
Decision Trees

JERZY STEFANOWSKI
Institute of Computing Science

Poznań University of Technology

Doctoral School , Catania-Troina, April, 2008

© J. Stefanowski 2008

Aims of this module

• The decision tree representation.

• The basic algorithm for inducing trees.

• Heuristic search (which is the best attribute):

• Impurity measures, entropy, …

• Handling real / imperfect data.

• Overfitting and pruning decision trees.

• Some examples.

© J. Stefanowski 2008

The contact lenses data

NoneReducedYesHypermetropePre-presbyopic
NoneNormalYesHypermetropePre-presbyopic
NoneReducedNoMyopePresbyopic
NoneNormalNoMyopePresbyopic
NoneReducedYesMyopePresbyopic
HardNormalYesMyopePresbyopic
NoneReducedNoHypermetropePresbyopic
SoftNormalNoHypermetropePresbyopic

NoneReducedYesHypermetropePresbyopic
NoneNormalYesHypermetropePresbyopic

SoftNormalNoHypermetropePre-presbyopic
NoneReducedNoHypermetropePre-presbyopic
HardNormalYesMyopePre-presbyopic
NoneReducedYesMyopePre-presbyopic
SoftNormalNoMyopePre-presbyopic

NoneReducedNoMyopePre-presbyopic
hardNormalYesHypermetropeYoung
NoneReducedYesHypermetropeYoung
SoftNormalNoHypermetropeYoung

NoneReducedNoHypermetropeYoung
HardNormalYesMyopeYoung
NoneReducedYesMyopeYoung
SoftNormalNoMyopeYoung

NoneReducedNoMyopeYoung

Recommended
lenses

Tear production rateAstigmatismSpectacle prescriptionAge

© J. Stefanowski 2008

A decision tree for this problem

witten&eibe

© J. Stefanowski 2008

Induction of decision trees

Decision tree: a directed graph, where nodes corresponds to some
tests on attributes, a branch represents an outcome of the test and a
leaf corresponds to a class label.

A new case is classified by following a matching path to a leaf node.

The problem: given a learning set, induce automatically a tree

Age Car Type Risk
20 Combi High
18 Sports High
40 Sports High
50 Family Low
35 Minivan Low
30 Combi High
32 Family Low
40 Combi Low

Age < 31

High

Car Type
is sports

High Low

© J. Stefanowski 2008

Appropriate problems for decision trees learning

• Classification problems: assign an object into one of a
discrete set of possible categories / classes.

• Characteristics:

• Instances describable by attribute--value pairs
(discrete or real-valued attributes).

• Target function is discrete valued
(boolean or multi-valued;
if real valued, then regression trees).

• Disjunctive hypothesis my be required.

• Training data may be noisy
(classification errors and/or mistakes in attribute values).

• Training data may contain missing attribute values.

© J. Stefanowski 2008

General issues
• Basic algorithm: a greedy algorithm that constructs

decision trees in a top-down recursive divide-and-conquer
manner.
• TDIDT → Top Down Induction of Decision Trees.

• Key issues:
• Splitting criterion: splitting examples in the node / how to

choose attribute / test for this node.

• Stopping criterion: when should one stop growing the
branch of the tree.

• Pruning: avoiding overfitting of the tree and improving
classification performance for the difficult data.

• Advantages:
• mature methodology, efficient learning and classification.

© J. Stefanowski 2008

Search space

• All possible sequences of all possible tests

• very large search space, e.g., if N binary attributes:
– 1 null tree

– N trees with 1 (root) test

– N*(N-1) trees with 2 tests

– N*(N-1)*(N-1) trees with 3 tests

– and so on

• size of search space is exponential in number of attributes

• too big to search exhaustively!!!!

© J. Stefanowski 2008

Weather Data: Play or not Play?

Notruehighmildrain

Yesfalsenormalhotovercast

Yestruehighmildovercast

Yestruenormalmildsunny

Yesfalsenormalmildrain

Yesfalsenormalcoolsunny

Nofalsehighmildsunny

Yestruenormalcoolovercast

Notruenormalcoolrain

Yesfalsenormalcoolrain

Yesfalsehighmildrain

Yesfalsehighhotovercast

Notruehighhotsunny

Nofalsehighhotsunny

Play?WindyHumidityTemperatureOutlook

Note:
All attributes
are nominal

© J. Stefanowski 2008

overcast

high normal falsetrue

sunny rain

No NoYes Yes

Yes

Example Tree for “Play?”

Outlook

Humidity
Windy

© J. Stefanowski 2008

Basic TDIDT algorithm (simplified Quinlan’s ID3)

• At start, all training examples S are at the root.

• If all examples from S belong to the same class Kj
then label the root with Kj
else
• select the „best” attribute A

• divide S into S1, …, Sn according
to values v1, …, vn of attribute A

• Recursively build subtrees
T1, …, Tn for S1, …,Sn

© J. Stefanowski 2008

Which attribute is the best?

• The attribute that is most useful for classifying examples.

• We need a goodness / (im)purity function → measuring
how well a given attribute separates the learning
examples according to their classification.

• Heuristic: prefer the attribute that produces the “purest”
sub-nodes and leads to the smallest tree.

P+ and P− are a priori
class probabilities in the
node S, test divides the
S set into St and Sf.

© J. Stefanowski 2008

A criterion for attribute selection

Impurity functions:
• Given a random variable x with k discrete values, distributed

according to P={p1,p2,…pk}, a impurity function Φ should satisfies:
• Φ(P)≥0 ; Φ(P) is minimal if ∃i such that pi=1;

Φ(P) is maximal if ∀i 1≤i ≤ k , pi=1/k
Φ(P) is symmetrical and differentiable everywhere in its range

• The goodness of split is a reduction in impurity of the target concept
after partitioning S.

• Popular function: information gain

• Information gain increases with the average purity of the
subsets that an attribute produces

© J. Stefanowski 2008

Computing information entropy
• Entropy information (originated from Shannon)

• Given a probability distribution, the info required to predict an event is the
distribution’s entropy

• Entropy gives the information required in bits (this can involve fractions of
bits!)

• The amount of information, needed to decide if an arbitrary example in S
belongs to class Kj (pj - prob. it belongs to Kj).

• Basic formula for computing the entropy for examples in S:

• A conditional entropy for splitting examples S into subsets Si by using
an attribute A:

• Choose the attribute with the maximal info gain:

nn ppppppS logloglog)entropy(2211 −−−= K

)()|(1 Sentropy
S
S

ASentropy m
i

i ⋅= ∑ =

)|()(ASentropySentropy −

© J. Stefanowski 2008

Entropy interpretation

• Binary classification problem

• The entropy function relative to a
Boolean classification, as the
proportion p+ of positive examples
varies between 0 and 1

• Entropy of “pure” nodes (examples
from one class) is 0;

• Max. entropy is for a node with mixed
samples Pi=1/2.

Plot of Ent(S)
for P+ =1-P−

−−++ −−= ppppSE 22 loglog)(

© J. Stefanowski 2008

Weather Data: Play or not Play?

Notruehighmildrain

Yesfalsenormalhotovercast

Yestruehighmildovercast

Yestruenormalmildsunny

Yesfalsenormalmildrain

Yesfalsenormalcoolsunny

Nofalsehighmildsunny

Yestruenormalcoolovercast

Notruenormalcoolrain

Yesfalsenormalcoolrain

Yesfalsehighmildrain

Yesfalsehighhotovercast

Notruehighhotsunny

Nofalsehighhotsunny

Play?WindyHumidityTemperatureOutlook

Note:
All attributes
are nominal

© J. Stefanowski 2008

Entropy Example from the DatasetEntropy Example from the Dataset

Information before split / no attributes, only decision class label
distribution

In the Play dataset we had two target classes: yes and no

Out of 14 instances, 9 classified yes, rest no

2

2

9 9log 0.4114 14

5 5log 0.5314 14

() 0.94

yes

no

yes no

p

p

E S p p

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

=− =

=− =

= + =

YesTrueNormalCoolOvercast

NoTrueNormalCoolRainy

YesFalseNormalCoolRainy

YesFalseHighMildRainy

YesFalseHighHotOvercast

NoTrueHighHotSunny

NoFalseHighHotSunny

PlayWindyHumidityTemp.Outlook

NoTrueHighMildRainy

YesFalseNormalHotOvercast

YesTrueHighMildOvercast

YesTrueNormalMildSunny

YesFalseNormalMildRainy

YesFalseNormalCoolSunny

NoFalseHighMildSunny

playWindyHumidityTemp.Outlook

© J. Stefanowski 2008

Which attribute to select?

witten&eibe

© J. Stefanowski 2008

Example: attribute “Outlook”

• “Outlook” = “Sunny”:

• “Outlook” = “Overcast”:

• “Outlook” = “Rainy”:

• Expected information for attribute:

 971.0)5/3log(5/3)5/2log(5/25,3/5)entropy(2/)info([2,3] =−−==

0)0log(0)1log(10)entropy(1,)info([4,0] =−−==

 971.0)5/2log(5/2)5/3log(5/35,2/5)entropy(3/)info([3,2] =−−==

Note: log(0) is
not defined, but
we evaluate
0*log(0) as zero

971.0)14/5(0)14/4(971.0)14/5([3,2])[4,0],,info([3,2] ×+×+×=

693.0=

© J. Stefanowski 2008

Computing the information gain

• Information gain:

(information before split) – (information after split)

• Information gain for attributes from weather data:

247.0=

247.0)Outlook"gain(" =

029.0)e"Temperaturgain(" =

152.0)Humidity"gain(" =

 048.0)Windy"gain(" =

0.693-0.940[3,2])[4,0],,info([2,3]-)info([9,5])Outlook"gain(" ==

© J. Stefanowski 2008

Continuing to split

571.0)e"Temperaturgain(" =
 971.0)Humidity"gain(" =

020.0)Windy"gain(" =

© J. Stefanowski 2008

The final decision tree

What we have used → it is R.Quinlan’s ID3 algorithm!

© J. Stefanowski 2008

Hypothesis Space Search in ID3Hypothesis Space Search in ID3

• ID3 performs a simple-to-
complex, hill climbing search
through this space.

• ID3 performs no backtracking
in its search.

• ID3 uses all training instances
at each step of the search.

• Preference for short trees.

• Preference for trees with high
information gain attributes near
the root.

© J. Stefanowski 2008

• Gini index (CART, SPRINT)
• select attribute that minimize impurity of a split

• χ2 contingency table statistics (CHAID)
• measures correlation between each attribute and the class label
• select attribute with maximal correlation

• Normalized Gain ratio (Quinlan 86, C4.5)
• normalize different domains of attributes

• Distance normalized measures (Lopez de Mantaras)
• define a distance metric between partitions of the data.
• chose the one closest to the perfect partition

• Orthogonal (ORT) criterion
• AUC-splitting criteria (Ferri et at.)

• There are many other measures. Mingers’91 provides an
experimental analysis of effectiveness of several selection
measures over a variety of problems.

• Look also in a study by D.Malerba, …

Other splitting criteria

© J. Stefanowski 2008

Gini Index
• If a data set T contains examples from n classes, gini index,

gini(T) is defined as

where pj is the relative frequency of class j in T.
• If a data set T is split into two subsets T1 and T2 with sizes

N1 and N2 respectively, the gini index of the split data
contains examples from n classes, the gini index gini(T) is
defined as

• The attribute provides the smallest ginisplit(T) is chosen to
split the node (need to enumerate all possible splitting points
for each attribute).

∑−=
=

n

j
jpTgini

1

21)(

splitgini N T N TT
N

gini
N

gini() () ()= +1
1

2
2

© J. Stefanowski 2008

Extracting Classification Rules from Decision Trees

• The knowledge represented in decision trees can be
extracted and represented in the form of
classification IF-THEN rules.

• One rule is created for each path from the root to a
leaf node.

• Each attribute-value pair along a given path forms a
conjunction in the rule antecedent; the leaf node
holds the class prediction, forming the rule
consequent.

© J. Stefanowski 2008

Extracting Classification Rules from Decision Trees

If outlook = sunny and humidity = high then play = no

If outlook = rainy and windy = true then play = no

If outlook = overcast then play = yes

If humidity = normal then play = yes

If none of the above then play = yes

An example for the Weather nominal dataset:

However:
• Dropping redundant conditions in rules and rule post-pruning
• Classification strategies with rule sets are necessary

© J. Stefanowski 2008

Occam’s razor: prefer the simplest hypothesis that fits the data.

• Inductive bias → Why simple trees should be preferred?

1. The number of simple hypothesis that may accidentally fit the
data is small, so chances that simple hypothesis uncover
some interesting knowledge about the data are larger.

2. Simpler trees have higher bias and thus lower variance, they
should not overfit the data that easily.

3. Simpler trees do not partition the feature space into too many
small boxes, and thus may generalize better, while complex
trees may end up with a separate box for each training data
sample.

Still, even if the tree is small ...
for small datasets with many attributes several equivalent
(from the accuracy point of view) descriptions may exist.

=> one tree may not be sufficient, we need a forest of healthy
trees!

© J. Stefanowski 2008

Using decision trees for real data

• Some issues:

• Highly branching attributes,

• Handling continuous and missing attribute values

• Overfitting

• Noise and inconsistent examples

• ….

• Thus, several extension of tree induction algorithms,
see e.g. Quinlan C4.5, CART, Assistant86

© J. Stefanowski 2008

Highly-branching attributes

• Problematic: attributes with a large number of values
(extreme case: ID code)

• Subsets are more likely to be pure if there is a large
number of values

⇒Information gain is biased towards choosing attributes with
a large number of values

⇒This may result in overfitting (selection of an attribute that is
non-optimal for prediction)

© J. Stefanowski 2008

Weather Data with ID code

Notruehighmildrainn
Yesfalsenormalhotovercastm
Yestruehighmildovercastl
Yestruenormalmildsunnyk
Yesfalsenormalmildrainj
Yesfalsenormalcoolsunnyi
Nofalsehighmildsunnyh
Yestruenormalcoolovercastg
Notruenormalcoolrainf
Yesfalsenormalcoolraine
Yesfalsehighmildraind
Yesfalsehighhotovercastc
Notruehighhotsunnyb
Nofalsehighhotsunnya
Play?WindyHumidityTemperatureOutlookID

© J. Stefanowski 2008

Split for ID Code Attribute

Entropy of split = 0 (since each leaf node is “pure”, having only
one case.

Information gain is maximal for ID code

© J. Stefanowski 2008

Gain ratio

• Gain ratio: a modification of the information gain that
reduces its bias on high-branch attributes.

• Gain ratio takes number and size of branches into
account when choosing an attribute.
• It corrects the information gain by taking the intrinsic

information of a split into account (i.e. how much info do we
need to tell which branch an instance belongs to).

© J. Stefanowski 2008

.||
||

2log||
||

),(S
iS

S
iS

ASnfoIntrinsicI ∑−≡

.),(
),(),(ASnfoIntrinsicI

ASGainASGainRatio =

Gain Ratio and Intrinsic Info.

• Intrinsic information: entropy of distribution of
instances into branches

• Gain ratio (Quinlan’86) normalizes info gain by:

© J. Stefanowski 2008

Binary Tree Building

• Sometimes it leads to smaller trees or better
classifiers.

• The form of the split used to partition the data
depends on the type of the attribute used in the split:

• for a continuous attribute A, splits are of the form
value(A)<x where x is a value in the domain of A.

• for a categorical attribute A, splits are of the form
value(A)∈X where X⊂domain(A)

© J. Stefanowski 2008

Binary tree (Quinlan’s C4.5 output)

• Crx (Credit Data) UCI ML Repository

© J. Stefanowski 2008

Continuous valued attributes

• The real life data often contains numeric information or
mixtures of different type attributes.

• It should properly handled (remind problems with highly
valued attributes).

• Two general solutions:

• The discretization in a pre-processing step (transforming
numeric values into ordinal ones by finding sub-intervals)

• Adaptation of algorithms → binary tree, new splitting
conditions (A < t),…

• While evaluating attributes for splitting condition in trees,
dynamically define new discrete-valued attributes that partition the
continuous attribute value into a discrete set of intervals.

© J. Stefanowski 2008

Weather data - numeric

……………

YesFalse8075Rainy

YesFalse8683 Overcast

NoTrue90 80 Sunny

NoFalse8585Sunny

PlayWindyHumidityTemperatureOutlook

If outlook = sunny and humidity > 83 then play = no

If outlook = rainy and windy = true then play = no

If outlook = overcast then play = yes

If humidity < 85 then play = yes

If none of the above then play = yes

© J. Stefanowski 2008

Example
• Split on temperature attribute:

• E.g. temperature < 71.5: yes/4, no/2
temperature ≥ 71.5: yes/5, no/3

• Info([4,2],[5,3])
= 6/14 info([4,2]) + 8/14 info([5,3])
= 0.939

• Place split points halfway between values

• Can evaluate all split points in one pass!

64 65 68 69 70 71 72 72 75 75 80 81 83 85
Yes No Yes Yes Yes No No Yes Yes Yes No Yes Yes No

© J. Stefanowski 2008

Hierarchical partitioning of feature space into hyper-rectangles.

Example: Iris flowers data, with 4 features; displayed in 2-D.

Graphical interpretation – decision boundaries

© J. Stefanowski 2008

Summary for Continuous and Missing Values

• Sort the examples according to the continuous attribute A,
then identify adjacent examples that differ in their target
classification, generate a set of candidate thresholds, and
select the one with the maximum gain.

• Extensible to split continuous attributes into multiple intervals.

• Assign missing attribute values either

• Assign the most common value of A(x).

• Assign probability to each of the possible values of A.

• More advanced approaches ….

© J. Stefanowski 2008

Handling noise and imperfect examples

Sources of imperfection.

• Random errors (noise) in training examples

• erroneous attribute values.

• erroneous classification.

• Too sparse training examples.

• Inappropriate / insufficient set of attributes.

• Missing attribute values.

© J. Stefanowski 2008

Overfitting the Data
• The basic algorithm → grows each branch of the tree just

deeply enough to sufficiently classify the training examples.

• Reasonable for perfect data and a descriptive perspective
of KDD, However, …

• When there is noise in the dataset or the data is not
representative sample of the true target function

• The tree may overfit the learning examples

• Definition: The tree / classifier h is said to overfit the training
data, if there exists some alternative tree h’, such that it has a
smaller error than h over the entire distribution of instances
(although h may has smaller error than h’ on the training
data).

© J. Stefanowski 2008

Overfitting in Decision Tree Construction

• Accuracy as a
function of the
number of tree
nodes: on the
training data it may
grow up to 100%,
but the final results
may be worse than
for the majority
classifier!

© J. Stefanowski 2008

Tree pruning
• Avoid overfitting the data by tree pruning.

• After pruning the classification accuracy on unseen
data may increase!

© J. Stefanowski 2008

Avoid Overfitting in Classification
- Pruning

• Two approaches to avoid overfitting:

• (Stop earlier / Forward pruning): Stop growing the
tree earlier – extra stopping conditions, e.g.
1. Stop splitting the nodes if the number of samples is too small

to make reliable decisions.
2. Stop if the proportion of samples from a single class (node

purity) is larger than a given threshold - forward pruning

• (Post-pruning): Allow overfit and then post-prune
the tree.
• Estimation of errors and tree size to decide which sub-

tree should be pruned.

© J. Stefanowski 2008

Remarks on pre-pruning

• The number of cases in the node is less than the given
threshold.

• The probability of predicting the strongest class in the
node is sufficiently high.

• The best splitting criterion is not greater than a certain
threshold.

• The change of probability distribution is not significant.

• …

© J. Stefanowski 2008

Split data into training and validation
sets.

Pruning a decision node d consists
of:

1. removing the subtree rooted at d.
2. making d a leaf node.
3. assigning d the most common

classification of the training
instances associated with d.

Do until further pruning is harmful:
1. Evaluate impact on validation set of

pruning each possible node (plus
those below it).

2. Greedily remove the one that most
improves validation set accuracy.

Outlook

sunny overcast rainy

Humidity Windy

high normal

no

false true

yes

yes yes no

Reduced Error pruning

© J. Stefanowski 2008

Post-pruning
• Bottom-up

• Consider replacing a tree
only after considering all its
subtrees

• Ex: labor negotiations

© J. Stefanowski 2008

Subtree
replacement

• Bottom-up

• Consider replacing a
tree only after
considering all its
subtrees

© J. Stefanowski 2008

Remarks to post-pruning

• Approaches to determine the correct final tree size:

• Different approaches to error estimates

• Separate training and testing sets or use cross-
validation.

• Use all the data for training, but apply a statistical test to
estimate whether expanding or pruning a node may
improve over entire distribution.

• Rule post-pruning (C4.5): converting to rules before pruning.

• C4.5 method – estimate of pessimistic error

• Option c parameter – default value 0,25:
the smaller value, the stronger pruning!

© J. Stefanowski 2008

Classification: Train, Validation, Test split

Data

Predictions

Y N

Results Known

Training set

Validation set

+
+
-
-
+

Model Builder
Evaluate

+
-
+
-

Final ModelFinal Test Set

+
-
+
-

Final Evaluation

Model
Builder

© J. Stefanowski 2008

Classification and Massive Databases
• Classification is a classical problem extensively studied by

• statisticians

• AI, especially machine learning researchers

• Database researchers re-examined the problem in the
context of large databases

• most previous studies used small size data, and most
algorithms are memory resident

• recent data mining research contributes to

• Scalability

• Generalization-based classification

• Parallel and distributed processing

© J. Stefanowski 2008

Classifying Large Dataset

• Decision trees seem to be a good choice

• relatively faster learning speed than other classification
methods

• can be converted into simple and easy to understand
classification rules

• can be used to generate SQL queries for accessing databases

• has comparable classification accuracy with other methods

• Objectives

• Classifying data-sets with millions of examples and a few
hundred even thousands attributes with reasonable speed.

© J. Stefanowski 2008

Scalable Decision Tree Methods
• Most algorithms assume data can fit in memory.

• Data mining research contributes to the
scalability issue, especially for decision trees.

• Successful examples

• SLIQ (EDBT’96 -- Mehta et al.’96)

• SPRINT (VLDB96 -- J. Shafer et al.’96)

• PUBLIC (VLDB98 -- Rastogi & Shim’98)

• RainForest (VLDB98 -- Gehrke, et al.’98)

© J. Stefanowski 2008

Previous Efforts on Scalability

• Incremental tree construction (Quinlan’86)

• using partial data to build a tree.

• testing other examples and those mis-classified ones are used
to rebuild the tree interactively.

• Data reduction (Cattlet’91)

• reducing data size by sampling and discretization.

• still a main memory algorithm.

• Data partition and merge (Chan and Stolfo’91)

• partitioning data and building trees for each partition.

• merging multiple trees into a combined tree.

• experiment results indicated reduced classification accuracy.

© J. Stefanowski 2008

Weaknesses of Decision Trees

• Large or complex trees can be just as unreadable as other
models

• Trees don’t easily represent some basic concepts such as
M-of-N, parity, non-axis-aligned classes…

• Don’t handle real-valued parameters as well as Booleans

• If model depends on summing contribution of many
different attributes, DTs probably won’t do well

• DTs that look very different can be same/similar

• Propositional (as opposed to 1st order logic)

• Recursive partitioning: run out of data fast as descend tree

© J. Stefanowski 2008

Figure from
Duda, Hart & Stork,
Chap. 8

Univariate, or
monothetic trees,

mult-variate, or
oblique trees.

Oblique trees

© J. Stefanowski 2008

When to use decision trees

• One needs both symbolic representation and
good classification performance.

• Problem does not depend on many attributes

• Modest subset of attributes contains relevant info

• Linear combinations of features not critical.

• Speed of learning is important.

© J. Stefanowski 2008

Applications

• Treatment effectiveness

• Credit Approval

• Store location

• Target marketing

• Insurance company (fraud detection)

• Telecommunication company (client classification)

• Many others …

© J. Stefanowski 2008

Summary PointsSummary Points

1. Decision tree learning provides a practical method for
classification learning.

2. ID3-like algorithms offer symbolic knowledge
representation and good classifier performance.

3. The inductive bias of decision trees is preference (search)
bias.

4. Overfitting the training data is an important issue in
decision tree learning.

5. A large number of extensions of the decision tree algorithm
have been proposed for overfitting avoidance, handling
missing attributes, handling numerical attributes, etc.

© J. Stefanowski 2008

ReferencesReferences
• Mitchell, Tom. M. 1997. Machine Learning. New York: McGraw-Hill

• Quinlan, J. R. 1986. Induction of decision trees. Machine Learning

• Stuart Russell, Peter Norvig, 1995. Artificial Intelligence: A Modern Approach.
New Jersey: Prantice Hall.

• L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and
Regression Trees. Wadsworth International Group, 1984.

• S. K. Murthy, Automatic Construction of Decision Trees from Data: A Multi-
Diciplinary Survey, Data Mining and Knowledge Discovery 2(4): 345-389,
1998

• S. M. Weiss and C. A. Kulikowski. Computer Systems that Learn:
Classification and Prediction Methods from Statistics, Neural Nets, Machine
Learning, and Expert Systems. Morgan Kaufman, 1991.

© J. Stefanowski 2008

Any questions, remarks?

