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Rules - preliminaries

* Rules — popular symbolic representation of knowledge
derived from data;

* Natural and easy form of representation — possible
iInspection by human and their interpretation.

o Standard form of rules
IF Conditions THEN Class

« Other forms: Class IF Conditions; Conditions — Class
Example: The set of decision rules induced from PlaySport:

if outlook = overcast then Play = yes

If temperature = mild and humidity = normal then Play = yes
if outlook = rainy and windy = FALSE then Play = yes

If humidity = normal and windy = FALSE then Play = yes

If outlook = sunny and humidity = high then Play = no

if outlook = rainy and windy = TRUE then Play = no



Rules — more preliminaries

« A set of rules — a disjunctive set of conjunctive rules.
« Also DNF form:

 ClassIF Cond 1 OR Cond 20R ... Cond m
« Various types of rules in data mining

 Decision / classification rules
 Association rules
* Logic formulas (ILP)

 Other — action rules, ...

« MCDA — attributes with some additional preferential
information and ordinal classes.



Why Decision Rules?

Decision rules are more compact.
Decision rules are more understandable and natural for human.
Better for descriptive perspective in data mining.

Can be nicely combined with background knowledge and more
advanced operations, ...

Example: Let X €{0,1}, Y €{0,1}, A

Z €{0,1}, W €{0,1}. The rules are: ;
If X=1 and Y=1 then 1 /. -\

}

1 0 1 0
| | |
if Z=1 and W=1 then 1 o]
1 0 il 0
Otherwise 0 o o

I_H
E|Vo



Decision rules vs. decision trees:

* Trees — splitting the data space (e.g. C4.5)

Decision boundaries of decision trees

* Rules — covering parts of the space (AQ, CN2, LEM)

Decision boundaries of decision rules




Rules — more formal notations

* Arule corresponding to class K; is represented as

if P then Q

where P =w, and w, and ... and w,, is a condition
part and Q is a decision part (object x satisfying P is
assigned to class K)

» Elementary condition w, (a rel v), where acA and v
IS its value (or a set of values) and rel stands for an

operatoras =,<, <, >, >.

« [P]is a cover of a condition part of a rule — a subset
of examples satisfying P.

e If (a2 =small) and (a3 <2)then(d=C1) {x1,x7}



Rules - properties

* B — a set of examples from K

« Aruleif P then Q is discriminant in DT iff
[P]= [ [w]c B,

« otherwise (PnB=J) the rule is partly discriminating
* Rule accuracy (or confidence) [[PK]|/|[P]]

* Rule cannot not have a redundant condition part,
l.e. there is no other P* — P such that [P*] < B.

 Rule sets induced from DT
« Minimal set of rules

« Other sets of rules (all rules, satisfactory)



An example of rules induced from data table

Minimal set of rules

If (a2 =s) A (a3 <2)then (d=C1)
{x1,x7}

If (@2 =n) A (a4 =c) then (d = C1)
{x3,x4}

if (@2 = w) then (d = C2) {x2,x6}
if (@1 =) A (a4 = a) then (d = C2)
{x5,x8}

Partly discriminating rule:

If (al=m) then (d=CA1)
{x1,x3,X7 | x6} 3/4

X, m S 1 a Cl
X, f W 1 b C2
X4 m n 3 C Cl
X, f n 2 C C1l
Xs f n 2 a C2
Xg m W 2 C C2
X5 m S 2 b C1l
Xg f S 3 a C2




How to learn decision rules?

« Typical algorithms based on the scheme of a sequential
covering and heuristically generate a minimal set of rule
covering examples:

* see, e.g., AQ, CN2, LEM, PRISM, MODLEM, Other ideas — PVM,
R1 and RIPPER).

« Other approaches to induce ,richer” sets of rules:

« Satisfying some requirements (Explore, BRUTE, or modification
of association rules, ,Apriori-like”).

« Based on local ,reducts” — boolean reasoning or LDA.
« Specific optimization, eg. genetic approaches.
« Transformations of other representations:

 Trees — rules.

« Construction of (fuzzy) rules from ANN. "qff[



Covering algorithms

« A strategy for generating a rule set directly from data:

« for each class in turn find a rule set that covers all examples
in it (excluding examples not in the class).

« The main procedure is iteratively repeated for each class.
« Positive examples from this class vs. negative examples.

« This approach is called a covering approach because at
each stage a rule is identified that covers some of the
Instances.

* A sequential approach.

* For a given class it conducts in a stepwise way a general
to specific search for the best rules (learn-one-rule) guided
by the evaluation measures.



Original covering idea (AQ, Michalski 1969, 86)

for each class Ki do
Ei := Pi U Ni (Pi positive, Ni negative example)
RuleSet(Ki) := empty
repeat {find-set-of-rules}
find-one-rule R covering some positive examples
and no negative ones
add R to RuleSet(Ki)

delete from Pi all pos. ex. covered by R
until Pi (set of pos. ex.) = empty T+ |- __|_

+

Find one rule: T+
+ +

Choosing a positive example called a seed. L =

.|-
Find a limited set of rules characterizing T -

the seed > STAR.
Choose the best rule according to LEF criteria.



Another variant — CN2 algorithm

 Clark and Niblett 1989:; Clark and Boswell 1991

« Combine ideas AQ with TDIDT (search as in AQ, additional evaluation
criteria or prunning as for TDIDT).

 AQ depends on a seed example

« Basic AQ has difficulties with noise handling
« Latter solved by rule truncation (pos-pruning)

* Principles:
« Covering approach (but stopping criteria relaxed).

* Learning one rule — not so much example-seed driven.

« Two options:

« Generating an unordered set of rules (First Class, then
conditions).

« Generating an ordered list of rules (find first the best condition
part than determine Class).



General schema of inducing minimal set of rules

* The procedure conducts a general to specific (greedy) search
for the best rules (learn-one-rule) guided by the evaluation
measures.

* At each stage add to the current condition part next elementary
tests that optimize possible rule’s evaluation (no backtracking).

Procedure Sequential covering (Kj Class; A attributes; E examples,
7 - acceptance threshold);
begin
R:=; {setofinduced rules}
r= Iearn-one-rule(Yj Class; A attributes; E examples)
while evaluate(r,E) >t do
begin
R=Rur;
E:=E\[R]; {remove positive examples covered by R}
r := learn-one-rule(Kj Class; A attributes; E examples);
end;
return R

end. Q



The contact lenses data

<8

Age Spectacle prescription Astigmatism Tear production rate Recommended
lenses
Young Myope No Reduced None
Young Myope No Normal Soft
Young Myope Yes Reduced None
Young Myope Yes Normal Hard
Young Hypermetrope No Reduced None
Young Hypermetrope No Normal Soft
Young Hypermetrope Yes Reduced None
Young Hypermetrope Yes Normal hard
Pre-presbyopic Myope No Reduced None
Pre-presbyopic Myope No Normal Soft
Pre-presbyopic Myope Yes Reduced None
Pre-presbyopic Myope Yes Normal Hard
Pre-presbyopic Hypermetrope No Reduced None
Pre-presbyopic Hypermetrope No Normal Soft
Pre-presbyopic Hypermetrope Yes Reduced None
Pre-presbyopic Hypermetrope Yes Normal None
Presbyopic Myope No Reduced None
Presbyopic Myope No Normal None
Presbyopic Myope Yes Reduced None
Presbyopic Myope Yes Normal Hard
Presbyopic Hypermetrope No Reduced None
Presbyopic Hypermetrope No Normal Soft
Presbyopic Hypermetrope Yes Reduced None
Presbyopic Hypermetrope Yes Normal None




Example: contact lens data 2

Rule we seek: IT 2

then recommendation

Possible conditions:

Age = Young

Age = Pre-presbyopic
Age = Presbyopic
Spectacle prescription
Spectacle prescription
Astigmatism = no
Astigmatism = yes

Tear production rate =
Tear production rate =

ACK: slides coming from witten&eibe WEKA

Myope
= Hypermetrope

Reduced
Normal

2/8

1/8

1/8

3712
1/12
0/12
4/12
0/12
4/12

hard



Modified rule and covered data

Condition part of the rule with the best elementary
condition added:

IT astigmatism = yes

then recommendation = hard
Examples covered by condition part:
Age Spectacle prescription Astigmatism Tear production rate  Recommended

lenses

Young Myope Yes Reduced None
Young Myope Yes Normal Hard
Young Hypermetrope Yes Reduced None
Young Hypermetrope Yes Normal hard
Pre-presbyopic Myope Yes Reduced None
Pre-presbyopic Myope Yes Normal Hard
Pre-presbyopic Hypermetrope Yes Reduced None
Pre-presbyopic Hypermetrope Yes Normal None
Presbyopic Myope Yes Reduced None
Presbyopic Myope Yes Normal Hard
Presbyopic Hypermetrope Yes Reduced None
Presbyopic Hypermetrope Yes Normal None




Further specialization, 2

« Current state: 1f astigmatism = yes
and ?
then recommendation = hard

 Possible conditions:

Age = Young 2/4
Age = Pre-presbyopic 1/4
Age = Presbyopic 174
Spectacle prescription = Myope 3/6
Spectacle prescription = Hypermetrope 1/6
Tear production rate = Reduced 0/6

Tear production rate = Normal 4/6



Two conditions In the rule

The rule with the next best condition added:

IT astigmatism = yes

and tear production rate = normal
then recommendation = hard

Examples covered by modified rule:

Age Spectacle prescription Astigmatism Tear production rate = Recommended
lenses

Young Myope Yes Normal Hard

Young Hypermetrope Yes Normal hard
Pre-presbyopic Myope Yes Normal Hard
Pre-presbyopic Hypermetrope Yes Normal None
Presbyopic Myope Yes Normal Hard
Presbyopic Hypermetrope Yes Normal None




Further refinement, 4

« Current state:

IT astigmatism = yes
and tear production rate = normal
and ?
then recommendation = hard

« Possible conditions:

Age = Young 2/2
Age = Pre-presbyopic 1/2
Age = Presbyopic 1/2
Spectacle prescription = Myope 3/3
Spectacle prescription = Hypermetrope 1/3

« Tie between the first and the fourth test

 We choose the one with greater coverage



The result

o Final rule: IT astigmatism = yes
and tear production rate = normal

and spectacle prescription = myope
then recommendation = hard

« Second rule for recommending “hard lenses”:
(built from instances not covered by first rule)

IT age = young and astigmatism = yes
and tear production rate = normal
then recommendation = hard

« These two rules cover all “hard lenses’:

 Process is repeated with other two classes

Thnaks to witten&eibe



Learn-one-rule as search (Play sport data)

Play tennis = yes |IF true

Play tennis = yes Play tennis = yes

IF Wind=weak IF Humidity=high
Play tennis = yes Play tennis = yes
IF Wind=strong IF Humidity=normal
Play tennis = yes
IF Humidity=normal,
Wind=weak Play tennis = yes
_ _ IF Humidity=normal,
Play tennis = yes Play tennis = yes Outlook=rain
IF Humidity=normal, IF Humidity=normal,
Wind=strong Outlook=sunny

In Mitchell's book — examples of weather / Play tennis decision



Learn-one-rule as heuristic search

Play tennis = yes IF true [9+,5-](14)

Play tennis = yes Play tennis = yes

|g Vz\/indgweak IF Humidity=high
[6+,2-](8) Play tennis = yes Play tennis = yes [3+.4-1(7)
IF Wind=strong IF Humidity=normal
[3+3-1 (6) [oH1=1()

Play tennis = yes
IF Humidity=normal,
Wind=weak Play tennis = yes

IF Humidity=normal,

Play tennis = yes Play tennis = yes Outlook=rain
IF Humidity=normal, IF Humidity=normal,
Wind=strong Outlook=sunny

[2+,0—-] (2)



A simple covering algorithm

* Generates a rule by adding tests that maximize
rule’s accuracy

« Similar to situation in decision trees: problem of
selecting an attribute to split on

« But: decision tree inducer maximizes overall purity

« Each new term reduces space of

examples

rule’s coverage: rule so far

rule after
adding new
term



Evaluation of candidates in Learning One Rule

 When is a candidate for a rule R treated as “good™?
« High accuracy P(K|R);
» High coverage |[P]l = n.

« Possible evaluation functions: Nk (R)

 Relative frequency: n(R)

« where ny is the number of correctly classified examples form
class K, and n is the number of examples covered by the rule —
problems with small samples;

* Laplace estimate: ne (R) +1
Good for uniform prior distribution of k classes n(R) +k

* m-estimate of accuracy: (n, (R)+mp)/(n(R)+m),

where n, is the number of correctly classified examples, n is the
number of examples covered by the rule, p is the prior probablity of
the class predicted by the rule, and m is the weight of p (domain
dependent — more noise / larger m).



Other evaluation functions of rule R and class K

Assume rule R specialized to rule R’

» Entropy (Information gain and others versions).

« Accuracy gain (increase in expected accuracy)
P(K|R") — P(K|R)

 Many others

» Also weighted functions, e.qg.

WAG(R',R) = ':]K(F;')) (P(K |R) = P(K |R))
K

WIG(R R) =% (F;)) (log, (K |R") — log, (K | R))
K



MODLEM - Algorithm for rule induction

« MODLEM [Stefanowski 98] generates a minimal set of rules.

 |ts extra specificity — handling directly numerical attributes
during rule induction; elementary conditions, e.g. (a > V),
(a<v), (ae|vy,Vv,)) or(@a=v).

« Elementary condition evaluated by one of three measures:
class entropy, Laplace accuracy or Grzymala 2-LEF.

obj.al a2 a3 a4 D
x1 m 20 1 a C1 if(al=m)and(a2<2.6)then (D=C1) {x1,x3,x7}

x2 f 25 1 b C2 if(a2 €[1.45, 2.4]) and (a3 <2) then (D =C1)
x3 m 15 3 ¢ Cl {x1,x4,x7}

x4 f 23 2 ¢ C1 if(a2>24)then(D=C2) {x2,x6}

xo f 14 2 a C2 if(al=f)and(a2<2.15)then (D=C2) {x5,x8}
X6 m 32 2 ¢ C2

X7 m 19 2 b Cl

x8 f 20 3 a C2



Procedure Modlem

Procedure MODLEM
(input B - a set of positive examples from a given decision concept:
criterion - an evaluation measure;
output T — single local covering of B, treated here as rule condition parts)
hegin
7 = B; {A temporary set of rules coverad by generated rules}
T =0
while & £ 0 do {look for rules until some examples remain uncovered }
hegin
T :=0; {a candidate for a rule condition part}
5 :=1I" {a set of objects currently covered bv T'}
while (T'=0) or (not{[T] C B)) do {stop condition for accepting a rule}
begin
t :={; {a candidate for an elementary eondition}
for each attribute g = © do {looking for the best elementary condition}
hegin
new_t :=Find_best_condition(g, 5):
if Better(new_f, t, criterion) then t := new_t;
{evaluate if a new condition is better than previous one
according to the chosen evaluation measure}
end;
T =T 14t}; {add the best condition to the eandidate rule}
5= Sn[t]; {focus on examples covered by the candidate }
end; { while not([T] C B }
for each elementary condition ¢ £ T do
if [T'— ] C B then T :=T — {t}; {test a rule minimality }
T =T {1}, {store a rule}
=8 UTH. [T] ; {remove already covered examples |
end; { while G =0}
for each 7' = T do
if | cr_r[1"]=Bthen T =T — T {test minimality of the rule set}
end |procedure}

Set of positive examples

Looking for the best rule

Testing conjunction

Finding the most discrimantory
single condition

Extending the conjunction
Testing minimality

Removing covered examples



Find best condition

function Find best _condition
(input ¢ - given attribute; S - set of examples; output best £ - bestcondition)
begin
best £ =1,
if ¢ is a numerical attribute then
begin
H:=list of sorted values for attribute ¢ and ob jects from S;
{ H(i) - ith unique value in the list }
for i:=1 to length( H)-1 do
if ohject class assignments for H(i) and H(i 4+ 1) are different then
begin
vi=(H(i)+H(i+1))/2
create a new 4 as either (¢ < v) or (e > v);
if Better(new £, best 1, eriterion) then best { := new 1 ;
end
end
else { attribute is nominal }
begin
for each value v of attribute ¢ do
if Better((c = v),best 1, eriterion) then best f == (c =v) ;
end
end {function}.

Preparing the sorted value list

Looking for the best cut point
between class assignments

Testing each candidate

Return the best evaluated condition



An Example (1)

&

-

No. | Age | Job | Period [Income [Purpose| Dec.
1 m u 0 500 K r
2 sr p 2 1400 S r
3 m P 4 2600 M d
4 st p 16 2300 D d
5 sr p 14 1600 M p
6 m u 0 700 W r
7 sr b 0 600 D r
8 m p 3 1400 D p
9 sr p 11 1600 W d

10 | st e 0 1100 D p
11 m u 0 1500 D p
12 | m b 0 1000 M r
13 | sr p 17 2500 S p
14 | m b 0 700 D r
15 | st p 21 5000 S d
16 m p 5 3700 M d
17 | m b 0 800 K r

Class (Decision =r)
E={1,2,6,7,12,14, 17}
List of candidates

(Age=m) {1,6,12,14,17+; 3,8,11,16-}
(Age=sr) {2,7+; 5,9,13-}

(Job=u) {1,6+; 11}
(Job=p) {2+, 3,4,8,9,13,15,16-)
(Job=b) {7,12,14,17+; &)

(Pur=K) {1,17+; &}
(Pur=S) {2+;13,15-}
{Pur=W} {6+, 9-}

{Pur=D} {7,14+;4,8,10,11-}
{Pur=M} {12+;5,16-}



An Example (2)

« Numerical attributes: Income

500 600 700 800 1000 | 1100 | 1400 | 1500 1600 2300 2500 2600 3700 5000
T+ 7+ 6+ 17+ 12+ 10- | 2+ | 11-  9- 4 13- 3- 10- 15-
14+ 5 -

(Income < 1050) {1,6,7,12,14,17+;0}
(Income < 1250) {1,6,7,12,14,17+;10-}

(Income < 1450) {1,2,6,7,12,14,17+:8,10-}

Period

(Period < 1) {1,6,7,14,17+;10,11-}

(Period < 2.5) {1,2,6,7,12,14,17+;10,11-}



Example (3) - the minimal set of induced rule

if (Income<1050) then (Dec=r) [06]

if (Age=sr) and (Period<2.5) then (Dec=r) [2]

if (Periode[3.5,12.5)) then (Dec=d) [2]

if (Age=st) and (Job=p) then (Dec=d) [3]

if (Age=m) and (Income<[1050,2550)) then (Dec=p) [2]
if (Job=e) then (Dec=p) [1]

if (Age=sr) and (Period>12.5) then (Dec=p) [2]

For inconsistent data:

N o o s w b=

« Approximations of decision classes (rough sets)

 Rule post-processing (a kind of post-pruning) or extra testing
and earlier acceptance of rules.



Mushroom data (UCI Repository)

Mushroom records drawn from The Audubon Society Field
Guide to North American Mushrooms (1981).

This data set includes descriptions of hypothetical samples
corresponding to 23 species of mushrooms in the Agaricus and
Lepiota Family. Each species is identified as definitely edible,
definitely poisonous, or of unknown edibility.

Number of examples: 8124.
Number of attributes: 22 (all nominally valued)
Missing attribute values: 2480 of them.
Class Distribution:
-- edible: 4208 (51.8%)
-- poisonous: 3916 (48.2%)



MOLDEM rule set (Implemented in WEKA)

=== Classifier model (full training set) ===

Rule 1.(odor is in: {n, a, I})&(spore-print-color is in: {n, k, b, h, 0, u, y, w})&(gill-size = b)
=> (class = e); [3920, 3920, 93.16%, 100%)]

Rule 2.(odor is in: {n, a, I})&(spore-print-color is in: {n, h, k, u}) => (class = e); [3488,
3488, 82.89%, 100%]

Rule 3.(gill-spacing = w)&(cap-color is in: {c, n}) => (class = e); [304, 304, 7.22%,
100%]

Rule 4.(spore-print-color = r) => (class = p); [72, 72, 1.84%, 100%)]

Rule 5.g}stalk-surface-below-ring = y)&(gill-size = n) => (class = p); [40, 40, 1.02%,
100%]

Rule 6.(odor = n)&(qill-size = n)&(bruises? = t) => (class = p); [8, 8, 0.2%, 100%]
Rule 7.(odoris in: {f, s, y, p, ¢, m}) => (class = p); [3796, 3796, 96.94%, 100%]

Number of rules:; 7
Number of conditions: 14



Approaches to Avoiding Overfitting

* Pre-pruning: stop learning the decision rules
before they reach the point where they
perfectly classify the training data

 Post-pruning: allow the decision rules to
overfit the training data, and then post-prune
the rules.



Pre-Pruning

The criteria for stopping learning rules can be:

* minimum purity criterion requires a certain
percentage of the instances covered by the
rule to be positive;

* significance test determines if there is a
significant difference between the distribution
of the instances covered by the rule and the
distribution of the instances in the training
sets.



Post-Pruning

1.  Split instances into Growing Set and Pruning Set;

2. Learn set SR of rules using Growing Set;

3. Find the best simplification BSR of SR.

4. while (Accuracy(BSR, Pruning Set) >
Accuracy(SR, Pruning Set) ) do

4.1 SR = BSR;

4.2 Find the best simplification BSR of SR.

5. return BSR;



Applying rule set to classify objects

« Matching a new object description x to condition parts of
rules.

« Either object’s description satisfies all elementary
conditions in a rule, or not.

IF (a1=L) and (a3> 3) THEN Class +
X — (a1=L),(a2=s),(a3=7),(a4=1)

* Two ways of assining x to class K depending on the set
of rules:

* Unordered set of rules (AQ, CN2, PRISM, LEM)
* Ordered list of rules (CN2, c4.5rules)



Applying rule set to classify objects

* The rules are ordered into priority decision list!

Another way of rule induction — rules are learned by first
determining Conditions and then Class (CN2)

Notice: mixed sequence of classes K1,..., Kin a rule list

But: ordered execution when classifying a new instance: rules
are sequentially tried and the first rule that ‘fires’ (covers the
example) is used for final decision

Decision list {R1, R2, R3, ..., D}: rules Ri are
interpreted as if-then-else rules

If no rule fires, then DefaultClass (majority class in input data)



Priority decision list (C4.5 rules

: L A%
IF physician fee freeze = n
THEN democrat

validation  Special

7 @

Data Tree Rules Cros

G B T |

Pule Z: [24.7%]
IF nx missile = ¥

AND synfuels corporation cuthack = ¥
THEN democrat

Before pruning After pruningfl

[test] |Size

Rule 3: [63.0%]
| | | | | IF physician fee freeze = u
3 16 9 [ 3.3%) 0 0.0%) o AD  mx wissile = n "
1 1 T T T THEN democrat
4 25 50 1.9%) 20 6.7%) 4 | 12
5 2z 70 z.6%) 30 10.0%) ge | Ly gBULeAs LE4.0%]
| | | } | IF: physician fee freeze = ¥
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IF adoption of the budget resolution = n

AND education spending = u
THEN republican

Pule 7: [50.0%]
IF physician fee freeze = u
AND ¥ missile = u
THEN republican

Default class: democrat

Errors in training set: 11 (3.7%)
Errors in test set: 6 (4.4%)

. Confusion matrix (test set)

republican

democrat

18

1



Specific list of rules - RIPPER (Mushroom data
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Learning ordered set of rules

* RuleList := empty; E_ =E

* repeat
e learn-one-rule R
 RuleList := RuleList ++ R

* E.yr i= Eqyr - {all examples covered by R}
( Not only positive examples ! )

< ThresholdR

until performance(R, E

CUF)

RuleList := sort RuleList by performance(R,E)
RuleList := RuleList ++ DefaultRule(E

CUF)



CN2 — unordered rule set
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Reading attributes and examples... ~
498 examples?

Finished reading attribute and example file?
Running CH on current example set...
Finished inducing rulest

e *
| UN-ORDERED RULE LIST | Pl Edytui Opejs  Pomoc
e x *xATTRIBUTE AND EXAMPLE FILExx
IF A8 < 10.75 a1: B A;
AND A9 = T AZ: (FLOAT)
AND 5.50 < A11 < 18.50 a3: (FLOAT)
THEM DECISION = ¥ [68 0] Az U Y L;
A5: & P GG;
IF A15 > 5676.08 AG: WO MRCCKCDXIE®AAFF J;
THEM DECISION = ¥ [19 8] A7: U H BB FF J 2 0 DD N;
a8: (FLOAT)
IF Az > 19.00 A%: T F;
AND A% = U a18: T F;
AND A8 < 11.75 A11: (FLOAT)
AND A9 = T A12: F T;
AND A14 < 91.88 A13: G S P;
THEM DECISION = ¥ [67.58 8] Alh: (FLOAT)
A15: (FLOAT)
IF A3 > 1.79 DECISION: ¥ N;
AND A9 = T
AND A15 > 241.58 @
THEM DECISION = ¥ [80 0]
B30.83 BUGWUY1.25 TT1FG 202 8 Y¥;
IF a6 = X AGB.67 4.46 UG QH 3.8 TT6FG 43 560 Y;
AND 1.33 < AB < 7.88 A24.50 SUGQHI1.5TF B8FG 280 824 V;
THEM DECISION = ¥ [11 8] B27.83 1.5 UG WU 3.75TTSTG 188 3 ¥;
B20.17 5625 UG WU 1.71 TF B F S 128 8 V¥;
IF A2 < 26.08 B32.08 4 UGHU2.5TF BTG 360 0 Y;
AND A9 = T B33.17 1.B4 UG RH 6.5 TF 8T G 164 31285 ¥;
AND 208.00 < A14 < 106.00 A22.92 11.585 UG CC U .04 TF B F G 89 1349 V;
THEM DECISION = ¥ [32.58 8] BSh.42 SYPKHSI.9 TF OFG 180 314 ¥;
B 42.50 4.915 ¥ P W U 3.165 TF B T G 52 1442 V;
IF a8 > 12.75 22208 02 I C C U 0 JsC C L A T C 100 0.

AHD A14 < 187.08
THEH DECISION = ¥ [12 8]




Applying unordered rule set to classify objects

* An unordered set of rules — three situations:
* Matching to rules indicating the same class.
» Multiple matching to rules from different classes.

* No matching to any rule.

 An example:

« el1={(Age=m), (Job=p),(Period=6),(Income=3000),(Purpose=K)}
* rule 3: if (Periode[3.5,12.5)) then (Dec=d) [2]
« Exact matching to rule 3. — Class (Dec=d)

« e2={(Age=m), (Job=p),(Period=2),(Income=2600),(Purpose=M)}

* No matching!




Solving conflict situations

 LERS classification strategy (Grzymala 94)

* Multiple matching
« Two factors: Strength(R) — number of learning examples
correctly classified by R and final class Support(Yi):

Zmatching rulesR for Yi Strength(R)

 Partial matching
« Matching factor MF(R) and
Zpartially match. rulesR for Yi MF (R) ’ Strength(R)

« e2={(Age=m), (Job=p), (Period=2),(Income=2600),(Purpose=M)}
« Partial matching to rules 2 , 4 and 5 for all with MF = 0.5
« Support(r) = 0.5-2 =1 ; Support(d) = 0.5-2+0.5-2=2

« Alternative approaches — e.g. nearest rules (Stefanowski 95)

 |nstead of MF use a kind of normalized distance x to conditions of r



Some experiments

* Analysing strategies (total accuracy in [%]):

data set all multiple exact
large soybean 87.9 85.7 79.2
election 89.4 79.5 71.8
hsv2 77.1 70.5 59.8
concretes 88.9 82.8 81.0
breast cancer 67.1 59.3 51.2
imidasolium 53.3 44.8 34.4
lymphograpy 85.2 73.6 67.6
oncology 83.8 82.4 74.1
buses 98.0 93.5 90.8
bearings 96.4 90.9 87.3

« Comparing to other classification approaches
 Depends on the data

* Generally — similar to decision trees



Variations of inducing minimal sets of rules

* Sequential vs. simultaneous covering of data.

» General-to-specific vs. specific-to-general; begin
search from single most general vs. many most
specific starting hypotheses.

« Generate-and-test vs. example driven (as in AQ).
* Pre-pruning vs. post-pruning of rules

 \What evaluation functions to use?



Different perspectives of rule application

* |n a descriptive perspective

* To present, analyse the relationships between
values of attributes, to explain and understand
classification patterns

* |n a prediction/classification perspective,

» To predict value of decision class for new
(unseen) object)

Perspectives are different;
Moreover rules are evaluated in a different ways!




Evaluating single rules

* ruler (if P then Q) derived from DT, examples U.

Q | =Q

P Mg | Mpq | Mp

—P | Npg |Npqg| Np
ng | ng | n

« Reviews of measures, e.g.

Yao Y.Y, Zhong N., An analysis of quantitative measures associated with rules, In: Proc. the 3rd
Pacific-Asia Conf. on Knowledge Discovery and Data Mining, LNAI 1574, Springer, 1999, pp. 479-488.

Hilderman R.J., Hamilton H.J, Knowledge Discovery and Measures of Interest. Kluwer, 2002.

n
. n _PQ
Support of rule r G(P AQ)= PQ Coverage AS(P|Q)= %

e Confidence of rule r Np and others ...
AS(QIP)=-"%
P



Descriptive requirements to single rules

 In descriptive perspective users may prefer to discover
rules which should be:

« strong / general — high enough rule coverage AS(P|Q) or
support.

 accurate — sufficient accuracy AS(Q|P).

« simple (e.g. which are in a limited number and have short
condition parts).

* Number of rules should not be too high.

« Covering algorithms biased towards minimum set of rules
- containing only a limited part of potentially “interesting'
rules.

« We need another kind of rule induction algorithms!



Explore algorithm (Stefanowski, Vanderpooten)

 Another aim of rule induction

 to extract from data set inducing all rules that satisfy some
user’s requirements connected with his interest (regarding,
e.g. the strength of the rule, level of confidence, length,
sometimes also emphasis on the syntax of rules).

« Special technique of exploration the space of possible
rules:

» Progressively generation rules of increasing size using in the
most efficient way some 'good' pruning and stopping
condition that reject unnecessary candidates for rules.

« Similar to adaptations of Apriori principle for looking
frequent itemsets [AIS94]; Brute [Etzioni]



Explore — some algorithmic details

procedure Explore (LS: list of conditions;

beg

SC: stopping conditions; var R:
set_of rules);

in
R« &

Good_Candidates(LS,R); {LS - ordered
list of c1,c2,..,cn}

Q « LS; {create a queue Q}

while Q # do

begin

select the first conjunction C from Q ;
Q« QXC};

Extend(C,LC); {LC - list of extended
conjunctions}

Good_Candidates(LC,R);

Q « QuUC; {place all conjunctions from
LC at the end of Q}

end

end.

procedure Extend(C : conjunction, var L : list of
conjunctions);

{This procedure puts in list L extensions of
conjunction C that are possible candidates
for rules}

begin

Let k be the size of C and h be the highest index
of elementary conditions involved in C;

L« {CAcy,,; Where ch+ieLS and such that all the
k_subconjunctions of C /\c of size k and
involving ¢,,,; belong to Q , i=1,..,n-h}

end

procedure Good_ Candidates(LC : ist of
conjunctions, var R - set of rules );

{This procedure prunes list LC discarding:

- conjunctions whose extension cannot give rise
to rules due to SC,

- conjunctions corresponding to rules which are
already stored in R



Various sets of rules (Stefanowski and Vanderpooten 1994)

* A minimal set of rules (LEM2):

rule 1.  if (q =2) A(gz3 =1) then (d=1)  {1,2,3.4,5}
rule 2. if (g =1) then (d =1) {6, 7}

rule 3.  if (g3 =2) Algs =2) then (d=1)  {6,8}

rule 4. if (g =3) then (d =2) {9,10.11,13,14}
rule 5. if (g3 =3) then (d =2) {15}

rule 6. if (g3 =2) A(gs =1)A(gs =1) then (d =2) {12}

« A ,satisfactory” set of
rules (Explore):

Let us assume that the user’s level of interest to the possible strength of a rule

by assigning a value [ = 50% in SC.
Ezxplore gives the following decision rules:

3) then (d =1)

2) Algs =1) then (d =1)
3) then (d =2)
2) then (d =2)

{1,2,3,6,7}
{1,2,3,4,5}
{9,10,11,13,14}
{10,13,14,15)

rule 1.  if (g
rule 2. if (
rule 3. if (

if (

rule 4.

72
q
q
q

t
t

1
1
1

5/8
2/8
2/8
5/7
1/7
1/7

5/8
5/8
5/
4/7

Table 1: The illustrative set of learning exam

No. g1 ¢ ¢ q1 q5 qg |d
1 2 3 1 3 1 271
2 2 3 1 1 1 1 |1
J 2 3 1 3 2 1 |1
! 2 1 1 1 1 1 |1
3 2 2 1 1 2 21
0 1 3 2 3 1 2|1
7 1 3 2 3 2 1 |1
8 2 1 2 1 2 271
9 3 1 1 3 1 2|2
1 |3 1 2 2 2 1 |2
1|3 11 3 2 2172
12 | 2 1 2 1 2 1 |2
3 (3 2 4 2 1 1 |2
4 (3 2 4 2 2 1 |2
5 (2 2 3 2 1 2|2
6 (2 2 2 1 1 1 |1
7 (2 2 2 1 1 1 |2




A diagnostic case study

« A fleet of homogeneous 76 buses (AutoSan H9-21) operating in an
inter-city and local transportation system.

« The following symptoms characterize these buses :
sl — maximum speed [km/h],

s2 — compression pressure [Mpa],

s3 — blacking components in exhaust gas [%],
s4 — torque [Nm],

s5 — summer fuel consumption [I/100Im],

s6 — winter fuel consumption [I/100km],

s7 — oil consumption [I/1000km],

s8 — maximum horsepower of the engine [km].
Experts’ classification of busses:
1. Buses with engines in a good technical state — further use (46 buses),
2. Buses with engines in a bad technical state — requiring repair (30 buses).



LEMZ2 algorithm — (sequential covering)

A minimal set of discriminating decision rules

1. if (s222.4 MPa) & (s7<2.1 [/1000km) then
(technical state=good) [406]

2. if (s2<2.4 MPa) then (technical state=bad) [29]

3. if (s7>2.1 [/1000km) then (technical state=bad) [24]

* The prediction accuracy (‘leaving-one-out’ reclassification
test) is equal to 98.7%.



Another set of rules (EXPLORE)

All decision rules with min. SC1 threshold (rule coverage > 50%):
1. if (s1>85 km/h) then (technical state=good) [34]
2. if (s8>134 kM) then (technical state=good) [26]
. if (s2>2.4 MPa) & (s3<61 %) then (technical state=good) [44]
. if (s2>2.4 MPa) & (s4>444 Nm) then (technical state=good) [44]
. if (s2>2.4 MPa) & (s7<2.1 1/1000km) then (technical state=good) [46]

3
4
5
6. if (S3<61 %) & (s4>444 Nm) then (technical state=good) [42]
7. if (s1<77 km/h) then (technical state=bad) [25]

8. if (s2<2.4 MPa) then (technical state=bad) [29]

9. if (s7>2.1 1/1000km) then (technical state=bad) [24]

10.if (s3>61 %) & (s4<444 Nm) then (technical state=bad) [28]
11.if (s3>61 %) & (s8<120 kM) then (technical state=bad) [27]

The prediction accuracy - 98.7%



Descriptive vs. classification properties (Explore)

Tris 11 males 20 2.1 603 2.7
5% 35 1.29 1225 o3.a67
10%s 22 1.86 1757 o2
15%: 20 1.85 12.4 Qn
20%: 15 1.2 216 8333
5% 14 1.79 2336 TE.aT
30% & 1.83 3383 IR
Dlikrasn | male set 23 1.91 11 0533
Tic-tac- 411 males 2858 | 4.63 427 01.35
toe
5% 5 1 E; 60,25 av.1a
10%, 5 16 3 60,25 05,14
15%: 5 2 3 A0
20%: 5 0
0% 5 0
Dlitdroan | mile set 24 3.a7 40.53 8.0
Wotite 471 males 1502 | 4725 | 10.61 0587
5% 4 231 3.6 45.56 04.51
10%s 4 133 3.3 G, O o4 .5
15%: 4 104 3.1 To.61 PR
20%: 4 g2 31 go.ET o4
5% 4 67 3.1 oG . 0332
30% 4 A0 3.1 104 7 03 .31
0% 4 21 276 133 205
Dlindroan | male et 26 e LER 0587
10%e 8228 3.48 26.91 g0.30
15%, 27 Z.05 EER- 8737
20%: 2 2.38 5374 EER=]
25% 2 1.5 T 32,96
30% 1 1 105 23 .4
Dlindroan | male et 12 327 | 21176 | 804l

Tuning a proper value of
stopping condition SC
(rule coverage) leads to
sets of rules which are
,Satisfactory” with respect
to a number of rules,
average rule length and
average rule strength
without decreasing too
much the classification

accuracy.



Where are we now?

1. Rule representation

=

Various algorithms for rule induction.

=

MODLEM — exemplary algorithm for inducing a minimal
set of rules.

Classification strategies

Descriptive properties of rules.

Explore — discovering a richer set of rules.
Association rules

Logical relations

© 00 N o g s

Final remarks.



Association rules

 Transaction data

« Market basket analysis

TID

Produce

© 00 NO O & WDN P

MILK, BREAD, EGGS

BREAD, SUGAR

BREAD, CEREAL

MILK, BREAD, SUGAR

MILK, CEREAL

BREAD, CEREAL

MILK, CEREAL

MILK, BREAD, CEREAL, EGGS
MILK, BREAD, CEREAL

« {Cheese, Milk} — Bread [sup=5%, conf=80%)]

 Association rule:

,80% of customers who buy cheese and milk also buy
bread and 5% of customers buy all these products

together”




Why is Frequent Pattern or Association Mining an
Essential Task in Data Mining?

« Foundation for many essential data mining tasks
» Association, correlation, causality

« Sequential patterns, temporal or cyclic association, partial
periodicity, spatial and multimedia association

« Associative classification, cluster analysis, fascicles
(semantic data compression)

« DB approach to efficient mining massive data
- Broad applications

- Basket data analysis, cross-marketing, catalog design, sale
campaign analysis

- Web log (click stream) analysis, DNA sequence analysis, etc



Basic Concepts: Frequent Patterns and

Association Rules

Transaction-id ltems bought
10 A B, C
20 A, C
30 A, D
40 B,E,F
Customer

buys diaper

Customer
buys beer

« ltemset X={x, ..., X}

« Find all the rules XY with min
confidence and support

* support, s, probability that a
transaction contains XuY

« confidence, c, conditional
probability that a transaction
having X also contains Y.

Let min_support = 50%,
min_conf = 50%:
A > C (50%, 66.7%)
C 2> A (50%, 100%)



Mining Association Rules—an Example

Transaction-id ltems bought M!n' Supp_ort 50%
10 AB C Min. confidence 50%
20 A C Frequent pattern Support
> ale (A 75%
0 0 (B} 50%
{C} 50%
For rule A = C: A C) —

support = support({AhAC}) = 50%

confidence = support({A}J{C})/support({A}) =
66.6%



Generating Association Rules

 Two stage process:

* Determine frequent itemsets e.g. with the Apriori
algorithm.

* For each frequent item set |
» for each subset J of |

* determine all association rules of the form:
-J => ]

* Main idea used in both stages : subset property

* Focus on computational efficiency, access to data,
scalabillity, ...



Apriori: A Candidate Generation-and-test Approach

Any subset of a frequent itemset must be frequent

 if {beer, diaper, nuts} is frequent, so is {beer, diaper}

« Every transaction having {beer, diaper, nuts} also contains
{beer, diaper}

Apriori pruning principle: If there is any itemset which is
infrequent, its superset should not be generated/tested!

Method:

« generate length (k+1) candidate itemsets from length k
frequent itemsets, and

 test the candidates against DB
The performance studies show its efficiency and scalability
Agrawal & Srikant 1994, Mannila, et al. 1994



The Apriori Algorithm—An Example

emset 2P ltemset su
Database TDB A 2 | | - 2p
Tid ltems Cl {B} 3 1 iBi 3
10 A, C,D {C} 3
t — C 3
2 | Boe | L5 |G ——
30 | ABCE {E} 3
40 B, E
C2 ltemset | sup C2 E—
L2 ltemset | sup _ 2nd scan {A, B}
A, C ’
RO e 4.0
e 12 1. "eg A E}
{C’ E} - B.E | 3 (B, C}
¢ F) (C.E} (B, E}
{C, E}
C3 emset 3rd scan ‘LB ltemset | sup
{B. C, E} i {B,C,E} | 2




Example: Generating Rules from an Itemset

* Frequent itemset from Play data:

Humidity = Normal, Windy = False, Play = Yes (4)

« Seven potential rules:

IT Humidity = Normal and Windy = False then Play = Yes 4/4
IT Humidity = Normal and Play = Yes then Windy = False 4/6
IT Windy = False and Play = Yes then Humidity = Normal 4/6
IT Humidity = Normal then Windy = False and Play = Yes 4/7
IT Windy = False then Humidity = Normal and Play = Yes 4/8
IT Play = Yes then Humidity = Normal and Windy = False 4/9

IT True then Humidity = Normal and Windy = False and Play = Yes 4/12



Weka associations

File: weather.nominal.arff
MinSupport: 0.2

| weka.associations.Apriori

& weka.gui.GenericObjectE

Ahout
Finds association rules.

metricType

More

Confidence

lowerBoundMinSupport |D.2

minMetric 0.9

upperBoundMinSupport |1.III

remaovedliMissingCols

False

significancel evel |-1 0

delta {0.05

numRules |1 0

Open... Save...

0K

cancel




Weka associations: output

& Weka Knowledge Explorer - |IZI |£|

rPreprucess rCIassify rCIuster Associate |SEIE|::1 attributes |/"-J'isualize
Associator

ApHior - 10 -T 0-C 0.8 -D 0.05-1U1.0-M0.2-5-1.0 |

Associator output
Start
F
Save Output S3ize of set of large itemsets Li2): Z6
Result list Size of set of large itemsets L{3): 4

22:29:06 - Apriari

22:29:53 - Apriori Best rules found:

hunidity=normal windy=FAL3E 4 ==> play=ves 4 conf:(l)

temperature=cool 4 ==> humidity=normal 4 conf:(l)

outlook=overcast 4 ==> play=yes 4 conf: (1) -
temperature=cool play=yes 3 ==> humidity=normal 3 cong: (1) e

outlook=rainy wihdy=FAL3ZE 3 ==> play=vez 3 conf:(l)
outlook=rainy play=yves 3 ==> windy=FALSE 3 conf: (1)
outlook=sunny humidity=high 3 ==> play=no 3 conf: (1)
outlook=sunny play=no 3 ==>= humidity=high 3 cont: (1)

0 =1 i s L

Log
FIYTIET Staed weka associalions ApDor -
22:29:06: Finished weka. associations Apriari u
222943 Started weka. associations Apriari

22:29:43: Finished weka. associations Apriari -

Status

o <




Learning First Order Rules

 |s object/attribute table sufficient data representation?

« Some limitations:
 Representation expressivness — unable to express
relations between objects or object elements. ,

« background knowledge sometimes is quite complicated.
« Can learn sets of rules such as
« Parent(x,y) — Ancestor(x,y)

« Parent(x,z) and Ancestor(z,y) — Ancestor(X,y)
 Research field of Inductive Logic Programming.



Why ILP? (slide of S.Matwin)

* expressiveness of logic as representation (Quinlan)

« can't represent this graph as a fixed length vector of attributes
« can’t represent a “transition” rule:

A can-reach B if A link C, and C can-reach B

without variables



FINITE ELEMENT MESH DESIGN

Given a geometric structure and loadings/boundary conditions
Find an appropriate resolution for a finite element mesh

Examples: ten structures with appropriate meshes (cca. 650 edges)

Background knowledge
e Properties of edges (short, loaded, two-side-fixed, ...)

e Relations between edges (neighbor, opposite, equal)

ILP systems applied: GOLEM, CLAUDIEN

Many mteresting rules discovered (according to expert evaluation)



Finite element mesh design (ctd.)

Example rules

mesh(Edge, T) «+ usual_length(Edge),
neighbour_ry(FEdge, FdgeY '), two_side_fixed( EdgeY ),
neighbour_zx(FEdgeZ, Edge), not_loaded( EdgeZ)

mesh(Edge, N) < equal( Edge, Edge2), mesh(Edge2, N)



Application areas

* Medicine
« Economy, Finance
* Environmental cases
* Engineering
« Control engineering and robotics
« Technical diagnostics
« Signal processing and image analysis
* Information sciences
* Social Sciences
* Molecular Biology
« Chemistry and Pharmacy
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Any questions, remarks?




