E ≥ 4 = d362− 88
91

e
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Domain Definition
Alldifferent Constraint
Disequality Constraints
Equality Constraint

Propagation of equality (Iteration 5)

91 ∗ E4..7 + 10 ∗ R2..8 + D2..8 = 90 ∗ N4..8 + Y 2..8

91 ∗ E4..7 + 10 ∗ R2..8 + D2..8︸ ︷︷ ︸
386..725

= 90 ∗ N4..8 + Y 2..8︸ ︷︷ ︸
362..728

91 ∗ E4..7 + 10 ∗ R2..8 + D2..8 = 90 ∗ N4..8 + Y 2..8︸ ︷︷ ︸
386..725

N ≥ 5 = d386− 8
90

e
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Domain Definition
Alldifferent Constraint
Disequality Constraints
Equality Constraint

Propagation of equality (Iteration 6)

91 ∗ E4..7 + 10 ∗ R2..8 + D2..8 = 90 ∗ N5..8 + Y 2..8

91 ∗ E4..7 + 10 ∗ R2..8 + D2..8︸ ︷︷ ︸
386..725

= 90 ∗ N5..8 + Y 2..8︸ ︷︷ ︸
452..728

91 ∗ E4..7 + 10 ∗ R2..8 + D2..8 = 90 ∗ N5..8 + Y 2..8︸ ︷︷ ︸
452..725

N ≥ 5 = d452− 8
90

e, E ≥ 4 = d452− 88
91

e

No further propagation at this point
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Domain Definition
Alldifferent Constraint
Disequality Constraints
Equality Constraint

Domains after setup

0 1 2 3 4 5 6 7 8 9
S
E
N
D
M
O
R
Y
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Constraint Setup
Search

Lessons Learned

Step 1
Step 2
Further Steps
Solution

labeling built-in

labeling([S,E,N,D,M,O,R,Y])

Try variable is order given
Try values starting from smallest value in domain
When failing, backtrack to last open choice
Chronological Backtracking
Depth First search
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Lessons Learned

Step 1
Step 2
Further Steps
Solution

Search Tree Step 1

Variable S already fixed

1

2
1
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Problem
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Search

Lessons Learned

Step 1
Step 2
Further Steps
Solution

Step 2, Alternative E = 4

Variable E ∈ {4..7}, first value tested is 4

1

2
1

2
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Step 1
Step 2
Further Steps
Solution

Assignment E = 4

0 1 2 3 4 5 6 7 8 9
S
E Y - - -
N
D
M
O
R
Y
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Step 1
Step 2
Further Steps
Solution

Propagation of E = 4, equality constraint

91 ∗ 4 + 10 ∗ R2..8 + D2..8 = 90 ∗ N5..8 + Y 2..8

91 ∗ 4 + 10 ∗ R2..8 + D2..8︸ ︷︷ ︸
386..452

= 90 ∗ N5..8 + Y 2..8︸ ︷︷ ︸
452..728

91 ∗ 4 + 10 ∗ R2..8 + D2..8 = 90 ∗ N5..8 + Y 2..8︸ ︷︷ ︸
452

N = 5, Y = 2, R = 8, D = 8
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Step 1
Step 2
Further Steps
Solution

Result of equality propagation

0 1 2 3 4 5 6 7 8 9
S
E
N Y - - -
D - - - - - - Y

M
O
R - - - - - - Y

Y Y - - - - - -
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Step 1
Step 2
Further Steps
Solution

Propagation of alldifferent

0 1 2 3 4 5 6 7 8 9
S |
E |
N Y - - |
D - - - - - - Y

M |
O |
R - - - - - - Y

Y Y - - - - - |

Alldifferent fails!
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Step 1
Step 2
Further Steps
Solution

Step 2, Alternative E = 5

Return to last open choice, E , and test next value

1

2
1

3
2

3
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Step 1
Step 2
Further Steps
Solution

Assignment E = 5

0 1 2 3 4 5 6 7 8 9
S
E - Y - -
N
D
M
O
R
Y
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Step 1
Step 2
Further Steps
Solution

Propagation of alldifferent

0 1 2 3 4 5 6 7 8 9
S
E
N
D
M
O
R
Y

N 6= 5, N ≥ 6
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Step 1
Step 2
Further Steps
Solution

Propagation of equality

91 ∗ 5 + 10 ∗ R2..8 + D2..8 = 90 ∗ N6..8 + Y 2..8

91 ∗ 5 + 10 ∗ R2..8 + D2..8︸ ︷︷ ︸
477..543

= 90 ∗ N6..8 + Y 2..8︸ ︷︷ ︸
542..728

91 ∗ 5 + 10 ∗ R2..8 + D2..8 = 90 ∗ N6..8 + Y 2..8︸ ︷︷ ︸
542..543

N = 6, Y ∈ {2, 3}, R = 8, D ∈ {7..8}
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Step 1
Step 2
Further Steps
Solution

Result of equality propagation

0 1 2 3 4 5 6 7 8 9
S
E
N Y - -
D 6 6 6 6

M
O
R - - - - - Y

Y 6 6 6 6
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Step 1
Step 2
Further Steps
Solution

Propagation of alldifferent

0 1 2 3 4 5 6 7 8 9
S
E
N
D
M
O
R
Y

D = 7
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Step 1
Step 2
Further Steps
Solution

Propagation of equality

91 ∗ 5 + 10 ∗ 8 + 7 = 90 ∗ 6 + Y 2..3

91 ∗ 5 + 10 ∗ 8 + 7︸ ︷︷ ︸
542

= 90 ∗ 6 + Y 2..3︸ ︷︷ ︸
542..543

91 ∗ 5 + 10 ∗ 8 + 7 = 90 ∗ 6 + Y 2..3︸ ︷︷ ︸
542

Y = 2
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Step 1
Step 2
Further Steps
Solution

Last propagation step

0 1 2 3 4 5 6 7 8 9
S
E
N
D
M
O
R
Y Y -
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Step 1
Step 2
Further Steps
Solution

Complete Search Tree

1

2
1

3

4

5

6

7

8
2

3

4

5

6

7

8 7 6

9
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Step 1
Step 2
Further Steps
Solution

Solution

9 5 6 7
+ 1 0 8 5
1 0 6 5 2
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Topics introduced

Finite Domain Solver in ECLiPSe, ic library
Models and Programs
Constraint Propagation and Search
Basic constraints: linear arithmetic, alldifferent,
disequality
Built-in search: labeling
Visualizers for variables, constraints and search
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Lessons Learned

Constraint models are expressed by variables and
constraints.
Problems can have many different models, which can
behave quite differently. Choosing the best model is an art.
Constraints can take many different forms.
Propagation deals with the interaction of variables and
constraints.
It removes some values that are inconsistent with a
constraint from the domain of a variable.
Constraints only communicate via shared variables.
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Lessons Learned

Propagation usually is not sufficient, search may be
required to find a solution.
Propagation is data driven, and can be quite complex even
for small examples.
The default search uses chronological depth-first
backtracking, systematically exploring the complete search
space.
The search choices and propagation are interleaved, after
every choice some more propagation may further reduce
the problem.
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Alternative Models
Exercises

Model without Disequality
Multiple Equations

Alternative 1

Do we need the constraint “Numbers do not begin with a
zero”?
This is not given explicitely in the problem statement
Remove disequality constraints from program
Previous solution is still a solution
Does it change propagation?
Does it have more solutions?
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Model without Disequality
Multiple Equations

Program without Disequality

Listing 1: Alternative 1
:−module ( a l t e r n a t i v e 1 ) .
:−expor t ( sendmory / 1 ) .
:− l i b ( i c ) .

sendmory ( L):−
L = [S,E,N,D,M,O,R,Y ] ,
L : : 0 . . 9 ,
a l l d i f f e r e n t ( L ) ,
1000*S + 100*E + 10*N + D +
1000*M + 100*O + 10*R + E #=
10000*M + 1000*O + 100*N + 10*E + Y,
l a b e l i n g ( L ) .
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Model without Disequality
Multiple Equations

After Setup without Disequality

0 1 2 3 4 5 6 7 8 9
S
E
N
D
M
O
R
Y
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Alternative Models
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Model without Disequality
Multiple Equations

Setup Comparison

original alternative 1
0 1 2 3 4 5 6 7 8 9

S
E
N
D
M
O
R
Y

0 1 2 3 4 5 6 7 8 9
S
E
N
D
M
O
R
Y
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Model without Disequality
Multiple Equations

Search Tree: Many Solutions
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Alternative Models
Exercises

Model without Disequality
Multiple Equations

Note:

Not just a different model, solving a different problem!
Often we can choose which problem we want to solve

Which constraints to include
What to ignore

In this case not acceptable

Choice of Model

Helmut Simonis Basic Constraint Reasoning 61

Alternative Models
Exercises

Model without Disequality
Multiple Equations

Alternative 2

S E N D
+ M O R E

+C5 C4 C3 C2
M O N E Y

Large equality difficult to understand by humans
Replace with multiple, simpler equations
Linked by carry variables (0/1)
Should produce same solutions
Does it give same propagation?
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Alternative Models
Exercises

Model without Disequality
Multiple Equations

Carry Variables with Multiple Equations

S E N D
+ M O R E

+C5 C4 C3 C2
M O N E Y

:-module(alternative2),export(sendmory/1),lib(ic).
sendmory(L):-é same as before

L=[S,E,N,D,M,O,R,Y],L :: 0..9,
[C2,C3,C4,C5] :: 0..1, é new
alldifferent(L),
S #\= 0,M #\= 0,
M #= C5,
S+M+C4 #= 10*C5+O,
E+O+C3 #= 10*C4+N,
N+R+C2 #= 10*C3+E,
D+E #= 10*C2+Y,
labeling(L).
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Alternative Models
Exercises

Model without Disequality
Multiple Equations

With Carry Variables: After Setup

0 1 2 3 4 5 6 7 8 9
S
E
N
D
M
O
R
Y
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Alternative Models
Exercises

Model without Disequality
Multiple Equations

Setup Comparison

original alternative2
0 1 2 3 4 5 6 7 8 9

S
E
N
D
M
O
R
Y

0 1 2 3 4 5 6 7 8 9
S
E
N
D
M
O
R
Y
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Alternative Models
Exercises

Model without Disequality
Multiple Equations

Search Tree: First Solution

1

2
1 2 3

3

4

5

6

7

8
1

4

5

6

7

8

9
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Alternative Models
Exercises

Model without Disequality
Multiple Equations

Comparison

Single Equation Multiple Equations

1

2
1

3

4

5

6

7

8
2

3

4

5

6

7

8 7 6

9

1

2
1 2 3

3

4

5

6

7

8
1

4

5

6

7

8

9 8 7 4




Helmut Simonis Basic Constraint Reasoning 67

Alternative Models
Exercises

Model without Disequality
Multiple Equations

Observations

This is solving the original problem
Search tree slightly bigger
Caused here by missing interaction of equations
And repeated variables
But: Introducing auxiliary variables not always bad!

Choice of Model
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Alternative Models
Exercises

Exercises

1 Does the reasoning for the equality constraints that we
have presented remove all inconsistent values? Consider
the constraint Y=2*X.

2 Why is it important to remove multiple occurences of the
same variable from an equality constraint? Give an
example!

3 Solve the puzzle DONALD+GERALD=ROBERT. What is
the state of the variables before the search, after the initial
constraint propagation?

4 Solve the puzzle Y*WORRY = DOOOOD. What is
different?

5 (extra credit) How would you design a program that finds
new crypt-arithmetic puzzles? What makes a good puzzle?
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Search
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Chapter 5: Global Constraints(Sudoku)

Helmut Simonis

Cork Constraint Computation Centre
Computer Science Department

University College Cork
Ireland

ECLiPSe ELearning Overview

Helmut Simonis Global Constraints

Problem
Program

Initial Propagation (Forward Checking)
Improved Reasoning

Search
Lessons Learned

Outline

1 Problem

2 Program

3 Initial Propagation (Forward Checking)

4 Improved Reasoning

5 Search

6 Lessons Learned
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Improved Reasoning

Search
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What we want to introduce

Global Constraints
Powerful modelling abstractions
Non-trivial propagation

Consistency Levels
Tradeoff between speed and propagation
Characterisation of reasoning power

Example: Alldifferent
3 variants shown

Helmut Simonis Global Constraints

Problem
Program

Initial Propagation (Forward Checking)
Improved Reasoning

Search
Lessons Learned

Methodology

Evaluation on Sudoku puzzle
Comparing

Initial setup
Search
Performance

Explaining reasoning inside constraint
Link to general classification of global constraints
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Search
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Problem Definition

Sudoku
Fill in numbers from 1 to 9 so that each row, column and block
contain each number exactly once

1
1 2 3
4 5 6
7 8 9 2

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 3 4

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 2

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 5 6

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 7

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 2 6 8

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 2

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 5 4 7

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

6 4
1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 8

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 3 1

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 7

1 2 3
4 5 6
7 8 9 1

1 2 3 4 5 6 7 8 9
6 4 9 7 8 2 1 5 3
8 5 7 1 3 9 4 6 2
7 1 5 6 9 3 2 4 8
4 9 2 8 1 7 6 3 5
3 6 8 5 2 4 9 1 7
2 8 1 9 4 5 3 7 6
5 3 6 2 7 1 8 9 4
9 7 4 3 6 8 5 2 1

Helmut Simonis Global Constraints

Problem
Program

Initial Propagation (Forward Checking)
Improved Reasoning

Search
Lessons Learned

Model

A variable for each cell, ranging from 1 to 9
A 9x9 matrix of variables describing the problem
Preassigned integers for the given hints
alldifferent constraints for each row, column and 3x3 block
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Search
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Reminder: alldifferent

Argument: list of variables
Meaning: variables are pairwise different
Reasoning: Forward Checking (FC)

When variable is assigned to value, remove the value from
all other variables
If a variable has only one possible value, then it is assigned
If a variable has no possible values, then the constraint fails
Constraint is checked whenever one of its variables is
assigned
Equivalent to decomposition into binary disequality
constraints

Helmut Simonis Global Constraints

Problem
Program

Initial Propagation (Forward Checking)
Improved Reasoning

Search
Lessons Learned

Declarations

:-module(sudoku).
:-export(top/0).
:-lib(ic).

top:-
problem(Matrix),
model(Matrix),
writeln(Matrix).
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Improved Reasoning

Search
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Data

problem([]([](4, _, 8, _, _, _, _, _, _),
[](_, _, _, 1, 7, _, _, _, _),
[](_, _, _, _, 8, _, _, 3, 2),
[](_, _, 6, _, _, 8, 2, 5, _),
[](_, 9, _, _, _, _, _, 8, _),
[](_, 3, 7, 6, _, _, 9, _, _),
[](2, 7, _, _, 5, _, _, _, _),
[](_, _, _, _, 1, 4, _, _, _),
[](_, _, _, _, _, _, 6, _, 4))).

Helmut Simonis Global Constraints

Problem
Program

Initial Propagation (Forward Checking)
Improved Reasoning

Search
Lessons Learned

Main Program

model(Matrix):-
Matrix[1..9,1..9] :: 1..9,
(for(I,1,9),
param(Matrix) do

alldifferent(Matrix[I,1..9]),
alldifferent(Matrix[1..9,I])

),
(multifor([I,J],[1,1],[7,7],[3,3]),
param(Matrix) do

alldifferent(flatten(Matrix[I..I+2,J..J+2]))
),
flatten_array(Matrix,List),
labeling(List).
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Domain Visualizer

1
1 2 3
4 5 6
7 8 9 2

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 3 4

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 2

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 5 6

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 7

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 2 6 8

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 2

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 5 4 7

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

6 4
1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 8

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 3 1

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 7

1 2 3
4 5 6
7 8 9 1

Problem shown as matrix
Each cell corresponds to a variable
Instantiated: Shows integer value (large)
Uninstantiated: Shows values in domain
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Search
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Constraint Visualizer

1
1 2
3 4 2

2 5
3
6

2 5
4
6

2 5
3 4
6

1
3

7

1
4

7 6

1
3 4

7 6
5
4
6

2
3 4

5
3
6 3 4

2 5
3 4
6
8 3
9

8 4
6

3 4
9 6

4
7 6

1
3 4

1
3
6
8 3

6 2 3 4
6

1
8 3
7 5 6

3 1 7
5

7 6

5

6 2 6 8
5

7 6

8 9 6
5

8
7

5
8

1 5

7

1 5
8
7 2

1 5
4

7

2 5 4 7 6 8 9 1 3
6 4

1 5
8

6

5
8
9 6 8

1 5
4
6

1 5
8
9

1
8 4

6

1 5
4

9 6
5
4

7 6

2
3 4
9

5
3
6

2 5
3

7 9 6 3 1
5

3
7 9

2
4

7 6

5
3 4

7 9 6
5

7 6

1 2
3
9

1 5
3
6

2 5
3

7 9 6

2 5

6

1 2 5
3

7 6 7
1 2

7 6 1

Problem shown as matrix
Currently active constraint highlighted
Values removed at this step shown in blue
Values assigned at this step shown in red
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Initial State (Forward Checking)

1
1 2 3
4 5 6
7 8 9 2

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 3 4

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 2

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 5 6

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 7

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 2 6 8

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 2

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 5 4 7

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

6 4
1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 8

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 3 1

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 7

1 2 3
4 5 6
7 8 9 1
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Propagation Steps (Forward Checking)

1
1 2
3 4 2

2 5
3
6

2 5
4
6

2 5
3 4
6

1
3

7

1
4

7 6

1
3 4

7 6
5
4
6

2
3 4

5
3
6 3 4

2 5
3 4
6
8 3
9

8 4
6

3 4
9 6

4
7 6

1
3 4

1
3
6
8 3

6 2 3 4
6

1
8 3
7 5 6

3 1 7
5

7 6

5

6 2 6 8
5

7 6

8 9 6
5

8
7

5
8 4

1 5
4

7

1 5
8
7 2

1 5
4

7

2 5 4 7
2

8
1 2
3 9

1 2
8

1
3

6 4
1 5
8

6

5
8
9 6 8

1 5
4
6

1 5
8
9

1
8 4

6

1 5
4

9 6
5
4

7 6

2
3 4
9

5
3
6

2 5
3

7 9 6 3 1
5

3
7 9

2
4

7 6

5
3 4

7 9 6
5

7 6

1 2
3
9

1 5
3
6

2 5
3

7 9 6

2 5

6

1 2 5
3

7 6 7
1 2

7 6 1
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After Setup (Forward Checking)

1
1 2
3 4 2

2 5
3
6

5
4
6

2 5
4
6

1
3

7

1
4

7 6
3 4

7 6
5
4
6

2
3 4

5
3
6 3 4

2 5
4
6
8 3
9

4
6

3 4
9 6

4
7 6

1
3 4

1
3
6
8 3

6 2 4
6

1
8 3
7 5 6

3 1 7
5

7 6

5

6 2 6 8
5

7

8 9 6
5

8
7

5
8

1 5

7

5

7 2
5
4

7

2 5 4 7 6 8 9 1 3
6 4

1 5
8

6

5

9 6 8
5
4
6

1 5

9

1

6

5

9 6
5
4
6

3 4
9

5
3
6

2 5

7 9 6 3 1
5

3
7 9

2

7 6

5
3

7 9 6
5

6

1
3
9

1 5
3
6

2 5

7 9 6

5

6

2 5

7 6 7
1 2

7 6 1
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Bounds Consistency
Domain Consistency
Comparison

Can we do better?

The alldifferent constraint is missing propagation
How can we do more propagation?
Do we know when we derive all possible information from
the constraint?

Constraints only interact by changing domains of variables
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Bounds Consistency
Domain Consistency
Comparison

A Simpler Example

:-lib(ic).

top:-
X :: 1..2,
Y :: 1..2,
Z :: 1..3,
alldifferent([X,Y,Z]),
writeln([X,Y,Z]).

Helmut Simonis Global Constraints

Problem
Program

Initial Propagation (Forward Checking)
Improved Reasoning

Search
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Bounds Consistency
Domain Consistency
Comparison

Using Forward Checking

No variable is assigned
No reduction of domains
But, values 1 and 2 can be removed from Z
This means that Z is assigned to 3
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Bounds Consistency
Domain Consistency
Comparison

Visualization of alldifferent as Graph

X

Y

Z

1

2

3
Show problem as graph with two types of nodes

Variables on the left
Values on the right

If value is in domain of variable, show link between them
This is called a bipartite graph
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Search
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Bounds Consistency
Domain Consistency
Comparison

A Simpler Example

Value Graph for

X :: 1..2,

Y :: 1..2,

Z :: 1..3

X

Y

Z

1

2

3
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Bounds Consistency
Domain Consistency
Comparison

A Simpler Example

Check interval [1,2]X

Y

Z

1

2

3
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Bounds Consistency
Domain Consistency
Comparison

A Simpler Example

Find variables completely
contained in interval
There are two: X and Y
This uses up the capacity of the
interval

X

Y

Z

1

2

3
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Bounds Consistency
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A Simpler Example

No other variable can use that
interval

X

Y

Z

1

2

3
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Bounds Consistency
Domain Consistency
Comparison

A Simpler Example

Only one value left in domain of Z,
this can be assigned

X

Y

Z

1

2

3
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Idea (Hall Intervals)

Take each interval of possible values, say size N
Find all K variables whose domain is completely contained
in interval
If K > N then the constraint is infeasible
If K = N then no other variable can use that interval
Remove values from such variables if their bounds change
If K < N do nothing
Re-check whenever domain bounds change

Helmut Simonis Global Constraints
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Bounds Consistency
Domain Consistency
Comparison

Implementation

Problem: Too many intervals (O(n2)) to consider
Solution:

Check only those intervals which update bounds
Enumerate intervals incrementally
Starting from lowest(highest) value
Using sorted list of variables

Complexity: O(n log(n)) in standard implementations
Important: Only looks at min/max bounds of variables
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Bounds Consistency

Definition
A constraint achieves bounds consistency, if for the lower and
upper bound of every variable, it is possible to find values for all
other variables between their lower and upper bounds which
satisfy the constraint.
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Bounds Consistency
Domain Consistency
Comparison

Can we do better?

Bounds consistency only considers min/max bounds
Ignores “holes” in domain
Sometimes we can improve propagation looking at those
holes
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Another Simple Example

:-lib(ic).

top:-
X :: [1,3],
Y :: [1,3],
Z :: 1..3,
alldifferent([X,Y,Z]),
writeln([X,Y,Z]).
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Another Simple Example

Value Graph for

X :: [1,3],

Y :: [1,3],

Z :: 1..3

X

Y

Z

1

2

3
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Another Simple Example

Check interval [1,2]
No domain of a variable
completely contained in interval
No propagation

X

Y

Z

1

2

3
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Another Simple Example

Check interval [2,3]
No domain of a variable
completely contained in interval
No propagation

X

Y

Z

1

2

3
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Another Simple Example

But, more propagation is possible,
there are only two solutions

X

Y

Z

1

2

3

Helmut Simonis Global Constraints

Problem
Program

Initial Propagation (Forward Checking)
Improved Reasoning

Search
Lessons Learned

Bounds Consistency
Domain Consistency
Comparison

Another Simple Example

Solution 1: assignment in blueX

Y

Z

1

2

3
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Another Simple Example

Solution 2: assignment in greenX

Y

Z

1

2

3
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Another Simple Example

Solution 1 Solution 2 Combined
X

Y

Z

1

2

3

X

Y

Z

1

2

3

X

Y

Z

1

2

3

Combining solutions shows that Z=1 and
Z=3 are not possible. Can we deduce this
without enumerating solutions?
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Solutions and maximal matchings

A Matching is subset of edges which do not coincide in any
node
No matching can have more edges than number of
variables
Every solution corresponds to a maximal matching and
vice versa
If a link does not belong to some maximal matching, then it
can be removed
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Implementation

Possible to compute all links which belong to some
matching

Without enumerating all of them!

Enough to compute one maximal matching
Requires algorithm for strongly connected components
Extra work required if more values than variables
All links (values in domains) which are not supported can
be removed
Complexity: O(n1.5d)

Helmut Simonis Global Constraints



Problem
Program

Initial Propagation (Forward Checking)
Improved Reasoning

Search
Lessons Learned

Bounds Consistency
Domain Consistency
Comparison

Domain Consistency

Definition
A constraint achieves domain consistency, if for every variable
and for every value in its domain, it is possible to find values in
the domains of all other variables which satisfy the constraint.

Also called generalized arc consistency (GAC)
or hyper arc consistency
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Can we still do better?

NO! This extracts all information from this one constraint
We could perhaps improve speed, but not propagation
But possible to use different model
Or model interaction of multiple constraints
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Should all constraints achieve domain consistency?

Domain consistency is usually more expensive than
bounds consistency

Overkill for simple problems
Nice to have choices

For some constraints achieving domain consistency is
NP-hard

We have to live with more restricted propagation
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Improved Propagation in ECLiPSe

ic_global library bounds consistent version
ic_global_gac library domain consistent version
Choose which version to use by using module annotation
Choice can be passed as parameter
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Declarations

:-module(sudoku).
:-export(top/0).
:-lib(ic).
:-lib(ic_global).
:-lib(ic_global_gac).

top:-
problem(Matrix),
model(ic_global,Matrix),
writeln(Matrix).
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Main Program

model(Method,Matrix):-
Matrix[1..9,1..9] :: 1..9,
(for(I,1,9),
param(Method,Matrix) do

Method:alldifferent(Matrix[I,1..9]),
Method:alldifferent(Matrix[1..9,I])

),
(multifor([I,J],[1,1],[7,7],[3,3]),
param(Method,Matrix) do

Method:alldifferent(flatten(Matrix[I..I+2,
J..J+2]))

),
flatten_array(Matrix,List),labeling(List).
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Initial State (Bounds Consistency)

1
1 2 3
4 5 6
7 8 9 2

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 3 4

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 2

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 5 6

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 7

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 2 6 8

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 2

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 5 4 7

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

6 4
1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 8

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 3 1

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 7

1 2 3
4 5 6
7 8 9 1
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Propagation Steps (Bounds Consistency)

1
1 2
3 4 2 3 4

2 5
3 4
6

1
3

7

1
4

7 6

1
3 4

7 6
5
4
6

2
3 4

5
3
6 5 6

2 5
3 4
6
8 3
9

8 4
6

3 4
9 6

6 4
1
3
6 1 2 7

1
8 3 8 9

5 1 4
5

7 6

5

6 2 9 3
5

7 6

3 7 9
5

8
7

5
8 4 5

1 5
8
7 2 4

2 8 6 4 9 3 7 1 5
9 6 1

5
8
9 6 3 4

1 5
8
9

1
8 4

6

1 5
4

9 6

4
2
3 4
9

5
3
6

2 5
3

7 9 6 5 1
5

3
7 9

2
4

7 6

5
3 4

7 9 6
5

6

1 2
3
9

1 5
3
6

2 5
3

7 9 6

2 5

6 6 4
1 2

7 6 1
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After Setup (Bounds Consistency)

1
1 2

2 3 4
2 3 1

4

1

4 5 4 5
3

5

2
6

3

5 5 6
2 3

7 6
8

9
5

6
8 5

6 4
1
6 1 2 7

1
6 8 9

5 1 4
3

4 5

3

5 2 9 3
3

4

3 7 9
3

4

3
7 5

3

4 2 4
2 8 6 4 9 3 7 1 5
9 6 1

3

8 5 3 4
1 3

8

1

5

3

8 5

4 6
8

3

5

2 3

8 5 5 1
3

6
4 8

2

4 5

3
6

4 8 5
3

5

1
6
8

1
6

2

8

3

5 6 4
1 2

1
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Initial State (Domain Consistency)

1
1 2 3
4 5 6
7 8 9 2

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 3 4

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 2

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 5 6

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 7

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 2 6 8

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 2

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 5 4 7

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

6 4
1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 8

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 3 1

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9 7

1 2 3
4 5 6
7 8 9 1
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Propagation Steps (Domain Consistency)

1 2 3 4 5 6 7
1

2
3 4

1
5 2

3 4
6
2
4 4

6
5
4 7 8 2 1 5 3

8 5 7 1 3 9 4 6 2
7 1 5

6

3 4

6

4 3 2 4
6

3 4

4 9 2
6

3 1 7
1 6
7
3 3 5

3 6 8 5 2 4 9 1 7
2 8 1

6

8 4 4 5 3 7
1 6

2
8 4

5 3
6

5
4 2 7 1

6
5

3 8

9
2

3 4 4
6

4 7 4 3
9 6

4 8 5 2 1
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After Setup (Domain Consistency)

1 2 3 4 5 6 7 1 2 1 2
3

2 4
3

2 7 8 2 1 5 3
8 5 7 1 3 9 4 6 2
7 1 5

3

1 2

3

2 3 2 4
3

1

4 9 2
3

1 1 7
3

1 3 5
3 6 8 5 2 4 9 1 7
2 8 1

3

2 4 5 3 7
3

2

5 3
3

2 2 7 1
3

1 1 2 4
3

2 7 4 3
3

2 8 5 2 1
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Comparison

Forward Checking Bounds Consistency Domain Consistency
1

1 2
3 4 2

2 5
3
6

5
4
6

2 5
4
6

1
3

7

1
4

7 6
3 4

7 6
5
4
6

2
3 4

5
3
6 3 4

2 5
4
6
8 3
9

4
6

3 4
9 6

4
7 6

1
3 4

1
3
6
8 3

6 2 4
6

1
8 3
7 5 6

3 1 7
5

7 6

5

6 2 6 8
5

7

8 9 6
5

8
7

5
8

1 5

7

5

7 2
5
4

7

2 5 4 7 6 8 9 1 3
6 4

1 5
8

6

5

9 6 8
5
4
6

1 5

9

1

6

5

9 6
5
4
6

3 4
9

5
3
6

2 5

7 9 6 3 1
5

3
7 9

2

7 6

5
3

7 9 6
5

6

1
3
9

1 5
3
6

2 5

7 9 6

5

6

2 5

7 6 7
1 2

7 6 1

1
1 2

2 3 4
2 3 1

4

1

4 5 4 5
3

5

2
6

3

5 5 6
2 3

7 6
8

9
5

6
8 5

6 4
1
6 1 2 7

1
6 8 9

5 1 4
3

4 5

3

5 2 9 3
3

4

3 7 9
3

4

3
7 5

3

4 2 4
2 8 6 4 9 3 7 1 5
9 6 1

3

8 5 3 4
1 3

8

1

5

3

8 5

4 6
8

3

5

2 3

8 5 5 1
3

6
4 8

2

4 5

3
6

4 8 5
3

5

1
6
8

1
6

2

8

3

5 6 4
1 2

1

1 2 3 4 5 6 7 1 2 1 2
3

2 4
3

2 7 8 2 1 5 3
8 5 7 1 3 9 4 6 2
7 1 5

3

1 2

3

2 3 2 4
3

1

4 9 2
3

1 1 7
3

1 3 5
3 6 8 5 2 4 9 1 7
2 8 1

3

2 4 5 3 7
3

2

5 3
3

2 2 7 1
3

1 1 2 4
3

2 7 4 3
3

2 8 5 2 1
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Typical?

This does not always happen
Sometimes, two methods produce same amount of
propagation
Possible to predict in certain special cases
In general, tradeoff between speed and propagation
Not always fastest to remove inconsistent values early
But often required to find a solution at all
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Solution

Simple search routine

Enumerate variables in given order
Try values starting from smallest one in domain
Complete, chronological backtracking
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Solution

Search Tree (Forward Checking)

1

2

3
1 2 3

4

3
2 3

1 5 3

6

2

3
2 3

1

3
1

4

5
7

6

2

5

4

Helmut Simonis Global Constraints



Problem
Program

Initial Propagation (Forward Checking)
Improved Reasoning

Search
Lessons Learned

Solution

Search Tree (Bounds Consistency)

1
1

2
2

3
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Solution

Search Tree (Domain Consistency)

1
1
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Solution

Observations

Search tree much smaller for bounds/domain consistency
Does not always happen like this
Smaller tree = Less execution time
Less reasoning = Less execution time
Problem: Finding best balance
For Sudoku: not good enough, should not require any
search!
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Solution

Solution

1 2 3 4 5 6 7 8 9
6 4 9 7 8 2 1 5 3
8 5 7 1 3 9 4 6 2
7 1 5 6 9 3 2 4 8
4 9 2 8 1 7 6 3 5
3 6 8 5 2 4 9 1 7
2 8 1 9 4 5 3 7 6
5 3 6 2 7 1 8 9 4
9 7 4 3 6 8 5 2 1
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Global Constraints

Powerful modelling abstractions
Efficient reasoning
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Consistency Levels

Defined levels of propagation
Tradeoff speed/reasoning
Characterisation of power of constraint
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Alldifferent Variants

Forward Checking
Only reacts when variables are assigned
Equivalent to decomposition into binary constraints

Bounds Consistency
Typical best compomise speed/reasoning
Works well if no holes in domain

Domain Consistency
Extracts all information from single constraint
Cost only justified for very hard problems
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End of Chapter 5

Thank you!
Some optional material follows

Helmut Simonis Global Constraints



Complete Example: Domain Consistent Alldifferent
Generic Model

Exercises

Bigger Example

:-lib(ic).
:-lib(ic_global_gac).

top:-
[X,Y] :: 1..2,
Z :: 2..5,
[T,U] :: 3..5,
V :: [2,4,6,7],
ic_global_gac:alldifferent([X,Y,Z,T,U,V]).
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Complete Example: Domain Consistent Alldifferent
Generic Model

Exercises

Making constraint domain consistent
Problem shown as bipartite graphX

Y

Z

T

U

V

1
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4
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Complete Example: Domain Consistent Alldifferent
Generic Model

Exercises

Making constraint domain consistent
Find maximal matching (in blue)X
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Complete Example: Domain Consistent Alldifferent
Generic Model

Exercises

Making constraint domain consistent
Orient graph (edges in matching from
variables to values, all others from
values to variables), mark edges in
matching

X

Y

Z

T

U

V

1

2

3

4

5

6

7
Helmut Simonis Global Constraints



Complete Example: Domain Consistent Alldifferent
Generic Model

Exercises

Making constraint domain consistent
Find strongly connected components
(green and brown), mark their edges

X

Y
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V
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2
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Complete Example: Domain Consistent Alldifferent
Generic Model

Exercises

Making constraint domain consistent
Find unmatched value nodes (here
node 7, magenta)

X

Y

Z

T

U

V

1

2

3

4

5

6

7
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Complete Example: Domain Consistent Alldifferent
Generic Model

Exercises

Making constraint domain consistent
Find alternating paths from such
nodes (in magenta), mark their edges

X
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1

2
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7
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Complete Example: Domain Consistent Alldifferent
Generic Model

Exercises

Making constraint domain consistent
All unmarked edges can be removedX

Y

Z

T

U

V

1

2

3

4

5

6

7
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Complete Example: Domain Consistent Alldifferent
Generic Model

Exercises

Making constraint domain consistent
Resulting graph, constraint is domain
consistent

X
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7
Helmut Simonis Global Constraints

Complete Example: Domain Consistent Alldifferent
Generic Model

Exercises

Extended Example

:-lib(ic).
:-lib(ic_global_gac).

top:-
X :: 1..2,
Y :: [1,2,7],
Z :: 2..5,
[T,U] :: 3..5,
V :: [2,4,6,7],
ic_global_gac:alldifferent([X,Y,Z,T,U,V]).
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Complete Example: Domain Consistent Alldifferent
Generic Model

Exercises

No propagation in expanded example
Problem shown as bipartite graphX
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Z

T

U

V

1
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Complete Example: Domain Consistent Alldifferent
Generic Model

Exercises

No propagation in expanded example
Find maximal matching (in blue)X

Y

Z

T

U

V

1

2

3

4

5

6

7
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Complete Example: Domain Consistent Alldifferent
Generic Model

Exercises

No propagation in expanded example
Orient graph (edges in matching from
variables to values, all others from
values to variables), mark edges in
matching

X
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Complete Example: Domain Consistent Alldifferent
Generic Model

Exercises

No propagation in expanded example
Find strongly connected components
(green and brown), mark their edges
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Complete Example: Domain Consistent Alldifferent
Generic Model

Exercises

No propagation in expanded example
Find unmatched value nodes (here
node 7, magenta)
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Complete Example: Domain Consistent Alldifferent
Generic Model

Exercises

No propagation in expanded example
Find alternating paths from such
nodes (in magenta), mark their edges
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Complete Example: Domain Consistent Alldifferent
Generic Model

Exercises

No propagation in expanded example
Continue with alternating pathsX

Y

Z
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Complete Example: Domain Consistent Alldifferent
Generic Model

Exercises

No propagation in expanded example
Continue with alternating paths, all
edges marked, no propagation,
constraint is domain consistent

X

Y

Z

T
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V
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2

3

4
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Complete Example: Domain Consistent Alldifferent
Generic Model

Exercises

Observation

A lot of effort for no propagation
Problem: Slows down search without any upside
Constraint is woken every time any domain is changed
How often does the constraint do actual pruning?
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Complete Example: Domain Consistent Alldifferent
Generic Model

Exercises

Generalize Program for different sizes

How to generalize program for different sizes
(4,9,16,25,36...)
Add parameter R (Order, number of blocks in a
row/column)
Size N is square of R
Remove explicit integer bounds by expressions
Useful to do this change as rewriting of working program
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Complete Example: Domain Consistent Alldifferent
Generic Model

Exercises

Main Program

model(R,M,Matrix):-
N is R*R,Matrix[1..N,1..N] :: 1..N,
(for(I,1,N),
param(N,M,Matrix) do

M:alldifferent(Matrix[I,1..N]),
M:alldifferent(Matrix[1..N,I])

),
(multifor([I,J],[1,1],[N-R+1,N-R+1],[R,R]),
param(R,M,Matrix) do

M:alldifferent(flatten(Matrix[I..I+R-1,
J..J+R-1]))

),
flatten_array(Matrix,List),labeling(List).
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Complete Example: Domain Consistent Alldifferent
Generic Model

Exercises

Exercises

1
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What we want to introduce

Importance of search strategy, constraints alone are not
enough
Dynamic variable ordering exploits information from
propagation
Variable and value choice
Hard to find strategy which works all the time
search builtin, flexible search abstraction
Different way of improving stability of search routine

Helmut Simonis Search Strategies 4



Problem
Program

Naive Search
Improvements

Example Problem

N-Queens puzzle
Rather weak constraint propagation
Many solutions, limited number of symmetries
Easy to scale problem size
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Problem Definition

8-Queens
Place 8 queens on an 8× 8 chessboard so that no queen
attacks another. A queen attacks all cells in horizontal, vertical
and diagonal direction. Generalizes to boards of size N × N.

Solution for board size 8× 8
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A Bit of History

This is a rather old puzzle
Dudeney (1917) cites Nauck (1850) as source
Certain solutions for all sizes can be constructed, this is
not a hard problem
Long history in AI and CP papers
Important: Haralick and Elliot (1980) describing the first-fail
principle

Helmut Simonis Search Strategies 7

Problem
Program

Naive Search
Improvements

Model
Program (Array version)
Program (List Version)

Basic Model

Cell based Model
A 0/1 variable for each cell to say if it is occupied or not
Constraints on rows, columns and diagonals to enforce
no-attack
N2 variables, 6N − 2 constraints

Column (Row) based Model
A 1..N variable for each column, stating position of queen in
the column
Based on observation that each column must contain
exactly one queen
N variables, N2/2 binary constraints
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Program (Array version)
Program (List Version)

Model

assign [X1, X2, ...XN ]

s.t.

∀1 ≤ i ≤ N : Xi ∈ 1..N
∀1 ≤ i < j ≤ N : Xi 6= Xj

∀1 ≤ i < j ≤ N : Xi 6= Xj + i − j
∀1 ≤ i < j ≤ N : Xi 6= Xj + j − i
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Model
Program (Array version)
Program (List Version)

Main Program (Array Version)

:-module(array).
:-export(top/0).
:-lib(ic).

top:-
nqueen(8,Array), writeln(Array).

nqueen(N,Array):-
dim(Array,[N]),
Array[1..N] :: 1..N,
alldifferent(Array[1..N]),
noattack(Array,N),
labeling(Array[1..N]).
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Generating binary constraints

noattack(Array,N):-
(for(I,1,N-1),
param(Array,N) do

(for(J,I+1,N),
param(Array,I) do

subscript(Array,[I],Xi),
subscript(Array,[J],Xj),
D is I-J,
Xi #\= Xj+D,
Xj #\= Xi+D

)
).
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Model
Program (Array version)
Program (List Version)

Main Program (List Version)

:-module(nqueen).
:-export(top/0).
:-lib(ic).

top:-
nqueen(8,L), writeln(L).

nqueen(N,L):-
length(L,N),
L :: 1..N,
alldifferent(L),
noattack(L),
labeling(L).
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Model
Program (Array version)
Program (List Version)

Generating binary constraints

noattack([]).
noattack([H|T]):-

noattack1(H,T,1),
noattack(T).

noattack1(_,[],_).
noattack1(X,[Y|R],N):-

X #\= Y+N,
Y #\= X+N,
N1 is N+1,
noattack1(X,R,N1).
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First Solution

1

2

3
1

4
2 3

4

4

5
5 3

2

6

4
2 4

3

7

3

4
1 6 3

2

4
7 3

4

4

5
4 3

7 1

6

4
7 1

3

5

3

4
4

5
7 4

3

2

4

5
5 4

2

6

4

5
5 6

2

5

6

7

8
5

2

6

7

4

3

1

8

Helmut Simonis Search Strategies 15

Problem
Program

Naive Search
Improvements

Observations

Even for small problem size, tree can become large
Not interested in all details
Ignore all automatically fixed variables
For more compact representation abstract failed sub-trees
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Compact Representation

Number inside triangle: Number of choices
Number under triangle: Number of failures1
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Exploring other board sizes

How stable is the model?
Try all sizes from 4 to 100
Timeout of 100 seconds
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Naive Stategy, Problem Sizes 4-100
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Observations

Time very reasonable up to size 20
Sizes 20-30 times very variable
Not just linked to problem size
No size greater than 30 solved within timeout
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Dynamic Variable Choice
Improved Heuristics
Making Search More Stable

Possible Improvements

Better constraint reasoning
Remodelling problem with 3 alldifferent constraints
Global reasoning as described before
Not explored here

Better control of search
Static vs. dynamic variable ordering
Better value choice
Not using complete depth-first chronological backtracking
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Static vs. Dynamic Variable Ordering

Heuristic Static Ordering
Sort variables before search based on heuristic
Most important decisions
Smallest initial domain

Dynamic variable ordering
Use information from constraint propagation
Different orders in different parts of search tree
Use all information available
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First Fail strategy

Dynamic variable ordering
At each step, select variable with smallest domain
Idea: If there is a solution, better chance of finding it
Idea: If there is no solution, smaller number of alternatives
Needs tie-breaking method
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Caveat

First fail in many constraint systems have slightly different
tie breakers
Hard to compare result across platforms
Best to compare search trees, i.e. variable choices in all
branches of tree
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Modification of Program

:-module(nqueen).
:-export(top/0).
:-lib(ic).

top:-
nqueen(8,L), writeln(L).

nqueen(N,L):-
length(L,N),
L :: 1..N,
alldifferent(L),
noattack(L),
search(L,0,first_fail,indomain,complete,[]).
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The search Predicate

Packaged search library in ic constraint solver
Provides many different alternative search methods
Just select a combination of keywords
Extensible by user
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search Parameters

search(L,0,first_fail,indomain,complete,[])

1 List of variables (or terms, covered later)
2 0 for list of variables
3 Variable choice, e.g. first_fail, input_order
4 Value choice, e.g. indomain
5 Tree search method, e.g. complete
6 Optional argument (or empty) list
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Variable Choice

Determines the order in which variables are assigned
input_order assign variables in static order given
first_fail select variable with smallest domain first
most_constrained like first_fail, tie break based on
number of constraints in which variable occurs
Others, including programmed selection
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Value Choice

Determines the order in which values are tested for
selected variables
indomain Start with smallest value, on backtracking try
next larger value
indomain_max Start with largest value
indomain_middle Start with value closest to middle of
domain
indomain_random Choose values in random order
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Comparison

Board size 16x16
Naive (Input Order) Strategy
First Fail variable selection
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Naive (Input Order) Strategy (Size 16)
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FirstFail Strategy (Size 16)
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Comparing Solutions

Naive First Fail

Solutions are different!
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FirstFail, Problem Sizes 4-100

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  10  20  30  40  50  60  70  80  90

T
im

e[
s]

Problem Size

"first_fail/all.txt"

Helmut Simonis Search Strategies 34



Problem
Program

Naive Search
Improvements

Dynamic Variable Choice
Improved Heuristics
Making Search More Stable

Observations

This is much better
But some sizes are much harder
Timeout for sizes 88, 91, 93, 97, 98, 99
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Can we do better?

Improved initial ordering
Queens on edges of board are easier to assign
Do hard assignment first, keep simple choices for later
Begin assignment in middle of board

Matching value choice
Values in the middle of board have higher impact
Assign these early at top of search tree
Use indomain_middle for this
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Modified Program

:-module(nqueen).
:-export(top/0).
:-lib(ic).
top:-

nqueen(16,L),writeln(L).

nqueen(N,L):-
length(L,N),
L :: 1..N,
alldifferent(L),
noattack(L),
reorder(L,R),

search(R,0,first_fail,indomain_middle,complete,[]).
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Reordering Variable List

reorder(L,L1):-
halve(L,L,[],Front,Tail),
combine(Front,Tail,L1).

halve([],Tail,Front,Front,Tail).
halve([_],Tail,Front,Front,Tail).
halve([_,_|R],[F|T],Front,Fend,Tail):-

halve(R,T,[F|Front],Fend,Tail).

combine(C,[],C):-!.
combine([],C,C).
combine([A|A1],[B|B1],[B,A|C1]):-

combine(A1,B1,C1).
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Start from Middle (Size 16)
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Comparing Solutions

Naive First Fail Middle

Again, solutions are different!
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Middle, Problem Sizes 4-100
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Observations

Not always better than first fail
For size 16, trees are similar size
Timeout only for size 94
But still, one strategy does not work for all problem sizes
There are ways to resolve this!
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Approach 1: Heuristic Portfolios

Try multiple strategies for the same problem
With multi-core CPUs, run them in parallel
Only one needs to be successful for each problem
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Approach 2: Restart with Randomization

Only spend limited number of backtracks for a search
attempt
When this limit is exceeded, restart at beginning
Requires randomization to explore new search branch
Randomize variable choice by random tie break
Randomize value choice by shuffling values
Needs strategy when to restart
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Approach 3: Partial Search

Abandon depth-first, chronological backtracking
Don’t get locked into a failed sub-tree
A wrong decision at a level is not detected, and we have to
explore the complete subtree below to undo that wrong
choice
Explore more of the search tree
Spend time in promising parts of tree
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Example: Credit Search

Explore top of tree completely, based on credit
Start with fixed amount of credit
Each node consumes one credit unit
Split remaining credit amongst children
When credit runs out, start bounded backtrack search
Each branch can use only K backtracks
If this limit is exceeded, jump to unexplored top of tree

Helmut Simonis Search Strategies 46



Problem
Program

Naive Search
Improvements

Dynamic Variable Choice
Improved Heuristics
Making Search More Stable

Credit based search

:-module(nqueen).
:-export(top/0).
:-lib(ic).
top:-

nqueen(8,L),writeln(L).

nqueen(N,L):-
length(L,N),
L :: 1..N,
alldifferent(L),
noattack(L),
reorder(L,R),
search(R,0,first_fail,indomain_middle, credit(N,5),[]).
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Credit, Problem Sizes 4-100
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Credit, Problem Sizes 4-200
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Conclusions

Choice of search can have huge impact on performance
Dynamic variable selection can lead to large reduction of
search space
search builtin provides useful abstraction of search
functionality
Depth-first chronologicial backtracking not always best
choice
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Outlook

Finite domain with good search reasonable for board sizes
up to 1000
Limitation is memory, not execution time
Memory requirement quadratic as domain changes must
be trailed
Better results possible for repair based methods
N-Queens not a hard problem, so general conclusions
hard to draw
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Exercises

1 Write a program for the 0/1 model of the puzzle as described above. Explain the
problem with introducing a dynamic variable ordering for this model.

2 It is possible to express the problem with only three alldifferent constraints.
Can you describe this model?

3 What is the impact of using a more powerful consistency method for the
alldifferent constraint in our model? How do the search trees differ to our
solution? Does it pay off in execution time?

4 Describe precisely what the reorder predicate does. You may find it helpful to
run the program with instantiated lists of varying length.

5 The credit search takes two parameters, the total amount of credit and the extra
number of backtracks allowed after the credit runs out. How does the program
behave if you change these parameters? Can you explain this behaviour?
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What We Want to Introduce

Optimization
Graph algorithm library
Problem decomposition
Routing and Wavelength Assignment in Optical Networks
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Problem 1: Find routing
Problem 2: Assign Wavelengths

Problem Definition

Routing and Wavelength Assignment

In an optical network, traffic demands between nodes are
assigned to a route through the network and a specific
wavelength. The route (called lightpath) must be a simple path
from source to destination. Demands which are routed over the
same link must be allocated to different wavelengths, but
wavelengths may be reused for demands which do not meet.
The objective is to find a combined routing and wavelength
assignment which minimizes the number of wavelengths used
for a given set of demands.
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Problem 1: Find routing
Problem 2: Assign Wavelengths

Example Network
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Problem 1: Find routing
Problem 2: Assign Wavelengths

Lightpath from A to C
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Search

Problem 1: Find routing
Problem 2: Assign Wavelengths

Conflict between demands A to C and F to J: Use
different frequencies
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Problem 1: Find routing
Problem 2: Assign Wavelengths

Conflict between demands A to C and F to J: Use
different paths

A

B

C

D

E

F G

H J
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Search

Problem 1: Find routing
Problem 2: Assign Wavelengths

Solution Approaches

Greedy heuristic
Optimization algorithm for complete problem
Decomposition into two problems

Find routing
Assign wavelengths
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Problem 1: Find routing
Problem 2: Assign Wavelengths

Finding Routing

Find routing which does not assign too many demands on
the same link
Lower bound for overall problem
Do not use arbitrarily complex paths
Start with shortest paths
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Problem 1: Find routing
Problem 2: Assign Wavelengths

Proposed Solution

For each demand, use a shortest path between source
and destination
Shortest path = smallest number of links used
Good for overall network utilisation
May create bottlenecks on some links
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Problem 1: Find routing
Problem 2: Assign Wavelengths

How to Find Shortest Paths

Well studied, well understood problem
Many different algorithms for particular cases

Positive/negative weight
Path between pair of nodes/between node and all other
nodes/between all nodes
One/all shortest paths or paths which are nearly shortest
paths

Don’t program this yourself!
Library in ECLiPSe: lib(graph_algorithms)
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Problem 1: Find routing
Problem 2: Assign Wavelengths

Library graph_algorithms

Provides different algorithms about graphs
Based on opaque Graph structure created from nodes and
edges
make_graph(NrNodes,Edges,Graph)

Edges are terms e(FromNode,ToNode,Weight)
Directed graphs as default, undirected graphs represented
by edges in both directions
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Problem 1: Find routing
Problem 2: Assign Wavelengths

Basic Shortest Path Method

single_pair_shortest_path(Network,-1,From,To,Result)

Find path from node From to node To in graph Network

Second argument describes weight function
-1: use number of hops

Result given length of path and edges as list
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Problem 1: Find routing
Problem 2: Assign Wavelengths

Problem 2: Assign Wavelength

Demands are routed on shortest paths
Demands routed over the same link must have different
frequencies
Minimize maximal number of frequencies used
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Problem 1: Find routing
Problem 2: Assign Wavelengths

Model

Domain variable for every demand
Initial domain large, e.g. number of demands
Disequality constraint between demands routed over same
link
Alternative: alldifferent constraints for all demands
over each link
Feasible solution: find assignment for variables
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Problem 1: Find routing
Problem 2: Assign Wavelengths

Optimization

We are not looking for only a feasible solution
We want to optimize objective
Minimize largest value used
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Problem 1: Find routing
Problem 2: Assign Wavelengths

Library branch_and_bound

bb_min(Goal,Cost,bb_options{})

Goal search goal
Like search/6 or labeling/1 call

Cost objective (domain variable)
bb_options optional parameters

timeout:Time timeout limit in seconds
from:LowerBound known lower bound
to:UpperBound known upper bound
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Problem 1: Find routing
Problem 2: Assign Wavelengths

Example

...
List :: 1..20,
...
ic:max(List,Max),
bb_min(labeling(List),Max,

bb_options{timeout:100,from:10}),
...
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Problem 1: Find routing
Problem 2: Assign Wavelengths

ic Constraint max(List,Var)

Var is the largest value occuring in List

Similar min(List,Var)
Do not confuse with max in core language
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Main Program

:-module(pure).
:-export(top/5).
:-lib(ic).
:-lib(ic_global).
:-lib(graph_algorithms).
:-lib(branch_and_bound).

top(Name,NrDemands,LowerBound,Assignment,Max):-
problem(Name,NrDemands,Network,Demands),
route(Network,Demands,Routes),
wave(NrDemands,Routes,

LowerBound,Assignment,Max).
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Routing

route(Network,Demands,Routes):-
(foreach(demand(I,From,To),Demands),
foreach(route(I,Path),Routes),
param(Network) do

single_pair_shortest_path(Network,-1,
From,To,
_-Path)

).
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Wavelength Assignment

wave(NrDemands,Routes,LowerBound,Var,Max):-
dim(Var,[NrDemands]),
Var[1..NrDemands] :: 1..NrDemands,
ic:max(Var,Max),
setup_alldifferent(Routes,Var,LowerBound),
bb_min(assign(Var),Max,

bb_options{from:LowerBound,
timeout:100}).
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Assignment Routine

assign(Var):-
search(Var,0,most_constrained,indomain,

complete,[]).
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Variable Selection Method most_constrained

Similar to first_fail

Select vairable with smallest domain first
For tie break, select variable in largest number of
constraints
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Creating alldifferent Constraints

setup_alldifferent(Routes,Var,LowerBound):-
(foreach(route(I,Path),Routes),
fromto([],A,A1,Pairs) do

(foreach(Edge,Path),
fromto(A,AA,[l(Edge,I)|AA],A1),
param(I) do

true
)

),
group(Pairs,1,Groups),
...
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Creating alldifferent Constraints (II)

...
(foreach(_-Group,Groups),
fromto(0,A,A1,LowerBound),
param(Var) do

length(Group,N),
A1 is eclipse_language:max(N,A),
(foreach(l(_,I),Group),
foreach(X,AlldifferentVars),
param(Var) do

subscript(Var,[I],X)
),
ic_global:alldifferent(AlldifferentVars)

).
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Generating Data

problem(Name,NrDemands,Network,Demands):-
network_topology(Name,NrNodes,Edges),
make_graph(NrNodes,Edges,Directed),
make_undirected_graph(Directed,Network),
(for(I,1,NrDemands),
fromto([],A,[demand(I,From,To)|A],Demands),
param(NrNodes) do

repeat,
From is 1+(random mod NrNodes),
To is 1+(random mod NrNodes),
From \= To,
!

).
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Example Network: MCI
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MCI Topology Data

network_topology(mci,19,
[e(1,2,1),e(1,5,1),e(1,6,1),e(2,3,1),
e(2,5,1),e(2,12,1),e(3,4,1),e(4,5,1),
e(4,8,1),e(4,10,1),e(5,6,1),e(6,11,1),
e(6,12,1),e(6,18,1),e(7,8,1),e(7,9,1),
e(8,10,1),e(8,11,1),e(8,12,1),e(9,10,1),
e(10,17,1),e(10,19,1),e(11,12,1),e(12,13,1),
e(12,18,1),e(13,14,1),e(14,18,1),e(15,18,1),
e(16,17,1),e(16,18,1),e(17,18,1),e(17,19,1)]).
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Searchtree
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Initial State
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Update Cost

Helmut Simonis Optimization 34



Problem
Program

Search

First Solution
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Continue Search
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Optimal Solution
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Observations

Optimal solution found with minimal backtracking
Reaching lower bound avoids enumeration proof of
optimality
Not guaranteed to be optimal for original problem
Given decomposition destroys flexibility in finding solution
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Further Experiments

Vary number of demands to be handled
Make 100 runs with randomized demands
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Multiple Runs (100 experiments)

Network Nr Demands Avg LB Avg Sol Σ Sol Avg Gap
mci 20 3.71 3.71 0.711 0.00
mci 40 5.85 5.85 0.931 0.00
mci 60 7.69 7.69 1.324 0.00
mci 80 9.48 9.48 1.353 0.00
mci 100 11.34 11.34 1.687 0.00
mci 120 12.89 12.89 1.928 0.00
mci 140 14.59 14.59 2.298 0.00
mci 160 16.28 16.28 2.421 0.00
mci 180 17.89 17.89 2.656 0.00
mci 200 19.52 19.52 2.456 0.00
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Conclusions

These are not hard problem instances
In general, graph coloring can be much more difficult
Fast, simple solution to RWA problem
Quality gap to be determined
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Chapter 8: Symmetry Breaking (Balanced
Incomplete Block Designs)
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Outline

1 Problem

2 Program

3 Symmetry Breaking
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What we want to introduce

BIBD - Balanced Incomplete Block Designs
Using lex constraints to remove symmetries
Finding all solutions to a problem
Using timeout to limit search
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Problem Definition

BIBD (Balanced Incomplete Block Design)

A BIBD is defined as an arrangement of v distinct objects into b
blocks such that each block contains exactly k distinct objects,
each object occurs in exactly r different blocks, and every two
distinct objects occur together in exactly λ blocks. A BIBD is
therefore specified by its parameters (v, b, r, k, λ).

Helmut Simonis Symmetry Breaking 5
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Motivation: Test Planning

Consider a new release of some software with v new features.
You want to regression test the software against combinations
of the new features. Testing each subset of features is too
expensive, so you want to run b tests, each using k features.
Each feature should be used r times in the tests. Each pair of
features should be tested together exactly λ times. How do you
arrange the tests?
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Model

Another way of defining a BIBD is in terms of its incidence
matrix, which is a binary matrix with v rows, b columns, r ones
per row, k ones per column, and scalar product λ between any
pair of distinct rows.

A (6,10,5,3,2) BIBD

Helmut Simonis Symmetry Breaking 7
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Model

A binary v × b matrix. Entry Vij states if item i is in block j .
Sum constraints over rows, each sum equal r
Sum constraints over columns, each sum equal k
Scalar product between any pair of rows, the product value
is λ.
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Top Level Program

:-module(bibd).
:-export(top/0).
:-lib(ic).
:-lib(ic_global).

top:-
bibd(6,10,5,3,2,Matrix),writeln(Matrix).

bibd(V,B,R,K,L,Matrix):-
model(V,B,R,K,L,Matrix),é Set up model
extract_array(row,Matrix,List),é Get list
search(L,0,input_order,indomain,

complete,[]).é Search
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Constraint Model

model(V,B,R,K,L,Matrix,Method):-
dim(Matrix,[V,B]),é Define Binary Matrix
Matrix[1..V,1..B] :: 0..1,
(for(I,1,V), param(Matrix,B,R) do

sumlist(Matrix[I,1..B],R)
),é Row Sum = R
(for(J,1,B), param(Matrix,V,K) do

sumlist(Matrix[1..V,J],K)
),é Column Sum = K
(for(I,1,V-1), param(Matrix,V,B,L) do

(for(I1,I+1,V), param(Matrix,I,B,L) do
scalar_product(Matrix[I,1..B],

Matrix[I1,1..B],L)
)

).é Scalar product between all rows
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scalar_product

scalar_product(XVector,YVector,V):-
collection_to_list(XVector,XList),
collection_to_list(YVector,YList),é Get lists
(foreach(X,XList),é Iterate over lists
foreach(Y,YList),é ...in parallel
fromto(0,A,A1,Term) do é Build term

A1 = A+X*Yé Construct term
),
eval(Term) #= V.é State Constraint
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Search Routine

Static variable order
First fail does not work for binary variables
Enumerate variables by row
Use utility predicate extract_array/3

Assign with indomain, try value 0, then value 1
Use simple search call
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Basic Model - First Solution
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Finding all solutions - Hack!

:-module(bibd).
:-export(top/0).
:-lib(ic).
:-lib(ic_global).

top:-
bibd(6,10,5,3,2,Matrix),writeln(Matrix),
fail.é Force Backtracking

bibd(V,B,R,K,L,Matrix):-
model(V,B,R,K,L,Matrix),
extract_array(row,Matrix,List),
search(L,0,input_order,indomain,

complete,[]).
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Finding all solutions - Proper

:-module(bibd).
:-export(top/0).
:-lib(ic).
:-lib(ic_global).

top:-
findall(Matrix,bibd(6,10,5,3,2,Matrix),Sols),
writeln(Sols).

bibd(V,B,R,K,L,Matrix):-
model(V,B,R,K,L,Matrix),
extract_array(row,Matrix,List),
search(L,0,input_order,indomain,

complete,[]).
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findall predicate

findall(Template,Goal,Collection)

Finds all solutions to Goal and collects them into a list
Collection

Template is used to extract arguments from Goal to
store as solution
Backtracks through all choices in Goal

Solutions are returned in order in which they are found
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Problem

Program now only stops when it has found all solutions
This takes too long!
How can we limit the amount of time to wait?
Use of the timeout library
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Finding all solutions - Proper

:-module(bibd).
:-export(top/0).
:-lib(ic).
:-lib(ic_global).
:-lib(timeout).é Load library

top:-
findall(Matrix,timeout(bibd(6,10,5,3,2,Matrix),

10,é seconds
fail),Sols),

writeln(Sols).
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timeout library

timeout(Goal,Limit,TimeoutGoal)

Runs Goal for Limit seconds
If Limit is reached, Goal is stopped and TimeoutGoal
is run instead
If Limit is not reached, it has no impact
Must load :-lib(timeout).
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Search Tree 200 Nodes

1

2

3

4

5

11

12

13

12

13

0

14

8

9

0

15

5

6

0

16

17

18

21

22

12

13

0

23

24

6

7

0

25

5

6

0

26

32

33
0

34

35
0

36
0

37

43

44
0

49
0 1

1

0

44

49
0 1

0 1

1

0

43

44
0

49
0 1

1

0

44

49
0 1

0 1

1

1

1

1

0

36
0

37

43

45
0

49
0 1

1

0

45

49
0 1

0 1

1

0

43

45
0

49
0 1

1

0

45

49
0 1

0 1

1

1

1

1

1

0

33

34

35
0

36
0

39

42

44
0

47
0 1

1

0

44

47
0 1

0 1

1

0

42

44
0

47
0

1

0

1

1

1

0

0

1

0

1

1

0

1

0

0

0

0

1

1

1

0

0

0

0

0

0

0

Helmut Simonis Symmetry Breaking 20



Problem
Program

Symmetry Breaking

Observation

Surprise! There are many solutions
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Search Tree 300 Nodes
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Problem
Program

Symmetry Breaking

Problem

There are too many solutions to collect in a reasonable
time
Most of these solutions are very similar
If you take one solution and

exchange two rows
and/or exchange two columns

... you have another solution
Can we avoid exploring them all?

Helmut Simonis Symmetry Breaking 27
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Program

Symmetry Breaking
Experiment with alternative value order

Symmetry Breaking Techniques

Remove all symmetries
Reduce the search tree as much as possible
May be hard to describe all symmetries
May be expensive to remove symmetric parts of tree

Remove some symmetries
Search is not reduced as much
May be easier to find some symmetries to remove
Cost can be low
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Symmetry Breaking
Experiment with alternative value order

Symmetry Breaking Techniques

Symmetry removal by forcing partial, initial assignment
Easy to understand
Rather weak, does not affect search

Symmetry removal by stating constraints
Removing all symmetries may require exponential number
of constraints
Can conflict with search strategies

Symmetry removal by controling search
At each node, decide if it needs to be explored
Can be expensive to check
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Solution used here: Double Lex

Partial symmetry removal by adding lexicographical
ordering constraints
Our problem has full row and column symmetries
Any permutation of rows adn/or columns leads to another
solution
Idea: Order rows lexicographically
Rows must be different from each other, strict order on
rows
Columns might be identical, non strict order on columns

This can be improved in some cases

Constraints only between adjacent rows(columns)
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Added Constraints

dim(Matrix,[V,B]),
(for(I,1,V-1),
param(Matrix,B) do

I1 is I+1,
lex_less(Matrix[I1,1..B],Matrix[I,1..B])

),é Row lex constraints
(for(J,1,B-1),
param(Matrix,V) do

J1 is J+1,
lex_leq(Matrix[1..V,J1],Matrix[1..V,J])

),é Column lex constraints
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Symmetry Breaking
Experiment with alternative value order

Two new global constraints

lex_leq(List1,List2)
List1 is lexicographical smaller than or equal to List2
Achieves domain consistency

lex_less(List1,List2)
List1 is lexicographical smaller than List2
Achieves domain consistency
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Complete Search Tree with Double Lex
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Observation

Enormous reduction in search space
We are solving a different problem!
Not just good for finding all solutions, also for first solution!
Value choice not optimal for finding first solution
There is a lot of very shallow backtracking, can we avoid
that?
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Effort for First Solution

Basic Model With double Lex
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Alternative Value Order

:-module(bibd).
:-export(top/0).
:-lib(ic).
:-lib(ic_global).

top:-
bibd(6,10,5,3,2,Matrix),writeln(Matrix).

bibd(V,B,R,K,L,Matrix):-
model(V,B,R,K,L,Matrix),
extract_array(row,Matrix,List),
search(L,0,input_order,

indomain_max,é Start with 1
complete,[]).
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Assigning Value 1 First
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Observation

First solution is found more quickly
Size of tree for all solutions unchanged
Value order does not really affect search space when
exploring all choices!
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Effort for All Solutions

Assign 0, then 1 Assign 1, then 0
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Problem
Program

Symmetry Breaking
Experiment with alternative value order

Conclusions

Symmetry breaking can have huge impact on model
Mainly works for pure problems
Partial symmetry breaking with additional constraints
Double lex for row/column symmetries
Only one variant of many symmetry breaking techniques
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Exercises

Observation

Good, but not as good as row order
Value choice unimportant even for first solution
Changing the variable selection does affect size of search
space, even for all solutions
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Effort for All Solutions

By Row By Column
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Why assign by row?
Alternative Models

Exercises

Possible Explanations

There are fewer rows than columns
Strict lex constraints on rows, but not on columns

More impact of first row

Needs more testing
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Why assign by row?
Alternative Models

Exercises

Do we need binary variables?

Consider a model with finite domain variables
Each of b blocks consists of k variables ranging over v
values
The values in a block must be alldifferent (ordered)
Each value can occur r times
Scalar product more difficult
Even better expressed with finite set variables
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Exercises

1
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1 Problem
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3 Program

4 Search

5 Redundant Modelling
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What we want to introduce

How to come up with a model for a problem
Why choosing a good model is an art
Channeling
Projection
Redundant Constraints
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Sports Scheduling

Tournament Planning
We plan a tournament with 8 teams, where every team plays
every other team exactly once. The tournament is played on 7
days, each team playing on each day. The games are
scheduled in 7 venues, and each team should play in each
venue exactly once.
As part of the TV arrangements, some preassignments are
done: We may either fix the game between two particular
teams to a fixed day and venue, or only state that some team
must play on a particular day at a given venue. The objective is
to complete the schedule, so that all constraints are satisfied.
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Example

City 1 City 2 City 3 City 4 City 5 City 6 City 7
Day 1 8 7, 5
Day 2 2 1, 5
Day 3 7 8
Day 4 2 5 1
Day 5 8 1
Day 6 5, 4
Day 7 4 1, 3
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Solution

City 1 City 2 City 3 City 4 City 5 City 6 City 7
Day 1 6, 8 1, 2 5, 7 3, 4
Day 2 2, 3 1, 5 4, 8 6, 7
Day 3 1, 7 2, 4 3, 8 5, 6
Day 4 4, 7 2, 6 3, 5 1, 8
Day 5 5, 8 3, 6 1, 4 2, 7
Day 6 3, 7 1, 6 4, 5 2, 8
Day 7 4, 6 2, 5 7, 8 1, 3
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A More Abstract Formulation

Rooms Puzzle, (Thomas G. Room, 1955)
Place numbers 1 to 8 in cells so that each row and each
column has each number exactly once, each cell contains
either no numbers or two numbers (which must be different
from each other), and each combination of two different
numbers appears in exactly one cell.

Puzzle presented by R. Finkel
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Exploring Ideas
Expanding Idea 7
Comparing Ideas
Channeling
Selected Model

How to come up with a model

What are the variables/what are their values?
How can we express the constraints?
Do we have these constraints in our system?
Does this do good propagation?
Backtrack to earlier step as required
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Channeling
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Requirements

1 There are 8 teams, seven days and seven locations
2 Each team plays each other team exactly once
3 Each team plays 7 games (redundant)
4 Each team plays in each location exactly once
5 Each team plays on each day exactly once
6 A game consists of two (different) teams
7 There are four games on each day (redundant)
8 There are four games at each location (redundant)
9 In any location there is atmost one game at a time
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Exploring Ideas
Expanding Idea 7
Comparing Ideas
Channeling
Selected Model

Idea 1

Matrix Day × Game (7× 4)
Each cell contains two variables, denoting teams
Easy to say that team plays once on each day,
alldifferent

Columns don’t have significance
Model does not mention location, how to add this?
How to express that each team plays each other once?
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Channeling
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Idea 2, Change problem structure

Matrix of Day × Location (7× 7)
Each cell contains two variables, each denoting a team
How do we avoid symmetry inside cell?
Need special value (0) to denote that there is no game
In one cell, either both or none of the variables are 0
Easy to say that each row and column contains each team
exactly once
Except for value 0, can not use alldifferent

Link between two variables in cell to state that game needs
two different teams
How to express that each (ordered) pair occurs exactly
once?
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Exploring Ideas
Expanding Idea 7
Comparing Ideas
Channeling
Selected Model

Idea 3, Add location variables

Model as in Idea 1, matrix Day × Game
Each cell contains two variables for teams and one for
location
Easy to state that games on one day are in different
locations
How to express condition that each team plays in each
location once?
Also, how to express that each team plays each other
exactly once?
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Exploring Ideas
Expanding Idea 7
Comparing Ideas
Channeling
Selected Model

Idea 4, Use variables for pairs

Matrix Day × Location
Each cell contains one variable ranging over (sorted) pairs
of teams, and special value 0 (no game)
Each pair value occurs once, except for 0

Special constraint alldifferent0
Or use gcc

How to state that each team plays once per day?
How to state that each team plays in each location?
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Exploring Ideas
Expanding Idea 7
Comparing Ideas
Channeling
Selected Model

Idea 5: If all else fails, use binary variables

Binary variable stating that team i plays in location j at day
k
Three dimensional matrix
Each team plays once on each day
Each team plays once in each location
Each game has two (different) teams, needs auxiliary
variable
Each pair of team meets once, needs auxiliary variables
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Exploring Ideas
Expanding Idea 7
Comparing Ideas
Channeling
Selected Model

Idea 6: An even bigger binary model

Use four dimensions
Team i meets team j in location k on day l
3136 = 8*8*7*7 variables
Constraints all linear
Why use finite domain constraints?
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Idea 7: A different mapping

Each team plays each other exactly once, one variable for
each combination (8*7/2=28 variables)
Decide when and where this game is played, values range
over combinations of days and locations (7*7=49 values)
All variables must be different (no two games at same time
and location)
Each team plays 7 games, by construction
How to express that each team plays once per day?
How to express that each team plays in each location
once?

Helmut Simonis Choosing the Model 17

Problem
Model

Program
Search

Redundant Modelling

Exploring Ideas
Expanding Idea 7
Comparing Ideas
Channeling
Selected Model

Expand Idea 7 into Full Model
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Numbering Values

City 1 City 2 City 3 City 4 City 5 City 6 City 7
Day 1 1 2 3 4 5 6 7
Day 2 8 9 10 11 12 13 14
Day 3 15 16 17 18 19 20 21
Day 4 22 23 24 25 26 27 28
Day 5 29 30 31 32 33 34 35
Day 6 36 37 38 39 40 41 42
Day 7 43 44 45 46 47 48 49
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Four games on each day

City 1 City 2 City 3 City 4 City 5 City 6 City 7
Day 1 1 2 3 4 5 6 7
Day 2 8 9 10 11 12 13 14
Day 3 15 16 17 18 19 20 21
Day 4 22 23 24 25 26 27 28
Day 5 29 30 31 32 33 34 35
Day 6 36 37 38 39 40 41 42
Day 7 43 44 45 46 47 48 49

Day 1 corresponds to values 1..7
Four variables can take these values
Day 2 corresponds to values 8..14, etc
One constraint per day
Exactly four of all variables take their value in the set ...
Seven such constraints
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Four games at each location

City 1 City 2 City 3 City 4 City 5 City 6 City 7
Day 1 1 2 3 4 5 6 7
Day 2 8 9 10 11 12 13 14
Day 3 15 16 17 18 19 20 21
Day 4 22 23 24 25 26 27 28
Day 5 29 30 31 32 33 34 35
Day 6 36 37 38 39 40 41 42
Day 7 43 44 45 46 47 48 49

City 1 corresponds to values
1, 8, 15, 22, 29, 36, 43

Four variables can take these values
City 2 corresponds to values

2, 9, 16, 23, 30, 37, 44

One constraint per location
Exactly four of all variables take their value in the set ...
Seven such constraints over 28 variables each
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Teams plays once on a day (at a location)

Select those variables which correspond to Team i
Exactly one of those variables takes its value in the set 1..7
Same for all other days
Same for all other teams
56 Constraints over 7 variables each
Similar for teams and locations, another 56 constraints
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Are we there yet?

28 variables with 49 possible values
1 alldifferent
7 exactly constraints over all variables (Days)
7 exactly constraints over all variables (Locations)
56 exactly constraints over 7 variables each (Days)
56 exactly constraints over 7 variables each (Locations)
Forgotten anything?
Check the requirements
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Do we satisfy the requirements?

1 There are 8 teams, seven days and seven locations
2 Each team plays each other team exactly once
3 Each team plays 7 games (redundant)
4 Each team plays in each location exactly once
5 Each team plays on each day exactly once
6 A game consists of two (different) teams
7 There are four games on each day (redundant)
8 There are four games at each location (redundant)
9 In any location there is atmost one game at a time
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What about the exactly constraint?

ECLiPSe doesn’t provide this constraint
Other system might do, could switch system

Implement it
Extend gcc to allow multiple values
Should be last resort

Emulate constraint with others

Helmut Simonis Choosing the Model 25

Problem
Model

Program
Search

Redundant Modelling

Exploring Ideas
Expanding Idea 7
Comparing Ideas
Channeling
Selected Model

Idea 8: Mapping games to days and locations

For each game to be played, we have two variables
One ranges over the days
The other over the locations

Easy to state that there are four games per day an location
Easy to state that each team plays once per day and
location
How do we express that no two games are played at the
same location and the same time?

If we had an alldifferent over pairs of variables...
Not in ECLiPSe
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We have four games on each day

Each row value is taken four times amongst the variables
gcc([gcc(4,4,1),...,gcc(4,4,7)],Rows)

Similar for columns:
gcc([gcc(4,4,1),...,gcc(4,4,7)],Cols)
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Each team plays once per day

For the seven variables which describe games of a team
Each row value is taken exactly once amongst the
variables
Could use
gcc([gcc(1,1,1),...,gcc(1,1,7)],Vars)

But alldifferent(Vars) is more compact
Similar for columns
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How do the models differ?

D Days
T Teams
L Locations
G Games

Idea Mapping
1 D ×G × {f , s} → T
2 D × L× {f , s} → T ∪ {0}

3
D ×G × {f , s} → T

D ×G→ L
4 D × L→ T M T ∪ {0}
5 T × D × L→ {0, 1}
6 T × T × D × L→ {0, 1}
7 T M T → D × L

8
T M T → D
T M T → L
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Requirements Capture

Idea Requirement
1 2 3 4 5 6 7 8 9

1 N ? Y ? Y Y Y ? ?
2 C ? Y Y Y Y Y Y Y
3 C ? Y ? Y Y Y Y Y
4 C Y Y Y Y Y Y Y Y
5 C NL L L L NL L L NL
6 C L L L L L L L L
7 C C C E E C E E A
8 C C C A A C G G ?
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Comments on models

Idea Main point
1 missing locations, first second symmetry
2 spare value, first second symmetry
3 first second symmetry
4 spare value
5 0/1, non-linear constraints
6 0/1, large matrix
7 needs exactly constraint
8 needs alldifferent on tuples
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Channeling

Instead of expressing all constraints over one set of
variables
Use multiple sets of variables
Decide which constraint to express over which variables
Allows more freedom on how to express problem
Link the different variables with channeling constraints
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In Our Case

Combine ideas 7 and 8
One set of variables ranging over pairs
Another using two variables per game for day and location
How to combine variables?
Minimize loss of information
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Projection
City 1 City 2 City 3 City 4 City 5 City 6 City 7

Day 1 1 2 3 4 5 6 7
Day 2 8 9 10 11 12 13 14
Day 3 15 16 17 18 19 20 21
Day 4 22 23 24 25 26 27 28
Day 5 29 30 31 32 33 34 35
Day 6 36 37 38 39 40 41 42
Day 7 43 44 45 46 47 48 49

Link pair variables to row and column variables
Pair variable uses cell numbers 1-49 as values
Row and column variables indicate on which day (row) and
in which location (column) the game is played
Pair value 23 = row 4, column 2
element constraint to link the variables
Two projections from D × L space onto D and L
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Mapping cells to rows and columns
City 1 City 2 City 3 City 4 City 5 City 6 City 7

Day 1 1 2 3 4 5 6 7
Day 2 8 9 10 11 12 13 14
Day 3 15 16 17 18 19 20 21
Day 4 22 23 24 25 26 27 28
Day 5 29 30 31 32 33 34 35
Day 6 36 37 38 39 40 41 42
Day 7 43 44 45 46 47 48 49

element(Cell,[1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,
4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,
7,7,7,7,7,7,7],Row),

element(Cell,[1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6,7,
1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6,7,
1,2,3,4,5,6,7],Col),
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Mapping cells to rows and columns
City 1 City 2 City 3 City 4 City 5 City 6 City 7

Day 1 1 2 3 4 5 6 7
Day 2 8 9 10 11 12 13 14
Day 3 15 16 17 18 19 20 21
Day 4 22 23 24 25 26 27 28
Day 5 29 30 31 32 33 34 35
Day 6 36 37 38 39 40 41 42
Day 7 43 44 45 46 47 48 49

element(23 ,[1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,
4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,
7,7,7,7,7,7,7],4 ),

element(23 ,[1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6,7,
1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6,7,
1,2,3,4,5,6,7],2 ),
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Channeling Constraints

This is one common type, a projection
Another common type is the inverse

Link a variable A→ B to another B → A
Typically used for bijective mappings
Built-in inverse/2

Also used: Boolean channeling
Link variables A→ B and A× B → {0, 1}
Built-in bool_channeling/3
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Selected Model

Two sets of variables (Req 1, 2, 3, 6, by construction)
Pair variables (T M T → D × L)

alldifferent (Req 9)
Day and Location variables (T M T → D), (T M T → L)

gcc (Req 4, 5)
alldifferent (Req 7, 8)

Channeling Constraints
element projection from pairs onto rows and columns

Search only on pair variables
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Handling of hints (I)

City 1 City 2 City 3 City 4 City 5 City 6 City 7
Day 1 8 7, 5
Day 2 2 1, 5
Day 3 7 8
Day 4 2 5 1
Day 5 8 1
Day 6 5, 4
Day 7 4 1, 3

This value (17) can not be used by pairs not involving team
8
One of the pairs involving team 8 must use this value (17)
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Handling of hints (II)

City 1 City 2 City 3 City 4 City 5 City 6 City 7
Day 1 8 7, 5
Day 2 2 1, 5
Day 3 7 8
Day 4 2 5 1
Day 5 8 1
Day 6 5, 4
Day 7 4 1, 3

The pair involving teams 5 and 7 must take value 5, fixes
variable
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Problem Data

hint(1,8,[2-[8],5-[5,7],8-[2],9-[1,5],15-[7],
17-[8],26-[2],27-[5],28-[1],29-[8],
34-[1],39-[4,5],43-[4],47-[1,3]]).
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Main Program

top(Problem,L):-
hint(Problem,N,Hints),
N1 is N-1,
N2 is N//2,
NrVars is N*N1//2,
SizeDomain is N1*N1,
length(L,NrVars),
L :: 1..SizeDomain,
create_pairs(N,Contains,Names),
ic_global_gac:alldifferent(L),
process_hints(L,Contains,Hints),
...
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Main Program (continued)

project_row_cols(L,N1,Rows,Cols),
limit(Rows,N2,N1),
limit(Cols,N2,N1),
separate(Contains,Rows,N,SplitRows),
separate(Contains,Cols,N,SplitCols),
(foreach(K,SplitRows) do

ic_global_gac:alldifferent(K)
),
(foreach(K,SplitCols) do

ic_global_gac:alldifferent(K)
),
search(L,0,input_order,indomain,

complete,[]).
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Create Pairs and Names

create_pairs(N,Contains,Names):-
(for(I,1,N-1),
fromto(Names,A1,A,[]),
fromto(Contains,B1,B,[]),
param(N) do

(for(J,I+1,N),
fromto(A1,[Name|AA],AA,A),
fromto(B1,[I-J|BB],BB,B),
param(I) do

concat_string([I,J],Name)
)

).
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Projecting Rows and Columns

project_row_cols(L,N,Rows,Cols):-
generate_tables(N,RowTable,ColTable),
(foreach(X,L),
foreach(R,Rows),
foreach(C,Cols),
param(RowTable,ColTable) do

element(X,RowTable,R),
element(X,ColTable,C)

).
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Generating Projection Tables

generate_tables(N,RowTable,ColTable):-
(for(I,1,N),
fromto(RowTable,A1,A,[]),
fromto(ColTable,B1,B,[]),
param(N) do

(for(J,1,N),
fromto(A1,[I|AA],AA,A),
fromto(B1,[J|BB],BB,B),
param(I) do

true
)

).
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Extract row variables

separate(Contains,Rows,Values,SplitRows):-
(for(Value,1,Values),
foreach(SplitRow,SplitRows),
param(Contains,Rows) do

(foreach(A-B,Contains),foreach(V,Rows),
fromto([],R,R1,SplitRow),param(Value) do

(memberchk(Value,[A,B]) ->
R1 = [V|R]

;
R1 = R

)
)

).
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Set up gcc constraint

limit(L,Bound,Values):-
(for(I,1,Values),
foreach(gcc(Bound,Bound,I),Pattern),
param(Bound) do

true
),
gcc(Pattern,L).
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Setting up hints

process_hints(L,Contains,Hints):-
(foreach(Pos-Values,Hints),
param(L,Contains) do

process_hint(Pos,Values,L,Contains)
).

process_hint(Pos,[A,B],L,Contains):- % clause 1
!,
match_hint(A-B,Contains,L,X),
X #= Pos.
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Setting up hints

process_hint(Pos,[Value],L,Contains):- % clause 2
(foreach(X,L),
foreach(A-B,Contains),
fromto([],R,R1,Required),
param(Pos,Value) do

(not_mentioned(A,B,Value) ->
X #\= Pos,
R1 = R

;
R1 = [X|R]

)
),
occurrences(Pos,Required,1).
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Setting up hints

not_mentioned(A,B,V):-
A \= V,
B \= V.

match_hint(H,[H|_],[X|_],X):-
!.

match_hint(H,[_|T],[_|R],X):-
match_hint(H,T,R,X).
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Using input order
First Fail Strategy

Before Search
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Using input order
First Fail Strategy

Solution
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Using input order
First Fail Strategy

Search Tree with input order
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Using input order
First Fail Strategy

How to improve?

Try different search strategy
Use first_fail dynamic variable selection
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Using input order
First Fail Strategy

Search Tree with first fail
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Using input order
First Fail Strategy

Observation

It does not work
Search tree is slightly larger than before!
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Adding value index Channeling
Improving Handling of Hints

Missing Propagation

City 1 City 2 City 3 City 4 City 5 City 6 City 7
Day 1 8 7, 5
Day 2 2 1, 5
Day 3 7 8
Day 4 2 5 1
Day 5 8 1
Day 6 5, 4
Day 7 4 1, 3

City 1 City 2 City 3 City 4 City 5 City 6 City 7
Day 1 1 2 3 4 5 6 7
Day 2 8 9 10 11 12 13 14
Day 3 15 16 17 18 19 20 21
Day 4 22 23 24 25 26 27 28
Day 5 29 30 31 32 33 34 35
Day 6 36 37 38 39 40 41 42
Day 7 43 44 45 46 47 48 49
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Missing Propagation

City 1 City 2 City 3 City 4 City 5 City 6 City 7
Day 1 8 7, 5
Day 2 2 1, 5
Day 3 7 8
Day 4 2 5 1
Day 5 8 1
Day 6 5, 4
Day 7 4 1, 3

City 1 City 2 City 3 City 4 City 5 City 6 City 7
Day 1 1 2 3 4 5 6 7
Day 2 8 9 10 11 12 13 14
Day 3 15 16 17 18 19 20 21
Day 4 22 23 24 25 26 27 28
Day 5 29 30 31 32 33 34 35
Day 6 36 37 38 39 40 41 42
Day 7 43 44 45 46 47 48 49
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Adding value index Channeling
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Missing Propagation

City 1 City 2 City 3 City 4 City 5 City 6 City 7
Day 1 8 7, 5
Day 2 2 1, 5
Day 3 7 8
Day 4 2 5 1
Day 5 8 1
Day 6 5, 4
Day 7 4 1, 3

City 1 City 2 City 3 City 4 City 5 City 6 City 7
Day 1 1 2 3 4 5 6 7
Day 2 8 9 10 11 12 13 14
Day 3 15 16 17 18 19 20 21
Day 4 22 23 24 25 26 27 28
Day 5 29 30 31 32 33 34 35
Day 6 36 37 38 39 40 41 42
Day 7 43 44 45 46 47 48 49
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Missing Propagation

City 1 City 2 City 3 City 4 City 5 City 6 City 7
Day 1 8 7, 5
Day 2 2 1, 5
Day 3 7 8
Day 4 2 5 1
Day 5 8 1
Day 6 5, 4
Day 7 4 1, 3

City 1 City 2 City 3 City 4 City 5 City 6 City 7
Day 1 1 2 3 4 5 6 7
Day 2 8 9 10 11 12 13 14
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Adding value index Channeling
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Missing Propagation

City 1 City 2 City 3 City 4 City 5 City 6 City 7
Day 1 8 7, 5
Day 2 2 1, 5
Day 3 7 8
Day 4 2 5 1
Day 5 8 1
Day 6 5, 4
Day 7 4 1, 3

City 1 City 2 City 3 City 4 City 5 City 6 City 7
Day 1 1 2 3 4 5 6 7
Day 2 8 9 10 11 12 13 14
Day 3 15 16 17 18 19 20 21
Day 4 22 23 24 25 26 27 28
Day 5 29 30 31 32 33 34 35
Day 6 36 37 38 39 40 41 42
Day 7 43 44 45 46 47 48 49
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Missing Propagation

City 1 City 2 City 3 City 4 City 5 City 6 City 7
Day 1 8 7, 5
Day 2 2 1, 5
Day 3 7 8
Day 4 2 5 1
Day 5 8 1
Day 6 5, 4
Day 7 4 1, 3

City 1 City 2 City 3 City 4 City 5 City 6 City 7
Day 1 1 2 3 4 5 6 7
Day 2 8 9 10 11 12 13 14
Day 3 15 16 17 18 19 20 21
Day 4 22 23 24 25 26 27 28
Day 5 29 30 31 32 33 34 35
Day 6 36 37 38 39 40 41 42
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Missing Propagation

City 1 City 2 City 3 City 4 City 5 City 6 City 7
Day 1 8 7, 5
Day 2 2 1, 5
Day 3 7 8
Day 4 2 5 1
Day 5 8 1
Day 6 5, 4
Day 7 4 1, 3

City 1 City 2 City 3 City 4 City 5 City 6 City 7
Day 1 1 2 3 4 5 6 7
Day 2 8 9 10 11 12 13 14
Day 3 15 16 17 18 19 20 21
Day 4 22 23 24 25 26 27 28
Day 5 29 30 31 32 33 34 35
Day 6 36 37 38 39 40 41 42
Day 7 43 44 45 46 47 48 49
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Why is this?

Constraints involved:
gcc constraint on row: four variables can use values from
this row
four occurrence constraints for hints: One of the variables
must take this value

No interaction between constraints, only between
constraints and variables
We do not detect that value 1 can not be used
Eventual solution respects condition, model is correct
We are concerned about propagation, not correctness
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Redundant Modelling

Adding value index Channeling
Improving Handling of Hints

Adding redundant model

Add constraints which do more propagation, but do not
affect solutions
Lead to smaller search tree, hopefully faster solution
Introduction requires understanding of (lack of)
propagation
Visualization is key to detect missing propagation
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Adding 0/1 model

Day × Location matrix of 0/1 variables
Indicates if there is a game on this day at this location
Row/column sums: 4 games in each row/column
Hint given for cell: Game variable is 1
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Channeling Constraint

Link pair variables Pi to 0/1 variables Yj as value-index
(∃i s.t. Pi = v)⇔ Yv = 1
Propagation:

Pi = v ⇒ Yv = 1
Yv = 0⇒ ∀i : Pi 6= v
(∀i : v /∈ d(Pi))⇒ Yv = 0
Yv = 1⇒ occurrence(V , P1...Pn, N), N ≥ 1
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Added Program

value_set_channeling(L,Hints):-
dim(Matrix,[7,7]),
Matrix[1..7,1..7] :: 0..1,
flatten_array(Matrix,ValueSet),
value_set_channel(L,ValueSet,1),
(for(I,1,7),param(Matrix) do

sumlist(Matrix[I,1..7],4),
sumlist(Matrix[1..7,I],4)

),
(foreach(K-_,Hints),param(Matrix) do

coor(K,I,J),
subscript(Matrix,[I,J],1)

).
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Before Search
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Impact of Redundant Constraints

Without With value index channeling
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Solution
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Search Tree
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Still Missing Propagation
City 1 City 2 City 3 City 4 City 5 City 6 City 7

Day 1 8 7, 5
Day 2 2 1, 5
Day 3 7 8
Day 4 2 5 1
Day 5 8 1
Day 6 5, 4
Day 7 4 1, 3

City 1 City 2 City 3 City 4 City 5 City 6 City 7
Day 1 1 2 3 4 5 6 7
Day 2 8 9 10 11 12 13 14
Day 3 15 16 17 18 19 20 21
Day 4 22 23 24 25 26 27 28
Day 5 29 30 31 32 33 34 35
Day 6 36 37 38 39 40 41 42
Day 7 43 44 45 46 47 48 49

Game 12 can not be played on day 1 at locations 5 or 6
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Still Missing Propagation
City 1 City 2 City 3 City 4 City 5 City 6 City 7

Day 1 8 7, 5
Day 2 2 1, 5
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Day 5 8 1
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Day 4 22 23 24 25 26 27 28
Day 5 29 30 31 32 33 34 35
Day 6 36 37 38 39 40 41 42
Day 7 43 44 45 46 47 48 49

Game 12 can not be played on day 1 at locations 5 or 6
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Still Missing Propagation
City 1 City 2 City 3 City 4 City 5 City 6 City 7
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Still Missing Propagation
City 1 City 2 City 3 City 4 City 5 City 6 City 7

Day 1 8 7, 5
Day 2 2 1, 5
Day 3 7 8
Day 4 2 5 1
Day 5 8 1
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Day 7 4 1, 3
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Game 12 can not be played on day 1 at locations 5 or 6
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Still Missing Propagation
City 1 City 2 City 3 City 4 City 5 City 6 City 7
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Still Missing Propagation
City 1 City 2 City 3 City 4 City 5 City 6 City 7

Day 1 8 7, 5
Day 2 2 1, 5
Day 3 7 8
Day 4 2 5 1
Day 5 8 1
Day 6 5, 4
Day 7 4 1, 3

City 1 City 2 City 3 City 4 City 5 City 6 City 7
Day 1 1 2 3 4 5 6 7
Day 2 8 9 10 11 12 13 14
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Day 4 22 23 24 25 26 27 28
Day 5 29 30 31 32 33 34 35
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Day 7 43 44 45 46 47 48 49

Game 12 can not be played on day 1 at locations 5 or 6
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Our model does not deal well with hints

Preset game is ok, leads to variable assignment
Preset team is weak, adds new constraint
As there is no interaction of this constraint with the other
constraints, there is no initial domain restriction
Model is correct, but lazy
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Improving the handling of hints

City 1 City 2 City 3 City 4 City 5 City 6 City 7
Day 1 8 7, 5
Day 2 2 1, 5
Day 3 7 8
Day 4 2 5 1
Day 5 8 1
Day 6 5, 4
Day 7 4 1, 3

This value can not be used by pairs not involving team 8
One of the pairs involving team 8 must use this value
These values can not be used by any pair involving team 8
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Added Program

improved_hint(Pos,[Value],L,Contains):-
(foreach(X,L),foreach(A-B,Contains),
fromto([],R,R1,Required),
param(Pos,Value) do

(not_mentioned(A,B,Value) ->
X #\= Pos,R1 = R

;
R1 = [X|R]

)
),
occurrences(Pos,Required,1),
excluded_locations(Pos,Excluded),
exclude_values(Required,Excluded).
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Added Program

excluded_locations(Pos,Excluded):-
coor(Pos,X,Y),
(for(I,1,7),
fromto([],A,A1,E1),
param(Y,Pos) do

coor(K,I,Y),
(Pos = K ->

A1 = A
;

A1 = [K|A]
)

),
...
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Added Program

...
(for(J,1,7),
fromto(E1,A,A1,Excluded),
param(X,Pos) do

coor(K,X,J),
(Pos = K ->

A1 = A
;

A1 = [K|A]
)

).

Helmut Simonis Choosing the Model 84



Problem
Model

Program
Search

Redundant Modelling

Adding value index Channeling
Improving Handling of Hints

Added Program

exclude_values(Vars,Values):-
(foreach(X,Vars),
param(Values) do

(foreach(Value,Values),
param(X) do

X #\= Value
)

).
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Before Search
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Impact of improved hint handling

With index set channeling Improved Hints
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Observation

We don’t need the value index channeling
It is subsumed by the improved hint treatment
Always worthwhile to check if constraints are still required
after modifying model
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Chapter 10: Customizing Search (Progressive
Party Problem)
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Cork Constraint Computation Centre
Computer Science Department
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Licence

This work is licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License.
To view a copy of this license, visit http:
//creativecommons.org/licenses/by-nc-sa/3.0/ or
send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.
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Outline

1 Problem

2 Program

3 Search
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What we want to introduce

Problem Decomposition
Decide which problem to solve
Not always required to solve complete problem in one go

Modelling with bin packing
Customized search routines can bring dramatic
improvements
Understanding what is happening important to find
improvements
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Phase 1
Phase 2

Problem Definition

Progressive Party

The problem is to timetable a party at a yacht club. Certain
boats are to be designated hosts, and the crews of the
remaining boats in turn visit the host boats for several
successive half-hour periods. The crew of a host boat remains
on board to act as hosts while the crew of a guest boat together
visits several hosts. Every boat can only host a limited number
of guests at a time (its capacity) and crew sizes are different.
The party lasts for 6 time periods. A guest boat cannot not
revisit a host and guest crews cannot meet more than once.
The problem facing the rally organizer is that of minimizing the
number of host boats.
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Phase 1
Phase 2

Data

Boat 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Capacity 6 8 12 12 12 12 12 10 10 10 10 10 8 8

Crew 2 2 2 2 4 4 4 1 2 2 2 3 4 2
Boat 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Capacity 8 12 8 8 8 8 8 8 7 7 7 7 7 7
Crew 3 6 2 2 4 2 4 5 4 4 2 2 4 5
Boat 29 30 31 32 33 34 35 36 37 38 39 40 41 42

Capacity 6 6 6 6 6 6 6 6 6 6 9 0 0 0
Crew 2 4 2 2 2 2 2 2 4 5 7 2 3 4
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Phase 1
Phase 2

Problem Decomposition

Phase 1: Select minimal set of host boats
Manually

Phase 2: Create plan to assign guest boats to hosts in
multiple periods

Done as a constraint program
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Phase 1
Phase 2

Idea

Decompose problem into multiple, simpler sub problems
Solve each sub problem in turn
Provides solution of complete problem
Challenge: How to decompose so that good solutions are
obtained?
How to show optimality of solution?
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Phase 1
Phase 2

Selecting Host boats

Some additional side constraints
Some boats must be hosts
Some boats may not be hosts

Reason on total or spare capacity
No solution with 12 boats
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Phase 1
Phase 2

Solution to Phase 1

Select boats 1 to 12 and 14 as hosts
Many possible problem variants by selecting other host
boats
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Phase 1
Phase 2

Phase 2 Sub-problem

Host boats and their capacity given
Ignore host teams, only consider free capacity
Assign guest teams to host boats
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Phase 1
Phase 2

Model

Assign guest boats to hosts for each time period
Matrix of domain variables (size NrGuests × NrPeriods)
Variables range over possible hosts 1..NrHosts
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Phase 1
Phase 2

Constraints

Each guest boat visits a host boat atmost once
Two guest boats meet at most once
All guest boats assigned to a host in a time period fit within
spare capacity of host boat
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Phase 2

Each guest visits a hosts atmost once

The variables for a guest and different time periods must
be pairwise different
alldifferent constraint on rows of matrix
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Phase 1
Phase 2

Two guests meet at most once

The variables for two guests can have the same value for
atmost one time period
Constraints on each pair of rows in matrix
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Phase 1
Phase 2

All guests assigned to a host in a time period fit within
spare capacity of host boat

Capacity constraint expressed as bin packing for each time
period
Each host boat is a bin with capacity from 0 to its unused
capacity
Each guest is an item to be assigned to a bin
Size of item given by crew size of guest boat
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Phase 2

Bin Packing Constraint

Global constraint
bin_packing(Assignment,Sizes,Capacity)

Items of different sizes are assigned to bins
Assignment of item modelled with domain variable (first
argument)
Size of items fixed: integer values (second argument)
Each bin may have a different capacity
Capacity of each bin given as a domain variable (third
argument)
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Main Program

top:-
top(10,6).

top(Problem,Size):-
problem(Problem,Hosts,Guests),
model(Hosts,Guests,Size,Matrix),
writeln(Matrix).
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Data

problem(10,
[10,10,9,8,8,8,8,8,8,7,6,6,4],
[7,6,5,5,5,4,4,4,4,4,4,4,4,4,3,
3,2,2,2,2,2,2,2,2,2,2,2,2,2]).
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Creating Variables

model(Hosts,Guests,NrPeriods,Matrix):-
length(Hosts,NrHosts),
length(Guests,NrGuests),
dim(Matrix,[NrGuests,NrPeriods]),
Matrix[1..NrGuests,1..NrPeriods] :: 1..NrHosts,
...
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Problem
Program

Search

Setting up alldifferent constraints

...
(for(I,1,NrGuests),
param(Matrix,NrPeriods) do

ic:alldifferent(Matrix[I,1..NrPeriods])
),
...
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Problem
Program

Search

Setting up bin_packing constraints

...
(for(J,1,NrPeriods),
param(Matrix,NrGuests,Guests,Hosts) do

make_bins(Hosts,Bins),
bin_packing(Matrix[1..NrGuests,J],

Guests,Bins)
),
...
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Problem
Program

Search

Each pair of guests meet atmost once

...
(for(I,1,NrGuests-1),
param(Matrix,NrGuests,NrPeriods) do

(for(I1,I+1,NrGuests),
param(Matrix,NrPeriods,I) do

card_leq(Matrix[I,1..NrPeriods],
Matrix[I1,1..NrPeriods],1)

)
),
...

Helmut Simonis Customizing Search 23

Problem
Program

Search

Call search

...
extract_array(col,Matrix,List),
assign(List).
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Problem
Program

Search

Make Bin variables

make_bins(HostCapacity,Bins):-
(foreach(Cap,HostCapacity),
foreach(B,Bins) do

B :: 0..Cap
).
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Problem
Program

Search

Each pair of guests meet atmost once

card_leq(Vector1,Vector2,Card):-
collection_to_list(Vector1,List1),
collection_to_list(Vector2,List2),
(foreach(X,List1),
foreach(Y,List2),
fromto(0,A,A+B,Term) do

#=(X,Y,B)
),
eval(Term) #=< Card.
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Problem
Program

Search

Naive Search

assign(List):-
search(List,0,input_order,indomain,

complete,[]).
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Problem
Program

Search

Naive Search
First Fail Strategy
Layered Search
Layered with Credit Search
Randomized with Restart

Naive Search (Compact view)
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Problem
Program

Search

Naive Search
First Fail Strategy
Layered Search
Layered with Credit Search
Randomized with Restart

Observations

Not too many wrong choices
But very deep backtracking required to discover failure
Most effort wasted in “dead” parts of search tree
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Problem
Program

Search

Naive Search
First Fail Strategy
Layered Search
Layered with Credit Search
Randomized with Restart

First Fail strategy

assign(List):-
search(List,0,first_fail,indomain,

complete,[]).
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Naive Search
First Fail Strategy
Layered Search
Layered with Credit Search
Randomized with Restart

First Fail Search
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Problem
Program

Search

Naive Search
First Fail Strategy
Layered Search
Layered with Credit Search
Randomized with Restart

Observations

Assignment not done in row or column mode
Tree consists of straight parts without backtracking
and nearly fully explored parts
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Problem
Program

Search

Naive Search
First Fail Strategy
Layered Search
Layered with Credit Search
Randomized with Restart

Idea

Assign variables by time period
Within one time period, use first_fail selection
Solves bin packing packing for each period completely
Clearer impact of disequality constraints
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Problem
Program

Search

Naive Search
First Fail Strategy
Layered Search
Layered with Credit Search
Randomized with Restart

Layered Search

assign(Matrix,NrPeriods,NrGuests):-
(for(J,1,NrPeriods),
param(Matrix,NrGuests) do

search(Matrix[1..NrGuests,J],0,
first_fail,indomain,
complete,[])

).
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Naive Search
First Fail Strategy
Layered Search
Layered with Credit Search
Randomized with Restart
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Problem
Program

Search

Naive Search
First Fail Strategy
Layered Search
Layered with Credit Search
Randomized with Restart

Observations

Deep backtracking for last time period
No backtracking to earlier time periods required
Small amount of backtracking at other time periods
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Problem
Program

Search

Naive Search
First Fail Strategy
Layered Search
Layered with Credit Search
Randomized with Restart

Idea

Use credit based search
But not for complete search tree
Loose too much useful work
Backtrack independently for each time period
Hope to correct wrong choices without deep backtracking
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Problem
Program

Search

Naive Search
First Fail Strategy
Layered Search
Layered with Credit Search
Randomized with Restart

Layered with Credit

assign(Matrix,NrPeriods,NrGuests):-
(for(J,1,NrPeriods),
param(Matrix,NrGuests) do

NSq is NrGuests*NrGuests,
search(Matrix[1..NrGuests,J],0,

first_fail,indomain,
credit(NSq,10),[])

).
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Naive Search
First Fail Strategy
Layered Search
Layered with Credit Search
Randomized with Restart

Layered with Credit Search
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Problem
Program

Search

Naive Search
First Fail Strategy
Layered Search
Layered with Credit Search
Randomized with Restart

Observations

Improved search
Need more sample problems to really understand impact
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Problem
Program

Search

Naive Search
First Fail Strategy
Layered Search
Layered with Credit Search
Randomized with Restart

Idea

Randomize value selction
Remove bias picking bins in same order
Allows to add restart
When spending too much time without finding solution
Restart search from beginning
Randomization will explore other initial assignments
Do not get caught in “dead” part of search tree
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Problem
Program

Search

Naive Search
First Fail Strategy
Layered Search
Layered with Credit Search
Randomized with Restart

Randomized with Restart

assign(Matrix,NrPeriods,NrGuests):-
repeat,
(for(J,1,NrPeriods),
param(Matrix,NrGuests) do

NSq is NrGuests*NrGuests,
once(search(Matrix[1..NrGuests,J],0,

first_fail,indomain_random,
credit(NSq,10),[]))

),
!.
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Naive Search
First Fail Strategy
Layered Search
Layered with Credit Search
Randomized with Restart

Randomized Search
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Problem
Program

Search

Naive Search
First Fail Strategy
Layered Search
Layered with Credit Search
Randomized with Restart

Observations

Avoids deep backtracking in last time periods
Perhaps by mixing values more evenly
Impose fewer disequality constraints for last periods
Easier to find solution
Should allow to find solutions with more time periods

Helmut Simonis Customizing Search 44



Problem
Program

Search

Naive Search
First Fail Strategy
Layered Search
Layered with Credit Search
Randomized with Restart

Changing time periods

Problem Size Naive FF Layered Credit Random
10 5 0.812 1.453 1.515 0.828 1.922
10 6 14.813 2.047 2.093 1.219 2.469
10 7 79.109 3.688 50.250 3.234 3.672
10 8 - - 141.609 55.156 6.328
10 9 - - - - 10.281
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Problem
Program

Search

Naive Search
First Fail Strategy
Layered Search
Layered with Credit Search
Randomized with Restart

Observations

Randomized method is strongest for this problem
Not always fastest for smaller problem sizes
Restart required for size 9 problems
Same model, very different results due to search
Very similar results for other problem instances
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Chapter 11: Limits of Propagation (Costas
Array)
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ECLiPSe ELearning Overview
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Outline

1 Problem

2 Program

3 Search

4 Improvements
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What we want to introduce

Improving propagation does not always pay
For some problems, simple backtracking is best
CP may not always be the best method
CP should always be fastest way to model problem
Consider time to target

Time required to run program
Time required to write program

Problem: Costas Array (Antenna design, sonar systems)

Helmut Simonis Limits of Propagation 4
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Problem Definition

Costas Array (Wikipedia)
A Costas array (named after John P. Costas) can be regarded
geometrically as a set of N points lying on the squares of a NxN
checkerboard, such that each row or column contains only one
point, and that all of the N(N - 1)/2 vectors between each pair of
dots are distinct.
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Example (Size 6)
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Model

A variable for each column, ranging from 1 to N
A list of N variables for the columns
A difference variable between each ordered pair of
variables
alldifferent constraint between variables
alldifferent constraints for all differences

Helmut Simonis Limits of Propagation 7

Problem
Program

Search
Improvements

Model

X1

X2

X3

X4

X5

X6

D56

D45

D34

D23

D12

D46

D35

D24

D13

D36

D25

D14

D26

D15

D16
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Example
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Declarations

:-module(costas).

:-export(top/0).

:-lib(ic).
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Main Program

top:-
(for(N,3,20) do

costas(N,_)
).

costas(N,L):-
length(L,N),
L :: 1..N,
alldifferent(L),
L = [_|L1],
diffs(L,L1),
search(L,0,first_fail,indomain,

complete,[]).

Helmut Simonis Limits of Propagation 11
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Differences

diffs(_,[]).
diffs(L,[H|T]):-

diff_pairs(L,[H|T],Diffs),
alldifferent(Diffs),
diffs(L,T).

diff_pairs(_,[],[]).
diff_pairs([X|X1],[Y|Y1],[D|D1]):-

X #= Y+D,
diff_pairs(X1,Y1,D1).
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Basic Model

1

2

3

4

12

23

1 2 3

45

626

4

5

6

7
4 5 67

8
5

66

3

1

8

9




6

Helmut Simonis Limits of Propagation 13

Problem
Program

Search
Improvements

Other Problem Sizes

Basic Model
Size Backtrack Time

10 4 0.00
11 118 0.08
12 50 0.05
13 335 0.36
14 5008 6.23
15 47332 68.92
16 157773 271.22
17 1641685 3278.19
18 115745 283.97
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Search tree (Size 12)
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Search tree (Size 13)
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Search tree (Size 14)
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Search tree (Size 15)
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Search tree (Size 16)
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Observation

Problem becomes harder with increasing size
Failures occur from level 3 down
Deep backtracking required to undo wrong choices
Value selection not working, have to explore all choices
Increase not uniform
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Missing Propagation

The model is
doing this
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Missing Propagation

It could be doing
that!
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Adding Constraints
Change of Search Strategy

Changed Differences

diffs(_,[]).
diffs(L,[H|T]):-

diff_pairs(L,[H|T],Diffs,Triples),
impose_triples(Triples,[]),
alldifferent(Diffs),
diffs(L,T).

diff_pairs(_,[],[],[]).
diff_pairs([X|X1],[Y|Y1],[D|D1],[t(X,Y,D)|T]):-

X #= Y+D,
diff_pairs(X1,Y1,D1,T).
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Adding Constraints
Change of Search Strategy

Changed Differences

impose_triples([],_).
impose_triples([t(X,Y,D)|R],Others):-

suspend(impose_triple(D,R),4,D->inst),
suspend(impose_triple(D,Others),4,D->inst),
impose_triples(R,[t(X,Y,D)|Others]).
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Adding Constraints
Change of Search Strategy

Changed Differences

impose_triple(_D,[]).
impose_triple(D,[t(X,Y,_)|R]):-

(var(X) ->
suspend(impose_one_triple12(D,X,Y),

4,X->inst)
;

impose_one_triple12(D,X,Y)
),

% ...
impose_triple(D,R).

impose_one_triple12(D,X,Y):-
V is X-D,
Y #\= V.
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Adding Constraints
Change of Search Strategy

Further Model Improvements

DC consistent alldifferent between variables
(DC consistent alldifferent between differences)
DC difference constraint
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Adding Constraints
Change of Search Strategy

Improved Model
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Adding Constraints
Change of Search Strategy

Comparison (Solutions)

Initial Model Improved Model
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Adding Constraints
Change of Search Strategy

Comparison (Search Trees)

Initial Model Improved Model
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Adding Constraints
Change of Search Strategy

Search tree (Size 12)
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Adding Constraints
Change of Search Strategy

Search tree (Size 13)
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Adding Constraints
Change of Search Strategy

Search tree (Size 14)

1

2

3

1234

5121

1

4

672

868

2

692

46


1

5

62

88

2

66

12

1

92

17

3

46

2


44

42


1

45

29

979

42

6




92

2

93

97

1

94

68

3

7

9

6

2

9

6

1

1

8

3

8
2

9

6

1

9

1

46

9
2

9

6

1 3

44

45

7

41

8

9

5

4

Helmut Simonis Limits of Propagation 32



Problem
Program

Search
Improvements

Adding Constraints
Change of Search Strategy

Search tree (Size 15)
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Adding Constraints
Change of Search Strategy

Search tree (Size 16)
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Adding Constraints
Change of Search Strategy

Comparison (Search Tree, size 16)

Initial Model Improved Model
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Adding Constraints
Change of Search Strategy

Other Problem Sizes

Basic Model Improved Model
Size Backtrack Time Backtrack Time

10 4 0.00 4 0.16
11 118 0.08 77 1.44
12 50 0.05 31 0.94
13 335 0.36 216 6.22
14 5008 6.23 2875 95.94
15 47332 68.92 25820 1046.75
16 157773 271.22 84161 4099.52
17 1641685 3278.19 825590 49371.02
18 115745 283.97 55102 4530.83
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Adding Constraints
Change of Search Strategy

Observation

Changes reduce backtracks by 50%
But, run times explode
Being clever does not always pay
Or, perhaps, we did not make the right improvements?
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Adding Constraints
Change of Search Strategy

Change of Search Strategy

Idea: Make more difficult choices first
Reorder variables to start from middle
Assign values starting in middle
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Adding Constraints
Change of Search Strategy

Labeling From Middle

1

2

3

4

12

34

1

35

22

2

14

25

3

5

6

77

1

2

77

2

6

77

3

6

77

44

77

74

4

67

7

3

3

1

8

5

8
3 44

6

45

47

8

9




Helmut Simonis Limits of Propagation 39

Problem
Program

Search
Improvements

Adding Constraints
Change of Search Strategy

Other Problem Sizes

Improved Model Improved Model, Middle
Size Backtrack Time Backtrack Time

10 4 0.16 1 0.01
11 77 1.44 13 0.03
12 31 0.94 72 0.26
13 216 6.22 513 1.81
14 2875 95.94 589 2.37
15 25820 1046.75 7840 34.30
16 84161 4099.52 13158 63.91
17 825590 49371.02 56390 298.16
18 55102 4530.83 19750 115.64
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Adding Constraints
Change of Search Strategy

Observation

Big improvement in backtracks and time
Not for all problem sizes
Question: Do we need improvement of model for this to
work?
Experiment: Run changes search routine on basic model
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Adding Constraints
Change of Search Strategy

Labeling Basic Model from Middle

Basic Model Basic Model, Middle
Size Backtrack Time Backtrack Time

10 4 0.00 1 0.00
11 118 0.08 17 0.01
12 50 0.05 97 0.09
13 335 0.36 644 0.74
14 5008 6.23 746 1.03
15 47332 68.92 10041 16.03
16 157773 271.22 17005 31.12
17 1641685 3278.19 73080 152.72
18 115745 283.97 28837 60.97
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Adding Constraints
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Comparison: Model Impact

Basic Model,Middle Improved Model, Middle
Size Backtrack Time Backtrack Time

10 1 0.00 1 0.01
11 17 0.01 13 0.03
12 97 0.09 72 0.26
13 644 0.74 513 1.81
14 746 1.03 589 2.37
15 10041 16.03 7840 34.30
16 17005 31.12 13158 63.91
17 73080 152.72 56390 298.16
18 28837 60.97 19750 115.64
19 1187618 3174.72 1044751 4474.56
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Adding Constraints
Change of Search Strategy

Comparison (Search Tree, size 18)

Initial Model Improved Model
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Adding Constraints
Change of Search Strategy

Observation

Search strategy does not depend on model
Variable selection is the same!
Basic model is about two times faster
About 50% more backtrack steps
Again, sometimes reasoning does not pay!
Better search strategy pays off dramatically
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0/1 Models

A Different Model

Model shown is not the only way to express problem
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0/1 Models

0/1 Models

SAT (Minisat)
Pseudo Boolean (Minisat+)
MIP (Coin-OR)

Helmut Simonis Limits of Propagation 47

0/1 Models

0/1 Models: Variables

Xiv : Variable i takes value v
Dijv : Difference between variables i and j is v
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0/1 Models

MIP Model: Constraints

alldifferent between variables∑
i Xiv = 1∑
v Xiv = 1

alldifferent between differences∑
v Dijv = 1∑
i−j=c Dijv ≤ 1

link between variables and differences
Dijv =

∑
v1=v2+v Xiv1Xjv2
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Overview

How to develop large applications in ECLiPSe
Software development issues for Prolog
This is essential for large applications

But it may show benefits already for small programs

This is not about problem solving, but the boring bits of
application development
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Disclaimer

This is not holy writ
But it works!

This is a team issue
People working together must agree
Come up with a local style guide

Consistency is not optional
Every shortcut must be paid for later on

This is an appetizer only
The real story is in the tutorial Developing Applications with
ECLiPSe (part of the ECLiPSe documentation)
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Application Structure

Full Application Batch Application

Java Application User

ECLiPSe/Java Interface

ECLiPSe Application

Data Files

ECLiPSe Application
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LSCO Structure

prepare data

create variables

create constraints

find solution

output results
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Top-Down Design

Design queries
UML static class diagram (structure definitions)
API document/test cases
Top-level structure
Data flow analysis
Allocate functionality to modules
Syntactic test cases
Module expansion

Using programming concepts where possible
Incremental changes
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Modules

Grouping of predicates which are related
Typically in a single file
Defined external interfaces

Which predicates are exported
Mode declaration for arguments
Intended types for arguments
Documentation

Helps avoid Spaghetti structure of program
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Creating Documentation

Your program can be documented in the same way as
ECLiPSe library predicates
Comment directives in source code
Tools to extract comments and produce HTML
documentation with hyper-links
Quality depends on effort put into comments
Every module interface should be documented
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Example

:- comment(prepare_data/4,[
summary:"creates the data structures

for the flow analysis",
amode:prepare_data(+,+,+,-),
args:[

"Dir":"directory for report output",
"Type":"the type of report to be generated",
"Summary":"a summary term",
"Nodes":"a nodes data structure"],

desc:html("
This routine creates the data
structures for the flow analysis.
...
"),

see_also:[hop/3]
]).
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External Data Representation

Property Argument Data
File

Term
File Facts EXDR

Multiple runs ++ + + - +
Debugging - + + ++ -

Test generation
effort - + + + -

Java I/O Effort - + - - +
ECLiPSe
I/O Effort ++ + ++ ++ ++

Memory ++ - - – -
Develoment

Effort + - + + -
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Internal Data Representation

Named structures
Define & document properly

Lists
Do not use for fixed number of elements

Hash tables, e.g. lib(hash)
Efficient
Extensible
Multiple keys possible

Vectors & arrays
Requires that keys are integers (tuples)

Multi-representation
Depending on key use one of multiple representations
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Internal Representation Comparison

Named
Structures Lists Hash

Tables
Vectors
Arrays

Multi-
representation

hold
disparate

data
++ – – – –

access
specific

info
+ – + + +

add new
entries – + ++ – –

do
loops + ++ - ++ ++

sort
entries – ++ - - ++

index
calculations - – – ++ +
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Getting it to work

Early testing lib(test_util)
Define what a piece of code should do by example
May help to define behaviour

Stubs
Line coverage lib(coverage)

Check that tests cover code base
Heeding warnings of compiler, lib(lint)

Eliminate all causes of warnings
Singleton warnings typically hide more serious problems

Small, incremental changes
Matter of style
Works for most people
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Programming Concepts

Many programming tasks are similar
Finding the right information
Putting things together in the right sequence

We don’t need the fastest program, but the easiest to
maintain

Squeezing the last 10% improvement normally does not
pay

Avoid unnecessary inefficiency
lib(profile), lib(port_profiler)

Helmut Simonis Systematic Development 16



Introduction
Application Structure

Documentation
Data Representation

Programming Concepts
Style Guide

List of concepts

Alternatives
Iteration (list, terms, arrays)
Transformation
Filtering
Combine
Minimum/Best and rest
Sum
Merge
Group
Lookup
Cartesian
Ordered pairs
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Example: Cartesian

:-mode cartesian(+,+,-).
cartesian(L,K,Res):-

(foreach(X,L),
fromto([],In,Out,Res),
param(K) do

(foreach(Y,K),
fromto(In,In1,[pair(X,Y)|In1],Out),
param(X) do

true
)

).
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Input/Output

Section on DCG use
Grammars for parsing and generating text formats

XML parser in ECLiPSe
lib(xml)

EXDR format to avoid quoting/escaping problems
Tip:

Generate hyper-linked HTML/SVG output to present
data/results as development aid
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If it doesn’t work

Understand what happens
Which program point should be reached with which
information?
Why do we not reach this point?
Which data is wrong/missing?

Do not trace through program!
Debugging is like solving puzzles

Pick up clues
Deduce what is going on
Do not simulate program behaviour!
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Correctness and Performance

Testing
Profiling
Code Reviews

Makes sure things are up to a certain standard
Don’t expect reviewer to find bugs

Things to watch out for
Unwanted choice points
Open streams
Modified global state
Delayed goals
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Did I mention testing?

Single most important/neglected activity
Re-test directly after every change

Identifies faulty modification
Avoids lengthy debugging session after making 100s of
changes

Independent verification
Check results by hand (?)
By other program (??)
Use constraint solver as checker
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Style Guide

Rules that should be satisfied by finished program
Things may be relaxed during prototyping
Often, choice among valid alternatives is made arbitrarily,
so that a consistent way is defined
If you don’t like it, change it!

But: better a bad rule than no rule at all!

Helmut Simonis Systematic Development 23

Introduction
Application Structure

Documentation
Data Representation

Programming Concepts
Style Guide

Style Guide Examples

There is one directory containing all code and its
documentation (using sub-directories).
Filenames are of form [a-z][a-z_]+ with extension
.ecl .
One file per module, one module per file.
Each module is documented with comment directives.
...
Don’t use ’,’/2 to make tuples.
Don’t use lists to make tuples.
Avoid append/3 where possible, use accumulators
instead.
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Layout rules

How to format ECLiPSe programs
Pretty-printer format
Eases

Exchange of programs
Code reviews
Bug fixes
Avoids extra reformatting work
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Core Predicates List

Alphabetical predicate index lists 2940 entries
You can’t possibly learn all of them
Do you really want to know what
set_typed_pool_constraints/3 does?

List of Prolog predicates you need to know
69 entries, more manageable

Ignores all solver libraries
If you don’t know what an entry does, find out about it

what does write_exdr/2 do?

If you use something not on the list, start to wonder...
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Other Sources

Developing Applications with ECLiPSe
H. Simonis
http://www.eclipse-clp.org

Constraint Logic Programming Using ECLiPSe
K. Apt, M. Wallace
Cambridge University Press

The Craft of Prolog
R.O’Keefe, MIT Press
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Conclusions

Large scale applications can be built with ECLiPSe
Software engineering is not that different for Prolog
Many tasks are similar regardless of solver used
Correctness of program is useful even for research work
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What we want to introduce

How to visualize constraint programs
Variable visualizers
Understanding search trees
Constraint visualizers
Complex visualizations
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What we want to introduce

Finite set variables
Continuous domains
Optimization from below
Advanced symmetry breaking
SONET design problem without inter-ring flows
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Problem Definition

SONET Design Problem

We want to design a network with multiple SONET rings,
minimizing ADM equipment. Traffic can only be transported
between nodes connected to the same ring, not between rings.
Traffic demands between nodes are given. Decide which nodes
to place on which ring(s), respecting a maximal number of ADM
per ring, and capacity limits on ring traffic. If two nodes are
connected on more than one ring, the traffic between them can
be split arbitrarily between the rings. The objective is to
minimize the overall number of ADM.
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Example

N1

N2

N3

N4

R1 R2
R3

3 rings, 4 nodes, 8 ADMEvery node connected to at least one
ringOn every ring are at least two nodesN1 connected to R2
and R3N4 and N2 can’t talk to each otherTraffic between N1
and N2 must use R2Traffic between N2 and N3 can use either
R1 or R2, or both
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Data

Demands d ∈ D between nodes fd and td of size sd

Rings R, total of |R| = r rings
Each ring has capacity c
Nodes N
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Model

Primary model integer 0/1 variables xik
Node i has a connection to ring k
A node can be connected to more than one ring

Continuous [0..1] variables fdk
Which fraction of total traffic of demand d is transported on
ring k
A demand can use a ring only if both end-points are
connected to it
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Constraints

min
∑
i∈N

∑
k∈R

xik

s.t. ∑
i∈N

xik ≤ r (1)∑
k∈R

fdk = 1 (2)∑
d∈D

sd ∗ fdk ≤ c (3)

fdk ≤ xfd k (4)
fdk ≤ xtd k (5)
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Dual Models

Introducing finite set variables
Range over sets of integers, not just integers
Most useful when we don’t know the number of items
involved
Here: for each node, the rings on which it is placed
Could be one, could be two, or more
Hard to express with finite domain variables alone
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Dual Model 1

Finite set variables Ni
Which rings node i is connected to

Cardinality finite domain variables ni
|Ni | = ni

Helmut Simonis Finite Set and Continuous Variables 11
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Dual Model 2

Finite set variables Rk
Which nodes ring k is connected to

Cardinality finite domain variables rk
|Rk | = rk
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Channeling between models

Use the zero/one model as common ground
xik = 1⇔ k ∈ Ni

xik = 1⇔ i ∈ Rk
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Constraints in dual models

For every demand, source and sink must be on (at least
one) shared ring

∀d ∈ D : |Nfd ∩ Ntd | ≥ 1
Every node must be on a ring

ni ≥ 1
A ring can not have a single node connected to it

rk 6= 1
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Assignment Strategy

Cost based decomposition
Assign total cost first
Then assign ni variables
Finally, assign xik variables
If required, fix flow fdk variables
Might leave flows as bound-consistent continuous domains
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Optimization from below

Optimization handled by assigning cost first
Enumerate values increasing from lower bound
First feasible solution is optimal
Depends on proving infeasibility rapidly
Does not provide sub-optimal initial solutions
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Redundant Constraints

Deduce bounds in ni variables
Helps with finding ni assignment which can be extended

Symmetry Breaking
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Symmetries

Typically no symmetries between demands
Full permutation symmetry on rings
Gives r ! permutations
These must be handled somehow
Further symmetries if capacity seen as discrete channels
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Symmetry Breaking Choices

As part of assignment routine
SBDS (symmetry breaking during search)
Define all symmetries as parameter
Search routine eliminates symmetric sub-trees

By stating ordering constraints
As shown in the BIBD example
Ordering constraints not always compatible with search
heuristic
Particular problem of dynamic variable ordering
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Defining finite set variables

Library ic_sets
Domain definition X :: Low..High

Low, High sets of integer values, e.g. [1,3,4]
or intsets(L,N,Min,Max)

L is a list of N set variables
each containing all values between Min and Max
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Using finite set variables

Set Expressions: A ∧ B, A ∨ B

Cardinality constraint: #(Set,Size)
Size integer or finite domain variable

membership_booleans(Set,Booleans)
Channeling between set and 0/1 integer variables
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Using continuous variables

Library ic handles both
Finite domain variables
Continuous variables

Use floats as domain bounds, e.g. X :: 0.0 .. 1.0

Use $= etc for constraints instead of #=
Bounds reasoning similar to finite case
But must deal with safe rounding
Not all constraints deal with continuous variables
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Ambiguous Import

Multiple solvers define predicates like ::

If we load multiple solvers in the same module, we have to
tell ECLiPSe which one to use
Compiler does not deduce this from context!
So

ic:(X :: 1..3)
ic_sets:(X :: [] .. [1,2,3])

Otherwise, we get loads of error messages
Happens whenever two modules export same predicate
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Top-level predicate

:-module(sonet).
:-export(top/0).
:-lib(ic),lib(ic_global),lib(ic_sets).

top:-
problem(NrNodes,NrRings,Demands,

MaxRingSize,ChannelSize),
length(Demands,NrDemands),
...
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Matrix of xik integer variables

...
dim(Matrix,[NrNodes,NrRings]),
ic:(Matrix[1..NrNodes,1..NrRings] :: 0..1),
...
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Node and ring set variables

...
dim(Nodes,[NrNodes]),
intsets(Nodes[1..NrNodes],NrNodes,1,NrRings),
dim(NodeSizes,[NrNodes]),
ic:(NodeSizes[1..NrNodes] :: 1..NrRings),
dim(Rings,[NrRings]),
intsets(Rings[1..NrRings],NrRings,1,NrNodes),
dim(RingSizes,[NrRings]),
ic:(RingSizes[1..NrRings] :: 0..MaxRingSize),
...
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Channeling node set variables

...
(for(I,1,NrNodes),
param(Matrix,Nodes,NodeSizes,NrRings) do

subscript(Nodes,[I],Node),
subscript(NodeSizes,[I],NodeSize),
#(Node,NodeSize),
membership_booleans(Node,

Matrix[I,1..NrRings])
),
...
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Channeling ring set variables

...
(for(J,1,NrRings),
param(Matrix,Rings,RingSizes,NrNodes) do

subscript(Rings,[J],Ring),
subscript(RingSizes,[J],RingSize),
RingSize #\= 1,
#(Ring,RingSize),
membership_booleans(Ring,

Matrix[1..NrNodes,J])
),
...

Helmut Simonis Finite Set and Continuous Variables 28



Problem
Program

Search
Conclusions

Demand ends must be (on atleast one) same ring

...
(foreach(demand(I,J,_Size),Demands),
param(Nodes,NrRings) do

subscript(Nodes,[I],NI),
subscript(Nodes,[J],NJ),
ic:(NonZero :: 1..NrRings),
#(NI /\ NJ,NonZero)

),
...
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Flow Variables

...
dim(Flow,[NrDemands,NrRings]),
ic:(Flow[1..NrDemands,1..NrRings]::0.0 .. 1.0),
(for(I,1,NrDemands),
param(Flow,NrRings) do

(for(J,1,NrRings),
fromto(0.0,A,A+F,Term),
param(Flow,I) do
subscript(Flow,[I,J],F)
),
eval(Term) $= 1.0

),
...
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Ring Capacity Constraints

...
(for(I,1,NrRings),
param(Flow,Demands,ChannelSize) do

(foreach(demand(_,_,Size),Demands),
count(J,1,_),
fromto(0.0,A,A+Size*F,Term),
param(Flow,I) do
subscript(Flow,[J,I],F)
),
eval(Term) $=< ChannelSize

),
...
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Linking xik and fdk variables

...
(foreach(demand(From,To,_),Demands),
count(I,1,_),
param(Flow,Matrix,NrRings) do

(for(K,1,NrRings),
param(I,From,To,Flow,Matrix) do
subscript(Flow,[I,K],F),
subscript(Matrix,[From,K],X1),
subscript(Matrix,[To,K],X2),
F $=< X1,
F $=< X2
)

),
...

Helmut Simonis Finite Set and Continuous Variables 32



Problem
Program

Search
Conclusions

Setting up degrees

...
dim(Degrees,[NrNodes]),
(for(I,1,NrNodes),
param(Degrees) do

subscript(Degrees,[I],Degree),
neighbors(I,Neighbors),
length(Neighbors,Degree)

),
...

Helmut Simonis Finite Set and Continuous Variables 33

Problem
Program

Search
Conclusions

Defining cost and assigning values

...
sumlist(NodeSizesList,Cost),
assign(Cost,Handle,NrNodes,Degrees,

NodeSizes,Matrix).
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Assignment Routines

assign(Cost,Handle,NrNodes,Degrees,
NodeSizes,Matrix):-

indomain(Cost),
order_sizes(NrNodes,Degrees,NodeSizes,

OrderedSizes),
search(OrderedSizes,1,input_order,indomain,

complete,[]),
order_vars(Degrees,NodeSizes,Matrix,

VarAssign),
search(VarAssign,0,input_order,indomain_max,

complete,[]).
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Order ring size variables by increasing degree

order_sizes(NrNodes,Degrees,NodeSizes,
OrderedSizes):-

(for(I,1,NrNodes),
foreach(t(X,D),Terms),
param(Degrees,NodeSizes) do

subscript(Degrees,[I],D),
subscript(NodeSizes,[I],X)

),
sort(2,=<,Terms,OrderedSizes).
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Ordering decision variables

order_vars(Degrees,NodeSizes,Matrix,VarAssign):-
dim(Matrix,[NrNodes,NrRings]),
(for(I,1,NrNodes),
foreach(t(Size,Y,I),Terms),
param(Degrees,NodeSizes) do

subscript(NodeSizes,[I],Size),
subscript(Degrees,[I],Degree),
Y is -Degree

),
sort(0,=<,Terms,Sorted),
...
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Ordering decision variables

...
(foreach(t(_,_,I),Sorted),
fromto(VarAssign,A1,A,[]),
param(NrRings,Matrix) do

(for(J,1,NrRings),
fromto(A1,[X|AA],AA,A),
param(I,Matrix) do

subscript(Matrix,[I,J],X)
)

).
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Data (13 nodes, 7 rings, 24 demands)

problem(13,7,
[demand(1,9,8),demand(1,11,2),demand(2,3,25),
demand(2,5,5),demand(2,9,2),demand(2,10,3),
demand(2,13,4),demand(3,10,2),demand(4,5,4),
demand(4,8,1),demand(4,11,5),demand(4,12,2),
demand(5,6,5),demand(5,7,4),demand(7,9,5),
demand(7,10,2),demand(7,12,6),demand(8,10,1),
demand(8,12,4),demand(8,13,1),demand(9,12,5),
demand(10,13,9),demand(11,13,3),
demand(12,13,2)
],5,40).
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Neighbors of a node

neighbors(N,List):-
problem(_,_,Demands,_,_),
(foreach(demand(I,J,_),Demands),
fromto([],A,A1,List),
param(N) do

(N = I ->
A1 = [J|A]

; N = J ->
A1 = [I|A]

;
A1 = A

)
).
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Search at Cost 18-21
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Search at Cost 22
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Search at Cost 23
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Conclusions

Introduced finite set and continuous domain solvers
Finite set variables useful when values are sets of integers
Useful when number of items assigned are unknown
Can be linked with finite domains (cardinality) and 0/1
index variables
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Continuous domain variables

Allow to reason about non-integral values
Bound propagation similar to bound propagation over
integers
Difficult to enumerate values
Assignment by domain splitting
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SONET Problem

Example of optical network problems
Competitive solution by combination of techniques
Channeling, redundant constraints, symmetry breaking
Decomposition by branching on objective value
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Outline

1 Traffic Placement

2 Capacity Management

3 Other Problems
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Common Theme

How can we get better performance out of a given
network?
Make network transparent

Users should not need to know about details
Service maintained even if failures occur

Restricted by accepted techniques available in hardware
Interoperability between multi-vendor equipment
Very conversative deployment strategies
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Reminder: IP Networks

Packet forwarding
Connection-less
Destination based routing

Distributed routing algorithm based on shortest path
algorithm
Routing metric determines preferred path

Best effort
Packets are dropped when there is too much traffic on
interface
Guaranteed delivery handled at other layers
(TCP/applications)
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Disclaimer

Flexible border between CP and OR
CP is ...

what CP people do.
what is published in CP conferences.
what uses CP languages.

Does not mean that other approaches are less valid!
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Example Network (Uniform metric 1, Capacity 100)

A

B

C

D

E

R1 R2

R3 R4

1

1

1

1

1

1

1

1 1

1

11

1

1
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Example Traffic Matrix

Only partially filled in for example

A B C D E
A 0 0 10 20 20
B 0 0 10 20 20
C 0 0 0 0 0
D 0 0 0 0 0
E 0 0 0 0 0
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Using Routing

Demand AC 10

A

B

C

D

E

R1 R2

R3 R4

10

10 10
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Using Routing

Demand AD 20

A

B

C

D

E

R1 R2

R3 R4

20 20

20
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Using Routing

Demand BC 10
A

B

C

D

E

R1 R2

R3 R4

5

5 5

5 5

5
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Using Routing

Demand BD 20

A

B

C

D

E

R1 R2

R3 R4

10

10 10

10

10

10
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Using Routing

Demand AE 20

A

B

C

D

E

R1 R2

R3 R4

20

20
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Using Routing

Demand BE 20
A

B

C

D

E

R1 R2

R3 R4

20

20

Helmut Simonis Network Applications 14



Traffic Placement
Capacity Management

Other Problems

Link Based Model
Path-Based Model
Node-Based Model
Commercial Solution
Multiple Paths

Resulting Network Load

A

B

C

D

E

R1 R2

R3 R4

50

35

15 15

30

55 15

5

15

5
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Considering failure of R1-E

A

B

C

D

E

R1 R2

R3 R4

15

35

10

55

10

65

35

40 20

5

30

10
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Can we do better?

Choose single, explicit path for each demand
Requires hardware support in routers (MPLS-TE)
Baseline: CSPF, greedy heuristic
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Why not just use Multi-Commodity Flow Problem
Solution?

Can not use arbitrary, fractional flows in hardware
MILP does not scale too well
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Modelling Alternatives

Link based Model
Path based Model
Node based Model
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Variants

Demand Acceptance
Choose which demands to select fitting into available
capacity

Traffic Placement
All demands must be placed
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Intuition

Decide if demand d is run over link e
Select which demands run over link e (Knapsack)
Demand d must run from source to sink (Path)
Sum of delay on path should be limited (QoS)
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Link Based Model

min
{Xde}

max
e∈E

1
cap(e)

∑
d∈D

bw(d)Xde or min
{Xde}

∑
e∈E,d∈D

bw(d)Xde

st.

∀d ∈ D,∀n ∈ N :
∑

e∈OUT(n)

Xde −
∑

e∈IN(n)

Xde =


−1 n = dest(d)

1 n = orig(d)

0 otherwise

∀e ∈ E :
∑
d∈D

bw(d)Xde ≤ cap(e)

∀d ∈ D :
∑
e∈E

del(e)Xde ≤ req(d)

Xde ∈ {0, 1}
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Solution Methods

Lagrangian Relaxation
Path decomposition
Knapsack decomposition

Probe Backtracking
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Lagrangian Relaxation - Path decomposition

[Ouaja&Richards2003]
Dualize capacity constraints
Starting with CSPF initial solution
Finite domain solver for path constraints
Added capacity constraints from st-cuts
At each step solve shortest path problems
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Lagrangian Relaxation - Knapsack decomposition

[Ouaja&Richards2005]
Dualize path constraints
At each step solve knapsack problems
Reduced cost based filtering
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Probe Backtracking

[Liatsos et al 2003]
Start with (infeasible) CSPF heuristic
Consider capacity violation

Resolve by forcing one demand off/on link
Find new path respecting path and added constraints with
ILP

Repeat until no more violations, feasible solution
Optimality proof when exhausted search space

Search space often very small
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Intuition

Choose one of the possible paths for demand d
This paths competes with paths of other demands for
bandwidth
Usually too many paths to generate a priori, but most are
useless
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Path-Based Model

max
{Zd ,Yid}

∑
d∈D

val(d)Zd

st.

∀d ∈ D :
∑

1≤i≤path(d)

Yid = Zd

∀e ∈ E :
∑
d∈D

bw(d)
∑

1≤i≤path(d)

he
idYid ≤ cap(e)

Zd ∈ {0, 1}
Yid ∈ {0, 1}
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Solution Methods

Blocking Islands
Local Search/ FD Hybrid
(Column Generation)
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Blocking Islands

[Frei&Faltings1999]
Feasible solution only
CSP with variables ranging over paths for demands
No explicit domain representation
Possible to perform forward checking by updating blocking
island structure

Helmut Simonis Network Applications 30



Traffic Placement
Capacity Management

Other Problems

Link Based Model
Path-Based Model
Node-Based Model
Commercial Solution
Multiple Paths

Local Search/FD Hybrid

[Lever2004]
Start with (feasible) CSPF heuristic
Add more demands one by one

Use repair to solve capacity violations
Use FD model to check necessary conditions

Determine bottlenecks by st-cuts
Force paths on/off links

Define neighborhood by rerouting demands currently over
violations
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Node Based Model: Intuition

For each demand, decide for each router where to go next
Many routers not used

Treat link capacity with cumulative/diffn constraints
Pure FD model, no global cost view
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Cisco ISC-TEM

Path placement algorithm developed for Cisco by PTL and
IC-Parc (2002-2004)
Internal competitive selection of approaches
Strong emphasis on stability
Written in ECLiPSe
PTL bought by Cisco in 2004
Part of team moved to Boston
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Problem

What happens if element on selected path fails?
Choose second path which is link (element) disjoint
State bandwidth constraints for each considered failure
case
Problem: Very large number of capacity constraints
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Example

Primary/Secondary path for demand AE

A

B

C

D

E

R1 R2

R3 R4

20

20

20 20

20

20
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Which bandwidth to count?

Failed Element No Failure A-R1 R1-E All Others
Capacity for Path Primary Secondary Secondary Primary
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Multiple Path Model

max
{Zd ,Xde,Wde}

∑
d∈D

val(d)Zd

∀d ∈ D, ∀n ∈ N :
∑

e∈OUT(n)

Xde −
∑

e∈IN(n)

Xde =


−Zd n = dest(d)

Zd n = orig(d)

0 otherwise

∀e ∈ E :
∑
d∈D

bw(d) ∗ Xde ≤ cap(e)

∀d ∈ D, ∀n ∈ N :
∑

e∈OUT(n)

Wde −
∑

e∈IN(n)

Wde =


−Zd n = dest(d)

Zd n = orig(d)

0 otherwise

∀e ∈ E, ∀e′ ∈ E \ e :
∑
d∈D

bw(d) ∗ (Xde − Xde′ ∗ Xde + Xde′ ∗Wde) ≤ cap(e)

∀d ∈ D, ∀e ∈ E : Xde + Wde ≤ 1

Zd ∈ {0, 1}, Xde ∈ {0, 1}, Wde ∈ {0, 1}

Helmut Simonis Network Applications 37

Traffic Placement
Capacity Management

Other Problems

Link Based Model
Path-Based Model
Node-Based Model
Commercial Solution
Multiple Paths

Solution Method

Benders Decomposition [Xia&Simonis2005]
Use MILP for standard demand acceptance problem
Find two link disjoint paths for each demand
Sub-problems consist of capacity constraints for failure
cases
Benders cuts are just no-good cuts for secondary violations
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The Problem

How to provide cost effective, high quality services running
an IP network?
Easy to build high quality network by massive
over-provisioning
Easy to build consumer grade network disregarding Quality
of Service (QoS)
Very hard to right-size a network, providing just enough
capacity
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The Approach

Bandwidth on Demand
Create temporary bandwidth channels for high-value traffic
Avoid disturbing existing traffic

Resilience Analysis
Find out how much capacity is required for current traffic
Provide enough capacity to survive element failures without
service disruption
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Background

Failures of network should not affect services running on
network
Not cost effective to protect connections in hardware
Response time is critical

Interruption > 50ms not acceptable for telephony
Reconvergence of IGP 1 sec (good setup)
Secondary tunnels rely on signalling of failure (too slow)
Live/Live connections too expensive
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Approach

Fast Re-route
If element fails, use detour around failure
Local repair, not global reaction
Pre-compute possible reactions, allows offline optimization

Link protection rather easy
Node protection quite difficult
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Example Problem

k l

c f

j e

ce,cf

20

ce,cf
cf

ce

30

10
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Node j Failure

k l

c f

j e

20,30,40?

20

20,30,40?
20,30?

10?

30

10

Helmut Simonis Network Applications 44



Traffic Placement
Capacity Management

Other Problems

Bandwidth Protection
Bandwidth on Demand
Resilience Analysis

Node j Failure (Result)

k l

c f

j e

20,30,40?

20

20,30,40?
20,30?

10?

30

10
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Bandwidth Protection Model

min
{Xfe}

∑
f∈F

∑
e∈E

Xfe

st .



∀f ∈ F :



∀n ∈ N \ {orig(f ),dest(f )} :
∑

e∈IN(n)

Xfe =
∑

e∈OUT(n)

Xfe

n = orig(f ) :
∑

e∈OUT(n)

Xfe = 1

n = dest(f ) :
∑

e∈IN(n)

Xfe = 1

∀e ∈ E : cap(e) ≥



max
{Qfe}

∑
f∈F

XfeQfe

st .


∀o ∈ orig(F) : ocap(o) ≥

∑
f :orig(f )=o

Qfe

∀d ∈ dest(F) : dcap(o) ≥
∑

f :dest(f )=d

Qfe

Xfe ∈ {0, 1}
quan(f ) ≥ Qfe ≥ 0
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Solution Techniques

[Xia, Eremin & Wallace 2004]
MILP

Use of Karusch-Kahn-Tucker condition
Removal of nested optimization
Large set of new variables
Not scalable

Problem Decomposition
Integer Multi-Commodity Flow Problem
Capacity Optimization

Improved MILP out-performs decomposition [Xia 2005]
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Cisco Tunnel Builder Pro

Algorithm/Implementation built by PTL/IC-Parc for Cisco
Not based on published techniques above
In period 2000-2003
Written in ECLiPSe
Embedded in Java GUI
Now subsumed by ISC-TEM
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Planning Ahead

Consider demands with fixed start and end times
Demands overlapping in time compete for bandwidth
Demands arrive in batches, not always in temporal
sequence
Problem called Bandwidth on Demand (BoD)
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Model: BoD

max
{Zd ,Xde}

∑
d∈D

val(d)Zd

st.

T = {start(d)|d ∈ D}

∀d ∈ D,∀n ∈ N :
∑

e∈OUT(n)

Xde −
∑

e∈IN(n)

Xde =


−Zd n = dest(d)

Zd n = orig(d)

0 otherwise

∀t ∈ T, ∀e ∈ E :
∑
d∈D

start(d)≤t
t<end(d)

bw(d)Xde ≤ cap(e)

Zd ∈ {0, 1}
Xde ∈ {0, 1}
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Solution Methods

France Telecom for ATM network [Lauvergne et al 2002,
Loudni et al 2003]
Schlumberger Dexa.net (PTL, IC-Parc)
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Schlumberger Dexa.net

Small, but global MPLS TE+diffserv network
Oil field services
(Very) High value traffic

Well logging
Video conferencing

Bandwidth demand known well in advance, fixed period
Low latency, low jitter required
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Architecture

Provisioning Network

Demand Manager Resilience Analysis

Dexa.net Portal

Customer
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Workflow

Customer requests capacity for time slot via Web-interface
Demand Manager determines if request can be satisfied

Based on free capacity predicted by Resilience Analysis
Taking other, accepted BoD requests into account

Email back to customer
At requested time, DM triggers provisioning tool to

Set up tunnel
Change admission control

At end of period, DM pulls down tunnel
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How much free capacity do we have in network?

Easy for normal network state (OSS tools)
Challenge: How much is required for possible failure
scenarios?
Consider single link, switch, router, PoP failures
Classical solution

Get Traffic Matrix
Run scenarios through simulator
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How to get a Traffic Matrix?

Many algorithms assume given traffic matrix
Traffic flow information is not collected in the routers
Only link traffic is readily available
Demand pattern changes over time, often quite
dramatically
Measuring traffic flows with probes is very costly

From a network consultant:
We have been working on extracting a TM for this
network for 15 months, and we still don’t have a clue if
we’ve got it right.
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Idea

Use the observed traffic to deduce traffic flows
Network Tomography [Vardi1996]

All flows routed over a link cause the observed traffic
Must correct for observation errors
Highly dependent on accurate routing model

Gravity Model [Medina et al 2002]
Ignore core of network
Assume that flows are proportional to product of
ingress/egress size

Results are very hard to validate/falsify
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Model: Traffic Flow Analysis

∀i , j ∈ N : min
{Fij}

/ max
{Fij}

Fij

st.

∀e ∈ E :
∑
i,j∈N

re
ij Fij = traf(e)

∀i ∈ N :
∑
j∈N

Fij = extin(i)

∀j ∈ N :
∑
i∈N

Fij = extout(j)

Fij ≥ 0
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Start with Link Traffic

A

B

C

D

E

R1 R2

R3 R4

50

35

15 15

30

55 15

5

15

5
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Setup Model to Find Flows

[AC,AD,BC,BD,AE,BE] :: 0.0 .. 1.0Inf,
AC + AD + AE $= 50, % A R1
0.5*BC + 0.5*BD + BE $= 35, % B R1
0.5*BC + 0.5*BD $= 15, % B R3
AD + 0.5*BD $= 30, % R1 R2
AC + 0.5*BC + AE +BE $= 55, % R1 E
AD + 0.5*BD $= 30, % R2 D
0.5*BC + 0.5*BD $= 15, % R3 R4
AC + 0.5*BC $= 15, % E C
0.5*BC $= 5, % R4 C
0.5*BD $= 10, % R4 D
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Solve for Different Flows

min(AC,MinAC),max(AC,MaxAC),
min(AD,MinAD),max(AD,MaxAD),
min(BC,MinBC),max(BC,MaxBC),
min(BD,MinBD),max(BD,MaxBD),
min(AE,MinAE),max(AE,MaxAE),
min(BE,MinBE),max(BE,MaxBE),
...
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Results of Analysis

C D E
A 10 20 20
B 10 20 20

Problem solved, no?
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Benchmark Problems

Network Routers PoPs Lines Lines/router
dexa 51 24 59 1.15
as1221 108 57 153 1.41
as1239 315 44 972 3.08
as1755 87 23 161 1.85
as3257 161 49 328 2.03
as3967 79 22 147 1.86
as6461 141 22 374 2.65
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TFA Result for Benchmarks

Network Low
Simul (%) High

Simul (%) Obj Time (sec)
dexa 0 2310.65 1190 11
as1221 0.09 8398.64 11556 1318
as1239 n/a n/a n/a n/a
as1755 0.15 6255.31 7482 699
as3257 0.04 12260.03 25760 12389
as3967 0.1 5387.10 6162 500
as6461 0.28 8688.39 19740 8676
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Bandwidth Protection
Bandwidth on Demand
Resilience Analysis

Reduce Problem Size

Pop Level Analysis
Only consider flows between PoPs, not routers
Local area connections typically not bottlenecks
Modelling routing can be tricky
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Other Problems

Bandwidth Protection
Bandwidth on Demand
Resilience Analysis

PoP Level Results

Network Low
Simul (%) High

Simul (%) Obj Time (sec)
dexa 0 1068.37 557 5
as1221 0.24 2964.93 3205 424
as1239 0.63 1401.72 1931 101359
as1755 0.66 1263.28 526 103
as3257 0.30 2028.73 2378 2052
as3967 0.1 1209.37 483 90
as6461 1.47 951.41 481 768
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Bandwidth Protection
Bandwidth on Demand
Resilience Analysis

Increase Accuracy

LSP Counters
In MPLS networks only, provide improved resolution
Implementation buggy, not all counters can be used

Netflow
Collect end-to-end flow information in router
Impact on router (memory)
Impact on network (data aggregation)
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Bandwidth Protection
Bandwidth on Demand
Resilience Analysis

TFA with LSP Counters

Network Low
Simul (%) High

Simul (%) Obj Time (sec)
dexa 30.35 249.71 1190 7
as1221 9.94 685.37 11556 885
as1239 10.74 1151.03 98910 72461
as1755 25.29 269.30 7482 397
as3257 23.77 425.67 25760 5121
as3967 24.47 300.17 6162 275
as6461 19.43 477.44 19740 2683
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Bandwidth Protection
Bandwidth on Demand
Resilience Analysis

PoP TFA with LSP Counters

Network Low
Simul (%) High

Simul (%) Obj Time (sec)
dexa 60.62 145.85 557 3
as1221 28.49 499.16 3205 271
as1239 33.36 211.84 1931 2569
as1755 50.33 169.37 526 46
as3257 36.82 249.16 2378 640
as3967 40.72 182.97 483 36
as6461 34.05 210.93 481 136
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Bandwidth Protection
Bandwidth on Demand
Resilience Analysis

What now?

Choose some particular solution?
Which one? How to validate assumptions?
Massively under-constrained problem

|N|2 variables
|E |+ 2|N| constraints
2|N|2 queries

Ill-conditioned even after error correction
Aggregation helps

We are usually not interested in individual flows
We want to use the TM to investigate something else

Helmut Simonis Network Applications 70



Traffic Placement
Capacity Management

Other Problems

Bandwidth Protection
Bandwidth on Demand
Resilience Analysis

Resilience Analysis

How much capacity is needed to survive all reasonable
failures?
Use normal state as starting point
Consider routing in each failure case
Aggregate flows in rerouted network
Calculate bounds on traffic in failure case
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Bandwidth Protection
Bandwidth on Demand
Resilience Analysis

Model: Resilience Analysis

∀e ∈ E : min
{Fij}

/ max
{Fij}

∑
i,j∈N

r̄e
ij Fij

st.

∀e ∈ E :
∑
i,j∈N

re
ij Fij = traf(e)

∀i ∈ N :
∑
j∈N

Fij = extin(i)

∀j ∈ N :
∑
i∈N

Fij = extout (j)

Fij ≥ 0
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Bandwidth on Demand
Resilience Analysis

Resilience Analysis

Network Low
Simul (%) High

Simul (%) Obj Time (sec) Cases
dexa 68.91 108.25 3503 57 59
as1221 85.75 102.60 14191 2869 153
as1239 92.53 102.64 4499 44205 10
as1755 92.82 105.39 8409 1815 161
as3257 93.69 103.15 31093 39934 328
as3967 91.60 108.79 9090 1635 141
as6461 96.51 103.44 24808 20840 374

Helmut Simonis Network Applications 73

Traffic Placement
Capacity Management
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Bandwidth Protection
Bandwidth on Demand
Resilience Analysis

Results over 100 runs

Network lower bound/simul upper bound/ simul
average stdev average stdev

dexa 91.50 0.14 108.28 0.16
as1755 88.65 0.11 106.08 0.056
as3967 94.08 0.073 106.88 0.091
as1221 87.34 0.10 102.05 0.025
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Bandwidth Protection
Bandwidth on Demand
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Results with LSP counters

Network Low
Simul (%) High

Simul (%) Obj Time Cases
dexa 97.76 101.33 3503 36 59
as1221 98.15 100.69 14191 1840 153
as1239 99.37 100.38 4499 3974 10
as1755 99.28 100.66 8409 964 161
as3257 99.41 100.44 31093 13381 328
as3967 98.88 101.00 9090 819 147
as6461 99.44 100.52 24808 8006 374
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Bandwidth Protection
Bandwidth on Demand
Resilience Analysis

Results over 100 runs (with LSP Counters)

Network lower bound/simul upper bound/ simul
average stdev average stdev

dexa 99.60 0.029 100.33 0.025
as1755 99.31 0.016 100.63 0.015
as3967 99.41 0.014 100.61 0.014
as1221 98.10 0.025 100.57 0.010
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Bandwidth Protection
Bandwidth on Demand
Resilience Analysis

Perspectives

High polynomial complexity
Possible to reduce number of queries

Small differences between failure cases
Many queries are identical or dominated

Possible to reduce size of problem dramatically
Integrate multiple measurements in one model
Which other problems can we solve without explicit TM?
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Other Problems

Network Design
IGP Metric Optimization

Problem

Which links should be used to build network structure?
Link speed is related to cost
Model simple generalization of path finding
Assumptions about routing in target network?
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Network Design
IGP Metric Optimization

Model

min
{Xde,Wie}

∑
e∈E

∑
1≤i≤alt(e)

cost(i , e)Wie

∀d ∈ D,∀n ∈ N :
∑

e∈OUT(n)

Xde −
∑

e∈IN(n)

Xde =


−1 n = dest(d)

1 n = orig(d)

0 otherwise

∀e ∈ E :
∑
d∈D

bw(d)Xde ≤
∑

1≤i≤alt(e)

cap(i , e)Wie

∀e ∈ E :
∑

1≤i≤alt(e)

Wie = 1

Wie ∈ {0, 1}
Xde ∈ {0, 1}
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Network Design
IGP Metric Optimization

Issues

Real-life problem not easily modelled
Possible choices/costs not easily obtained (outside US)
Choices often are inter-related
Package deals by providers
Some regions don’t allow any flexibility at all
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Network Design
IGP Metric Optimization

Problem

How to set weights in IGP to avoid bottlenecks?
Easy to beat default values
Single/equal cost paths required/allowed/forbidden?
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Network Design
IGP Metric Optimization

Model

min
{Yid ,We}

max
e∈E

1
cap(e)

∑
d∈D

bw(d)
∑

1≤i≤path(d)

he
id Yid

st.

∀d ∈ D :
∑

1≤i≤path(d)

Yid = 1

∀d ∈ D, 1 ≤ i ≤ path(d) : Pid =
∑
e∈E

he
id We

∀d ∈ D, 1 ≤ i, j ≤ path(d) : Pid = Pjd =⇒ Yid = Yjd = 0

∀d ∈ D, 1 ≤ i, j ≤ path(d) : Pid < Pjd =⇒ Yjd = 0

Yid ∈ {0, 1}
integer We ≥ 1

Pid ≥ 0
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Solution Methods

Methods tested at IC-Parc
Branch and price
Tabu search
Set constraints

Very hard to compete with (guided) local search
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Further Reading

H. Simonis. Constraint Applications in Networks. Chaper 25 in
F. Rossi, P van Beek and T. Walsh: Handbook of Constraint
Programming. Elsevier, 2006.
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Summary

Network problems can be solved competitively by
constraint techniques.
Hybrid methods required, simple FD models usually don’t
work.
Constraint based tools commercial reality.
Open Problems

How to make this easier to develop?
How to make this more stable to solve?
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Chapter 16: More Global Constraints (Car
Sequencing)

Helmut Simonis

Cork Constraint Computation Centre
Computer Science Department

University College Cork
Ireland

ECLiPSe ELearning Overview
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Licence

This work is licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License.
To view a copy of this license, visit http:
//creativecommons.org/licenses/by-nc-sa/3.0/ or
send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.
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Outline

1 Problem

2 Program

3 Search

4 Improved Search Strategy

Helmut Simonis More Global Constraints 3

Problem
Program

Search
Improved Search Strategy

What we want to introduce

Car Sequencing Problem
gcc Global cardinality constraint
sequence constraint
Search based auxiliary variables
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Problem Definition

Car Sequencing

We have to schedule a number of cars for production on an
assembly line. Each car is of a certain type, and we know how
many cars of each type we have to produce. Car types differ in
the options they require, i.e. sun-roof, air conditioning. For each
option, we have capacity limits on the assembly line, expressed
as k cars out of n consecutive cars on the line may have some
option. Find an assignment which produces the correct number
of cars of each type, while satisfying the capacity constraints.
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Example (DSV88)

100 cars
18 types
5 options

Option 1: 1 out of 2
Option 2: 2 out of 3
Option 3: 1 out of 3
Option 4: 2 out of 5
Option 5: 1 out of 5
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Car Types
Cars Option

Type Required 1 2 3 4 5
1 5 1 1 0 0 1
2 3 1 1 0 1 0
3 7 1 1 1 0 0
4 1 0 1 1 1 0
5 10 1 1 0 0 0
6 2 1 0 0 0 1
7 11 1 0 0 1 0
8 5 1 0 1 0 0
9 4 0 1 0 0 1

10 6 0 1 0 1 0
11 12 0 1 1 0 0
12 1 0 0 1 0 1
13 1 0 0 1 1 0
14 5 1 0 0 0 0
15 9 0 1 0 0 0
16 5 0 0 0 0 1
17 12 0 0 0 1 0
18 1 0 0 1 0 0
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Solution
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Modelling Alternatives

Assign start time (sequence number) to each car
100 variables, each with 100 values
Handling of car types implicit
Symmetry breaking for cars of same type (inequalities)?
Capacity constraints?

Assign car type to each slot on assembly line
100 variables, 18 values
How to control number of cars of each type?
How to express capacity constraints?
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Model

100 Variables ranging over car types
gcc constraint to control number of items with same type
5× 100 0/1 variables indicating use of option for each slot
element constraints to map car types to options used
sequence constraints to enforce limits on each option
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gcc(Pattern, Variables)

gcc Global Cardinality Constraint
Pattern is list of terms gcc(Low, High, Value)

The overall number of variables taking value Value is
between Low and High

Generalization of alldifferent
Domain consistent version in ECLiPSe

Helmut Simonis More Global Constraints 11
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gcc Example

X1 :: [2,4], X2 :: [1,3,4], X3 :: [1,2,3,4],
X4 :: [3,4,5], X5 :: [3,4,5],
gcc([gcc(1,1,1),gcc(2,3,2),gcc(1,3,3),

gcc(0,4,4),gcc(1,3,5)],
[X1,X2,X3,X4,X5]),

X1 = ?, X2 = ?, X3 = ?, X4 = ?, X5 = ?
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gcc Reasoning

X1 :: [2,4], X2 :: [1,3,4], X3 :: [1,2,3,4],
X4 :: [3,4,5], X5 :: [3,4,5],
gcc([gcc(1,1,1),gcc(2,3,2),gcc(1,3,3),

gcc(0,4,4),gcc(1,3,5)],
[X1,X2,X3,X4,X5]),

X1 = ?2, X2 = ?, X3 = ?2, X4 = ?, X5 = ?

Helmut Simonis More Global Constraints 13
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gcc Next Step

X1 :: [2,4], X2 :: [1,3,4], X3 :: [1,2,3,4],
X4 :: [3,4,5], X5 :: [3,4,5],
gcc([gcc(1,1,1),gcc(2,3,2),gcc(1,3,3),

gcc(0,4,4),gcc(1,3,5)],
[X1,X2,X3,X4,X5]),

X1 = 2, X2 = ?1, X3 = 2, X4 = ?, X5 = ?
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gcc Continued

X1 :: [2,4], X2 :: [1,3,4], X3 :: [1,2,3,4],
X4 :: [3,44,5], X5 :: [3,44,5],
gcc([gcc(1,1,1),gcc(2,3,2),gcc(1,3,3),

gcc(0,4,4),gcc(1,3,5)],
[X1,X2,X3,X4,X5]),

X1 = 2, X2 = 1, X3 = 2, X4 = ?, X5 = ?
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gcc Made Domain Consistent

X1 :: [2,4], X2 :: [1,3,4], X3 :: [1,2,3,4],
X4 :: [3,4,5], X5 :: [3,4,5],
gcc([gcc(1,1,1),gcc(2,3,2),gcc(1,3,3),

gcc(0,4,4),gcc(1,3,5)],
[X1,X2,X3,X4,X5]),

X1 = 2, X2 = 1, X3 = 2, X4 ∈ {3, 5}, X5 ∈ {3, 5}
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How does the constraint solver do that?

Explained in optional material at end
Domain Consistent gcc
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element(X,List,Y)

List is a list of integers
The X th element of List is Y
The index starts from 1
Typical Uses:

Projection
Cost

Helmut Simonis More Global Constraints 18



Problem
Program

Search
Improved Search Strategy

Element Examples

Prime is 1 iff X ∈ 1..10 is a prime number

X :: 1..10,
element(X,[1,1,1,0,1,0,1,0,0,0],Prime),

Cost is the cost corresponding to the assignment of Y

Y :: 1..10,
element(Y,[5,3,34,0,3,1,12,12,1,3],Cost)
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sequence_total(Min,Max,Low,High,K,Vars)

Variables Vars have 0/1 domain
Between Min and Max variables have value 1
For every sub-sequence of length K , between Low and
High variables have value 1
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sequence_total Example

[X1,X2,X3,X4,X5,X6,X7,X8,X9,X10] :: 0..1,
sequence_total(2,3,1,2,3,

[X1,X2,X3,X4,X5,X6,X7,X8,X9,X10]),

X1 = 0, X4 = 0, X7 = 0, X10 = 0
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Example, cont’d

x1, x2, x3, x4, x5, x6, x7, x8, x9, x10

x1,

1..2︷ ︸︸ ︷
x2, x3, x4,

1..2︷ ︸︸ ︷
x5, x6, x7,

1..2︷ ︸︸ ︷
x8, x9, x10

x1,

3..6︷ ︸︸ ︷
1..2︷ ︸︸ ︷

x2, x3, x4,

1..2︷ ︸︸ ︷
x5, x6, x7,

1..2︷ ︸︸ ︷
x8, x9, x10

x1,

3..6︷ ︸︸ ︷
1..2︷ ︸︸ ︷

x2, x3, x4,

1..2︷ ︸︸ ︷
x5, x6, x7,

1..2︷ ︸︸ ︷
x8, x9, x10︸ ︷︷ ︸

2..3

x10,

3..6︷ ︸︸ ︷
1..2︷ ︸︸ ︷

x2, x3, x4,

1..2︷ ︸︸ ︷
x5, x6, x7,

1..2︷ ︸︸ ︷
x8, x9, x10︸ ︷︷ ︸

2..3
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Mathematical Equivalent

Vars = [x1, x2, ...xN ]

Min ≤
∑

1≤i≤N

xi ≤ Max

1 ≤ s ≤ N − k + 1 : Low ≤
∑

s≤j≤s+k−1

xj ≤ High
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Mathematical Equivalent

Pruning very different when using finite domain inequalities
Currently no domain consistent implementation of
sequence_total

Weaker version sequence (no global counters) domain
consistent
Currently using decomposition:

sequence_total = sequence + gcc + more
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Main Program

:-module(car).
:-export(top/0).
:-lib(ic).
:-lib(ic_global_gac).

top:-
problem(Problem),
model(Problem,L),
writeln(L).
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Structure Definitions

:-local struct(problem(cars,
models,
required,
using_options,
value_order)).

:-local struct(option(k,
n,
index_set,
total_use)).
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Model (Part 1)

model(problem{cars:NrCars,
models:NrModels,
required:Required,
using_options:List,
value_order:Ordered},L):-

length(L,NrCars),
L :: 1..NrModels,
(foreach(Cnt,Required),
count(J,1,_),
foreach(gcc(Cnt,Cnt,J),Card) do

true
),
gcc(Card,L),
...
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Model (Part 2)

...
(foreach(option{k:K,

n:N,
index_set:IndexSet,
total_use:Total},List),

param(L,NrCars) do
(foreach(X,L),
foreach(B,Binary),
param(IndexSet) do

element(X,IndexSet,B)
),
sequence_total(Total,Total,0,K,N,Binary)

),
search(L,0,input_order,ordered(Ordered),

complete,[]).Helmut Simonis More Global Constraints 28
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Data

problem(100,18,
[5,3,7,1,10,2,11,5,4,6,12,1,1,5,9,5,12,1],
[option(1,2,[1,2,3,5,6,7,8,14],

[1,1,1,0,1,1,1,1,0,0,0,0,0,1,0,0,0,0],48),
option(2,3,[1,2,3,4,5,9,10,11,15],

[1,1,1,1,1,0,0,0,1,1,1,0,0,0,1,0,0,0],57),
option(1,3,[3,4,8,11,12,13,18],

[0,0,1,1,0,0,0,1,0,0,1,1,1,0,0,0,0,1],28),
option(2,5,[2,4,7,10,13,17],

[0,1,0,1,0,0,1,0,0,1,0,0,1,0,0,0,1,0],34),
option(1,5,[1,6,9,12,16],

[1,0,0,0,0,1,0,0,1,0,0,1,0,0,0,1,0,0],17)],
[1,3,2,4,6,8,7,12,13,5,9,11,10,14,16,18,17,15]).
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Data Generation

Data not really stored as facts
Generated from text data files in different format
Benchmark set from CSPLIB
(http://www.csplib.org)
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DSV88 Example
More Difficult Example
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12
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14

18

16

17
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29
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27
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39

34

35

36

37

9


91
1

93

99

94
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1

97

4


41
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1 2
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1

13

6

3
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2

18

11
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DSV88 Example
More Difficult Example

Assignment Step 4
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DSV88 Example
More Difficult Example

Assignment Step 40
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DSV88 Example
More Difficult Example

Assignment Step 83
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DSV88 Example
More Difficult Example

Another Example (PR97)

100 cars
22 types
5 options

Option 1: 1 out of 2
Option 2: 2 out of 3
Option 3: 1 out of 3
Option 4: 2 out of 5
Option 5: 1 out of 5
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DSV88 Example
More Difficult Example

Second Example: Car Types

Cars Option
Type Required 1 2 3 4 5

1 6 1 0 0 1 0
2 10 1 1 1 0 0
3 2 1 1 0 0 1
4 2 0 1 1 0 0
5 8 0 0 0 1 0
6 15 0 1 0 0 0
7 1 0 1 1 1 0
8 5 0 0 1 1 0
9 2 1 0 1 1 0

10 3 0 0 1 0 0
11 2 1 0 1 0 0
12 1 1 1 1 0 1
13 8 0 1 0 1 0
14 3 1 0 0 1 1
15 10 1 0 0 0 0
16 4 0 1 0 0 1
17 4 0 0 0 0 1
18 2 1 0 0 0 1
19 4 1 1 0 0 0
20 6 1 1 0 1 0
21 1 1 0 1 0 1
22 1 1 1 1 1 1
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DSV88 Example
More Difficult Example

Search (Stopped After 1000 Nodes)
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41
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DSV88 Example
More Difficult Example

Observation

This does not look good
Typical thrashing behaviour
We made a wrong choice at some point
... but did not detect it
Many additional choices are made before failure is
detected
We have to explore the complete tree under the wrong
choice
This is far too expensive
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Change of Search Strategy

Do not label car slot variables
Decide instead if slot should use an option or not
This restricts the car models which can be placed in this
slot
Start with the most restricted option
When all options are assigned, the car type is fixed
Potential problem: We now have 500 instead of 100
decision variables
Naive searchspace 2500 = 3.2e150 instead of
22100 = 1.7e134
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Second Modification

Instead of assigning values left to right
Start assigning in middle of board
And alternate around middle until you reach edges
Idea: Slots at edges are less constrained, i.e. easier to
assign
Save those slots until the end
We already encountered this idea for the N-Queens
problem
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Modified Search
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Assignment Step 2
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Assignment Step 28
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Assignment Step 119
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Observations

Important to start in middle
Making hard choices first
Concentrate on difficult to satisfy sub-problem
Number of choices is much smaller than number of
variables
Some assignments lead to a lot of propagation
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Conclusions

Introduced two new global constraints, gcc and sequence

Used element for projection
Search on auxiliary variables can work well
Raw search space measures are unreliable
Modelling idea

Decide what to make in a given time slot
... and not when to schedule some given activity
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Making gcc Domain Consistent

X1 :: [2,4], X2 :: [1,3,4], X3 :: [1,2,3,4],
X4 :: [3,4,5], X5 :: [3,4,5],
gcc([gcc(1,1,1),gcc(2,3,2),gcc(1,3,3),

gcc(0,4,4),gcc(1,3,5)],
[X1,X2,X3,X4,X5]),
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Method: Max Flow Model

Express constraint as max-flow problem
Any flow solution corresponds to a valid assignment
Only work with one flow solution
Obtain all others by considering

residual graph and
strongly connected components

Classical method, faster methods exist
Use of max flow based propagators for many constraints
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Start with Value Graph
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5
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Convert to Flow Problem
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Find Maximal Flow
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Mark Value Edges in Flow

s t

X1

X2

X3

X4

X5

1

2

3

4

5

1
1
1
1
1

1
2
1

1

5

Helmut Simonis More Global Constraints 52



Making gcc Domain Consistent

Residual Graph
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Making gcc Domain Consistent

Find Strongly Connected Components

s t
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Mark Edges

s t
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Remove Unmarked Edges

s t
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Constraint is Domain Consistent

X1

X2

X3

X4

X5

1

2

3

4

5

Helmut Simonis More Global Constraints 57


	Introduction
	Success Stories for Constraint Programming
	Assignment
	Network Management
	Scheduling
	Transport
	Personnel Planning

	Conclusions
	handout.pdf
	Problem
	Program
	Symmetry Breaking
	Experiment with alternative value order

	Optional Material
	Why assign by row?
	Alternative Models
	Exercises


	handout.pdf
	Problem
	Program
	Search
	DSV88 Example
	More Difficult Example

	Improved Search Strategy
	Optional Material
	Making gcc Domain Consistent


	handout.pdf
	Problem
	Program
	Search
	Improvements
	Adding Constraints
	Change of Search Strategy

	Additional Material
	0/1 Models


	handout.pdf
	Introduction
	Application Structure
	Documentation
	Data Representation
	Programming Concepts
	Style Guide

	handout.pdf
	Constraint Programming
	Chapter Overview
	Chapter Details

	handout.pdf
	Traffic Placement
	Link Based Model
	Path-Based Model
	Node-Based Model
	Commercial Solution
	Multiple Paths

	Capacity Management
	Bandwidth Protection
	Bandwidth on Demand
	Resilience Analysis

	Other Problems
	Network Design
	IGP Metric Optimization


	handout.pdf
	Problem
	Program
	Model
	Program (Array version)
	Program (List Version)

	Naive Search
	Improvements
	Dynamic Variable Choice
	Improved Heuristics
	Making Search More Stable

	Exercises
	Exercises


	handout.pdf
	Problem
	Phase 1
	Phase 2

	Program
	Search
	Naive Search
	First Fail Strategy
	Layered Search
	Layered with Credit Search
	Randomized with Restart


	handout.pdf
	Problem
	Model
	Exploring Ideas
	Expanding Idea 7
	Comparing Ideas
	Channeling
	Selected Model

	Program
	Search
	Using input order
	First Fail Strategy

	Redundant Modelling
	Adding value index Channeling
	Improving Handling of Hints


	handout.pdf
	Problem
	Program
	Constraint Setup
	Domain Definition
	Alldifferent Constraint
	Disequality Constraints
	Equality Constraint

	Search
	Step 1
	Step 2
	Further Steps
	Solution

	Lessons Learned
	Optional Material
	Alternative Models
	Model without Disequality
	Multiple Equations

	Exercises


	handout.pdf
	Problem
	Program
	Search
	Conclusions

	handout.pdf
	Problem
	Program
	Initial Propagation (Forward Checking)
	Improved Reasoning
	Bounds Consistency
	Domain Consistency
	Comparison

	Search
	Solution

	Lessons Learned
	Optional Material
	Complete Example: Domain Consistent Alldifferent
	Generic Model
	Exercises


	handout.pdf
	Problem
	Problem 1: Find routing
	Problem 2: Assign Wavelengths

	Program
	Search


