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Aims of this module

• The decision tree representation.

• The basic algorithm for inducing trees.

• Heuristic search (which is the best attribute):

• Impurity measures, entropy, …

• Handling real / imperfect data.

• Overfitting and pruning decision trees.

• Some examples.
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The contact lenses data

NoneReducedYesHypermetropePre-presbyopic 
NoneNormalYesHypermetropePre-presbyopic
NoneReducedNoMyopePresbyopic
NoneNormalNoMyopePresbyopic
NoneReducedYesMyopePresbyopic
HardNormalYesMyopePresbyopic
NoneReducedNoHypermetropePresbyopic
SoftNormalNoHypermetropePresbyopic

NoneReducedYesHypermetropePresbyopic
NoneNormalYesHypermetropePresbyopic

SoftNormalNoHypermetropePre-presbyopic
NoneReducedNoHypermetropePre-presbyopic
HardNormalYesMyopePre-presbyopic
NoneReducedYesMyopePre-presbyopic
SoftNormalNoMyopePre-presbyopic

NoneReducedNoMyopePre-presbyopic
hardNormalYesHypermetropeYoung
NoneReducedYesHypermetropeYoung
SoftNormalNoHypermetropeYoung

NoneReducedNoHypermetropeYoung
HardNormalYesMyopeYoung
NoneReducedYesMyopeYoung 
SoftNormalNoMyopeYoung

NoneReducedNoMyopeYoung

Recommended 
lenses

Tear production rateAstigmatismSpectacle prescriptionAge
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A decision tree for this problem

witten&eibe
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Induction of decision trees

Decision tree: a directed graph, where nodes corresponds to some 
tests on attributes, a branch represents an outcome of the test and a 
leaf corresponds to a class label.

A new case is classified by following a matching path to a leaf node.

The problem: given a learning set, induce automatically a tree

Age Car Type Risk
20 Combi High
18 Sports High
40 Sports High
50 Family Low
35 Minivan Low
30 Combi High
32 Family Low
40 Combi Low

Age < 31

High

Car Type 
is sports

High Low
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Appropriate problems for decision trees learning

• Classification problems: assign an object into one of a 
discrete set of possible categories / classes.

• Characteristics:

• Instances describable by attribute--value pairs
(discrete or real-valued attributes).

• Target function is discrete valued
(boolean or multi-valued; 
if real valued, then regression trees).

• Disjunctive hypothesis my be required.

• Training data may be noisy
(classification errors and/or mistakes in attribute values).

• Training data may contain missing attribute values.
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General issues
• Basic algorithm: a greedy algorithm that constructs 

decision trees in a top-down recursive divide-and-conquer 
manner.
• TDIDT → Top Down Induction of Decision Trees.

• Key issues:
• Splitting criterion: splitting examples in the node / how to 

choose attribute / test for this node.

• Stopping criterion: when should one stop growing the 
branch of the tree.

• Pruning: avoiding overfitting of the tree and improving 
classification performance for the difficult data.

• Advantages: 
• mature methodology, efficient learning and classification.
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Search space

• All possible sequences of all possible tests

• very large search space, e.g., if N binary attributes:
– 1 null tree

– N trees with 1 (root) test

– N*(N-1) trees with 2 tests

– N*(N-1)*(N-1) trees with 3 tests

– and so on

• size of search space is exponential in number of attributes

• too big to search exhaustively!!!!
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Weather Data: Play or not Play?

Notruehighmildrain

Yesfalsenormalhotovercast

Yestruehighmildovercast

Yestruenormalmildsunny

Yesfalsenormalmildrain

Yesfalsenormalcoolsunny

Nofalsehighmildsunny

Yestruenormalcoolovercast

Notruenormalcoolrain

Yesfalsenormalcoolrain

Yesfalsehighmildrain

Yesfalsehighhotovercast

Notruehighhotsunny

Nofalsehighhotsunny

Play?WindyHumidityTemperatureOutlook

Note:
All attributes
are nominal
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overcast

high normal falsetrue

sunny rain

No NoYes Yes

Yes

Example Tree for “Play?”

Outlook

Humidity
Windy
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Basic TDIDT algorithm (simplified Quinlan’s ID3)

• At start, all training examples S are at the root.

• If all examples from S belong to the same class Kj
then label the root with Kj
else
• select the „best” attribute A

• divide S into S1, …, Sn according
to values v1, …, vn of attribute A

• Recursively build subtrees
T1, …, Tn for S1, …,Sn
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Which attribute is the best?

• The attribute that is most useful for classifying examples.

• We need a goodness / (im)purity function → measuring 
how well a given attribute separates the learning 
examples according to their classification.

• Heuristic: prefer the attribute that produces the “purest”
sub-nodes and leads to the smallest tree.

P+ and P− are a priori 
class probabilities in the 
node S, test divides the 
S set into St and Sf.
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A criterion for attribute selection

Impurity functions:
• Given a random variable x with k discrete values, distributed 

according to P={p1,p2,…pk}, a impurity function Φ should satisfies:
• Φ(P)≥0 ; Φ(P) is minimal if  ∃i such that pi=1;

Φ(P) is maximal if  ∀i 1≤i ≤ k , pi=1/k
Φ(P) is symmetrical and differentiable everywhere in its range

• The goodness of split is a reduction in impurity of the target concept 
after partitioning S.

• Popular function: information gain

• Information gain increases with the average purity of the 
subsets that an attribute produces
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Computing information entropy
• Entropy information (originated from Shannon)

• Given a probability distribution, the info required to predict an event is the 
distribution’s entropy

• Entropy gives the information required in bits (this can involve fractions of 
bits!)

• The amount of information, needed to decide if an arbitrary example in S
belongs to class Kj (pj - prob. it belongs to Kj ).

• Basic formula for computing the entropy for examples in S:

• A conditional entropy for splitting examples S into  subsets Si by using 
an attribute A:

• Choose the attribute with the maximal info gain:

nn ppppppS logloglog)entropy( 2211 −−−= K

)()|( 1 Sentropy
S
S

ASentropy m
i

i ⋅= ∑ =

)|()( ASentropySentropy −
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Entropy interpretation

• Binary classification problem

• The entropy function relative to a 
Boolean classification, as the 
proportion p+ of positive examples 
varies between 0 and 1

• Entropy of “pure” nodes  (examples
from one class) is 0;

• Max. entropy is for a node with mixed 
samples Pi=1/2.

Plot of Ent(S)
for   P+ =1-P−

−−++ −−= ppppSE 22 loglog)(
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Weather Data: Play or not Play?

Notruehighmildrain

Yesfalsenormalhotovercast

Yestruehighmildovercast

Yestruenormalmildsunny

Yesfalsenormalmildrain

Yesfalsenormalcoolsunny

Nofalsehighmildsunny

Yestruenormalcoolovercast

Notruenormalcoolrain

Yesfalsenormalcoolrain

Yesfalsehighmildrain

Yesfalsehighhotovercast

Notruehighhotsunny

Nofalsehighhotsunny

Play?WindyHumidityTemperatureOutlook

Note:
All attributes
are nominal
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Entropy Example from the DatasetEntropy Example from the Dataset

Information before split / no attributes, only decision class label 
distribution

In the Play dataset we had two target classes: yes and no

Out of 14 instances, 9 classified yes, rest no

2

2

9 9log 0.4114 14

5 5log 0.5314 14

( ) 0.94
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no

yes no
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YesTrueNormalCoolOvercast

NoTrueNormalCoolRainy

YesFalseNormalCoolRainy

YesFalseHighMildRainy

YesFalseHighHotOvercast

NoTrueHighHotSunny

NoFalseHighHotSunny

PlayWindyHumidityTemp.Outlook

NoTrueHighMildRainy

YesFalseNormalHotOvercast

YesTrueHighMildOvercast

YesTrueNormalMildSunny

YesFalseNormalMildRainy

YesFalseNormalCoolSunny

NoFalseHighMildSunny

playWindyHumidityTemp.Outlook
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Which attribute to select?

witten&eibe
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Example: attribute “Outlook”

• “Outlook” = “Sunny”:

• “Outlook” = “Overcast”:

• “Outlook” = “Rainy”:

• Expected information for attribute:

 971.0)5/3log(5/3)5/2log(5/25,3/5)entropy(2/)info([2,3] =−−==

0)0log(0)1log(10)entropy(1,)info([4,0] =−−==

 971.0)5/2log(5/2)5/3log(5/35,2/5)entropy(3/)info([3,2] =−−==

Note: log(0) is 
not defined, but 
we evaluate 
0*log(0) as zero

971.0)14/5(0)14/4(971.0)14/5([3,2])[4,0],,info([3,2] ×+×+×=

693.0=
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Computing the information gain

• Information gain: 

(information before split) – (information after split)

• Information gain for attributes from weather data:

247.0=

247.0)Outlook"gain(" =

029.0)e"Temperaturgain(" =

152.0)Humidity"gain(" =

 048.0)Windy"gain(" =

0.693-0.940[3,2])[4,0],,info([2,3]-)info([9,5])Outlook"gain(" ==
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Continuing to split

571.0)e"Temperaturgain(" =
 971.0)Humidity"gain(" =

020.0)Windy"gain(" =
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The final decision tree

What we have used → it is R.Quinlan’s ID3 algorithm!
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Hypothesis Space Search in ID3Hypothesis Space Search in ID3

• ID3 performs a simple-to-
complex, hill climbing search 
through this space.

• ID3 performs no backtracking 
in its search.

• ID3 uses all training instances 
at each step of the search.

• Preference for short trees.

• Preference for trees with high 
information gain attributes near 
the root.
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• Gini index (CART, SPRINT)
• select attribute that minimize impurity of a split

• χ2 contingency table statistics (CHAID)
• measures correlation between each attribute and the class label
• select attribute with maximal correlation

• Normalized Gain ratio (Quinlan 86, C4.5)
• normalize different domains of attributes

• Distance normalized measures (Lopez de Mantaras)
• define a distance metric between partitions of the data.
• chose the one closest to the perfect partition

• Orthogonal (ORT) criterion
• AUC-splitting criteria (Ferri et at.) 

• There are many other measures.  Mingers’91 provides an 
experimental analysis of effectiveness of several selection 
measures over a variety of problems.

• Look also in a study by D.Malerba, …

Other splitting criteria
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Gini Index
• If a data set T contains examples from n classes, gini index, 

gini(T) is defined as

where pj is the relative frequency of class j in T.
• If a data set T is split into two subsets T1 and T2 with sizes 

N1 and N2 respectively, the gini index of the split data 
contains examples from n classes, the gini index gini(T) is 
defined as

• The attribute provides the smallest ginisplit(T) is chosen to 
split the node (need to enumerate all possible splitting points 
for each attribute).

∑−=
=

n

j
jpTgini

1

21)(

splitgini N T N TT
N

gini
N

gini( ) ( ) ( )= +1
1

2
2
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Extracting Classification Rules from Decision Trees

• The knowledge represented in decision trees can be 
extracted and represented in the form of 
classification IF-THEN rules. 

• One rule is created for each path from the root to a 
leaf node.

• Each attribute-value pair along a given path forms a 
conjunction in the rule antecedent; the leaf node 
holds the class prediction, forming the rule 
consequent.
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Extracting Classification Rules from Decision Trees

If outlook = sunny and humidity = high then play = no

If outlook = rainy and windy = true then play = no

If outlook = overcast then play = yes

If humidity = normal then play = yes

If none of the above then play = yes

An example for the Weather nominal dataset: 

However: 
• Dropping redundant conditions in rules and rule post-pruning
• Classification strategies with rule sets are necessary
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Occam’s razor: prefer the simplest hypothesis that fits the data.

• Inductive bias → Why simple trees should be preferred? 

1. The number of simple hypothesis that may accidentally fit the 
data is small, so chances that simple hypothesis uncover 
some interesting knowledge about the data are larger.

2. Simpler trees have higher bias and thus lower variance, they 
should not overfit the data that easily.

3. Simpler trees do not partition the feature space into too many 
small boxes, and thus may generalize better, while complex 
trees may end up with a separate box for each training data 
sample. 

Still, even if the tree is small ...
for small datasets with many attributes several equivalent 
(from the accuracy point of view) descriptions may exist.

=> one tree may not be sufficient, we need a forest of healthy 
trees!
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Using decision trees for real data 

• Some issues:

• Highly branching attributes,

• Handling continuous and missing attribute values

• Overfitting

• Noise and inconsistent examples

• ….

• Thus, several extension of tree induction algorithms, 
see e.g. Quinlan C4.5, CART, Assistant86
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Highly-branching attributes

• Problematic: attributes with a large number of values 
(extreme case: ID code)

• Subsets are more likely to be pure if there is a large 
number of values

⇒Information gain is biased towards choosing attributes with 
a large number of values

⇒This may result in overfitting (selection of an attribute that is 
non-optimal for prediction)
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Weather Data with ID code

Notruehighmildrainn
Yesfalsenormalhotovercastm
Yestruehighmildovercastl
Yestruenormalmildsunnyk
Yesfalsenormalmildrainj
Yesfalsenormalcoolsunnyi
Nofalsehighmildsunnyh
Yestruenormalcoolovercastg
Notruenormalcoolrainf
Yesfalsenormalcoolraine
Yesfalsehighmildraind
Yesfalsehighhotovercastc
Notruehighhotsunnyb
Nofalsehighhotsunnya
Play?WindyHumidityTemperatureOutlookID
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Split for ID Code Attribute

Entropy of split = 0 (since each leaf node is “pure”, having only
one case.

Information gain is maximal for ID code
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Gain ratio

• Gain ratio: a modification of the information gain that 
reduces its bias on high-branch attributes.

• Gain ratio takes number and size of branches into 
account when choosing an attribute.
• It corrects the information gain by taking the intrinsic 

information of a split into account (i.e. how much info do we 
need to tell which branch an instance belongs to).
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.||
||

2log||
||

),( S
iS

S
iS

ASnfoIntrinsicI ∑−≡

.),(
),(),( ASnfoIntrinsicI

ASGainASGainRatio =

Gain Ratio and Intrinsic Info.

• Intrinsic information: entropy of distribution of 
instances into branches 

• Gain ratio (Quinlan’86) normalizes info gain by:
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Binary Tree Building

• Sometimes it leads to smaller trees or better 
classifiers.

• The form of the split used to partition the data 
depends on the type of the attribute used in the split:

• for a continuous attribute A, splits are of the form 
value(A)<x where x is a value in the domain of A.

• for a categorical attribute A, splits are of the form 
value(A)∈X where X⊂domain(A)
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Binary tree (Quinlan’s C4.5 output)

• Crx (Credit Data) UCI ML Repository



© J. Stefanowski 2008

Continuous valued attributes

• The real life data often contains numeric information or 
mixtures of different type attributes.

• It should properly handled (remind problems with highly 
valued attributes).

• Two general solutions:

• The discretization in a pre-processing step (transforming 
numeric values into ordinal ones by finding sub-intervals)

• Adaptation of algorithms → binary tree, new splitting 
conditions (A < t),…

• While evaluating attributes for splitting condition in trees, 
dynamically define new discrete-valued attributes that partition the 
continuous attribute value into a discrete set of intervals.
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Weather data - numeric

……………

YesFalse8075Rainy

YesFalse8683  Overcast 

NoTrue90 80 Sunny

NoFalse8585Sunny

PlayWindyHumidityTemperatureOutlook

If outlook = sunny and humidity > 83 then play = no

If outlook = rainy and windy = true then play = no

If outlook = overcast then play = yes

If humidity < 85 then play = yes

If none of the above then play = yes
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Example
• Split on temperature attribute:

• E.g. temperature < 71.5: yes/4, no/2
temperature ≥ 71.5: yes/5, no/3

• Info([4,2],[5,3])
= 6/14 info([4,2]) + 8/14 info([5,3]) 
= 0.939 

• Place split points halfway between values

• Can evaluate all split points in one pass!

64     65     68     69     70     71     72     72     75     75     80     81     83     85
Yes  No  Yes Yes  Yes  No  No  Yes Yes  Yes  No  Yes  Yes No
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Hierarchical partitioning of feature space into hyper-rectangles.

Example: Iris flowers data, with 4 features; displayed in 2-D.

Graphical interpretation – decision boundaries
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Summary for Continuous and Missing Values

• Sort the examples according to the continuous attribute A,  
then identify adjacent examples that differ in their target 
classification, generate a set of candidate thresholds, and 
select the one with the maximum gain.

• Extensible to split continuous attributes into multiple intervals.

• Assign missing attribute values either

• Assign the most common value of A(x).

• Assign probability to each of the possible values of A.

• More advanced approaches ….
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Handling noise and imperfect examples

Sources of imperfection.

• Random errors (noise) in training examples

• erroneous attribute values.

• erroneous classification.

• Too sparse training examples.

• Inappropriate / insufficient set of attributes.

• Missing attribute values.
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Overfitting the Data
• The basic algorithm → grows each branch of the tree just 

deeply enough to sufficiently classify the training examples.

• Reasonable for perfect data and a descriptive perspective 
of KDD, However, …

• When there is noise in the dataset or the data is not 
representative sample of the true target function 

• The tree may overfit the learning examples

• Definition: The tree / classifier h is said to overfit the training 
data, if there exists some alternative tree h’, such that it has a 
smaller error than h over the entire distribution of instances 
(although h may has smaller error than h’ on the training
data).
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Overfitting in Decision Tree Construction

• Accuracy as a 
function of the 
number of tree 
nodes: on the 
training data it may 
grow up to 100%, 
but the final results 
may be worse than 
for the majority 
classifier!



© J. Stefanowski 2008

Tree pruning
• Avoid overfitting the data by tree pruning.

• After pruning the classification accuracy on unseen 
data may increase!
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Avoid Overfitting in Classification 
- Pruning

• Two approaches to avoid overfitting: 

• (Stop earlier / Forward pruning): Stop growing the 
tree earlier – extra stopping conditions, e.g.
1. Stop splitting the nodes if the number of samples is too small 

to make reliable decisions.
2. Stop if the proportion of samples from a single class (node 

purity) is larger than a given threshold - forward pruning

• (Post-pruning): Allow overfit and then post-prune 
the tree.
• Estimation of errors and tree size to decide which sub-

tree should be pruned.
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Remarks on pre-pruning

• The number of cases in the node is less than the given 
threshold.

• The probability of predicting the strongest class in the 
node is sufficiently high.

• The best splitting criterion is not greater than a certain 
threshold.

• The change of probability distribution is not significant.

• …
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Split data into training and validation 
sets.

Pruning a decision node d consists 
of:

1. removing the subtree rooted at   d.
2. making d a leaf node. 
3. assigning d the most common 

classification of the training 
instances associated with d.

Do until further pruning is harmful:
1. Evaluate impact on validation set of 

pruning each possible node (plus 
those below it).

2. Greedily remove the one that most 
improves validation set accuracy.

Outlook

sunny overcast rainy

Humidity Windy

high normal

no

false true

yes

yes yes no

Reduced Error pruning
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Post-pruning
• Bottom-up

• Consider replacing a tree 
only after considering all its 
subtrees

• Ex: labor negotiations 
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Subtree
replacement

• Bottom-up

• Consider replacing a 
tree only after 
considering all its 
subtrees
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Remarks to post-pruning

• Approaches to determine the correct final tree size:

• Different approaches to error estimates

• Separate training and testing sets or use cross-
validation.

• Use all the data for training, but apply a statistical test to 
estimate whether expanding or pruning a node may 
improve over entire distribution.

• Rule post-pruning (C4.5): converting to rules before pruning.

• C4.5 method – estimate of pessimistic error

• Option c parameter – default value 0,25:
the smaller value, the stronger pruning!
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Classification: Train, Validation, Test split

Data

Predictions

Y N

Results Known

Training set

Validation set

+
+
-
-
+

Model Builder
Evaluate

+
-
+
-

Final ModelFinal Test Set

+
-
+
-

Final Evaluation

Model
Builder
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Classification and Massive Databases
• Classification is a classical problem extensively studied by

• statisticians

• AI, especially machine learning researchers

• Database researchers re-examined the problem in the 
context of large databases

• most previous studies used small size data, and most 
algorithms are memory resident

• recent data mining research contributes to

• Scalability

• Generalization-based classification 

• Parallel and distributed processing
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Classifying  Large Dataset

• Decision trees seem to be a good choice

• relatively faster learning speed than other classification 
methods

• can be converted into simple and easy to understand 
classification rules

• can be used to generate SQL queries for accessing databases

• has comparable classification accuracy with other methods

• Objectives

• Classifying data-sets with millions of examples and a few 
hundred even thousands attributes with reasonable speed.
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Scalable Decision Tree Methods
• Most algorithms assume data can fit in memory. 

• Data mining research contributes to the 
scalability issue, especially for decision trees.

• Successful examples

• SLIQ (EDBT’96 -- Mehta et al.’96)

• SPRINT (VLDB96 -- J. Shafer et al.’96)

• PUBLIC (VLDB98 -- Rastogi & Shim’98)

• RainForest (VLDB98 -- Gehrke, et al.’98)
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Previous Efforts on Scalability

• Incremental tree construction (Quinlan’86) 

• using partial data to build a tree.

• testing other examples and those mis-classified ones are used 
to rebuild the tree interactively.

• Data reduction (Cattlet’91) 

• reducing data size by sampling and discretization.

• still a main memory algorithm.

• Data partition and merge (Chan and Stolfo’91)

• partitioning data  and building trees for each partition.

• merging multiple trees into a combined tree.

• experiment results indicated  reduced classification accuracy.
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Weaknesses of Decision Trees

• Large or complex trees can be just as unreadable as other 
models

• Trees don’t easily represent some basic concepts such as 
M-of-N, parity, non-axis-aligned classes…

• Don’t handle real-valued parameters as well as Booleans

• If model depends on summing contribution of many 
different attributes, DTs probably won’t do well

• DTs that look very different can be same/similar

• Propositional (as opposed to 1st order logic)

• Recursive partitioning: run out of data fast as descend tree
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Figure from 
Duda, Hart & Stork, 
Chap. 8

Univariate, or 
monothetic trees, 

mult-variate, or 
oblique trees.

Oblique trees
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When to use decision trees

• One needs both symbolic representation and 
good classification performance.

• Problem does not depend on many attributes

• Modest subset of attributes contains relevant info

• Linear combinations of features not critical.

• Speed of learning is important.
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Applications

• Treatment effectiveness

• Credit Approval

• Store location

• Target marketing

• Insurance company (fraud detection)

• Telecommunication company (client classification)

• Many others …
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Summary PointsSummary Points

1. Decision tree learning provides a practical method for 
classification learning. 

2. ID3-like algorithms offer symbolic knowledge 
representation and good classifier performance.

3. The inductive bias of decision trees is preference (search) 
bias.

4. Overfitting the training data is an important issue in 
decision tree learning.

5. A large number of extensions of the decision tree algorithm 
have been proposed for overfitting avoidance, handling 
missing attributes, handling numerical attributes, etc. 
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Any questions, remarks?


