
Multiple classifiers

JERZY STEFANOWSKI
Institute of Computing Sciences

Poznań University of Technology

Doctoral School , Catania-Troina, April, 2008

Outline of the presentation
1. Introduction

2. Why do multiple classifiers work?

3. Stacked generalization – combiner.

4. Bagging approach

5. Boosting

6. Feature ensemble

7. n2 classifier for multi-class problems

Machine Learning and Classification
Classification - assigning a decision class label to a set of objects
described by a set of attributes

Set of learning examples S =
for some unknown classification function f : y = f(x)
xi =<xi1,xi2,…,xim> example described by m attributes
y – class label; value drawn from a discrete set of classes {Y1,…,YK}

{ }nn yyy ,,,,,, 2211 xxx L

Learning set
S <x,y>

Learning
algorithm LA

Classifier
C

<x,?>

classification
<x,y>

Why could we integrate classifiers?
• Typical research → create and evaluate a single learning

algorithm; compare performance of some algorithms.
• Empirical observations or applications → a given algorithm

may outperform all others for a specific subset of problems
• There is no one algorithm achieving the best accuracy for all

situations!
• A complex problem can be decomposed into multiple sub-

problems that are easier to be solved.
• Growing research interest in combining a set of learning

algorithms / classifiers into one system

„Multiple learning systems try to exploit the local
different behavior of the base learners to enhance
the accuracy of the overall learning system”

- G. Valentini, F. Masulli

Multiple classifiers - definitions

• Multiple classifier – a set of classifiers whose individual
predictions are combined in some way to classify new
examples.

• Various names: ensemble methods, committee, classifier
fusion, combination, aggregation,…

• Integration should improve predictive accuracy.

CT

Classifier
C1

...example x Final decision y

Multiple classifiers – review studies

• Relatively young research area – since the 90’s
• A number of different proposals or application studies
• Some review papers or book:

• L.Kuncheva, Combining Pattern Classifiers: Methods and
Algorithms, 2004 (large review + list of bibliography).

• T.Dietterich, Ensemble methods in machine learning, 2000.
• J.Gama, Combining classification algorithms, 1999.
• G.Valentini, F.Masulli, Ensemble of learning machines,

2001 [exhaustive list of bibliography].
• J.Kittler et al., On combining classifiers, 1998.
• J.Kittler et al. (eds), Multiple classifier systems, Proc. of

MCS Workshops, 2000, … ,2003.
• See also many papers by L.Breiman, J.Friedman,

Y.Freund, R.Schapire, T.Hastie, R.Tibshirani,

Multiple classifiers – why do they work?

• How to create such systems and when they may perform
better than their components used independently?

• Combining identical classifiers is useless!

• Conclusions from some studies (e.g. Hansen&Salamon90,
Ali&Pazzani96):
Member classifiers should make uncorrelated errors with
respect to one another; each classifier should perform better
than a random guess.

A necessary condition for the approach to be useful is
that member classifiers should have a substantial level of
disagreement, i.e., they make error independently with
respect to one another

Diversification of classifiers - intuition
Two classifiers are diverse, if they make different errors on a

new object

Assume a set of three classifiers {h1,h2,h3} and a new object x
• If all are identical, then when h1(x) is wrong, h2(x) and h3(x)

will be also wrong

• If the classifier errors are uncorrelated, then when h1(x) is
wrong, h2(x) and h3(x) may be correct → a majority vote
will correctly classify x!

Improving performance with respect to a single classifier

• An example of binary classification (50% each class), classifiers have
the same error rate and make errors independently; final classification
by uniform voting → the expected error of the system should decrease
with the number of classifiers

Dietterich’s reasons why multiple classifier may work better…

Why do ensembles work?

Dietterich(2002) showed that ensembles overcome three problems:

• The Statistical Problem arises when the hypothesis space is too large
for the amount of available data. Hence, there are many hypotheses with
the same accuracy on the data and the learning algorithm chooses only
one of them! There is a risk that the accuracy of the chosen hypothesis is
low on unseen data!

• The Computational Problem arises when the learning algorithm cannot
guarantee finding the best hypothesis.

• The Representational Problem arises when the hypothesis space does
not contain any good approximation of the target class(es).

Multiple classifier may work better than a single classifier.

• The diagonal decision boundary may be difficult for individual
classifiers, but may be approximated by ensemble averaging.

• Decision boundaries constricted by decision trees →
hyperplanes parallel to the coordinate axis - „staircases”.

• By averaging a large number of „staircases” the diagonal
boundary can be approximated with some accuracy.

Combing classifier predictions
• Intuitions:

• Utility of combining diverse, independent opinions in
human decision-making

• Voting vs. non-voting methods
• Counts of each classifier are used to classify a new

object
• The vote of each classifier may be weighted, e.g., by

measure of its performance on the training data.
(Bayesian learning interpretation).

• Non-voting → output classifiers (class-probabilities or
fuzzy supports instead of single class decision)
• Class probabilities of all models are aggregated by

specific rule (product, sum, min, max, median,…)
• More complicated → extra meta-learner

Group or specialized decision making

• Group (static) – all base classifiers are consulted
to classify a new object.

• Specialized / dynamic integration – some base
classifiers performs poorly in some regions of the
instance space

• So, select only these classifiers whose are
„expertised” (more accurate) for the new object

Dynamic voting of sub-classifiers

Change the way of aggregating predictions from sub-
classifiers!

• Standard → equal weight voting.

Dynamic voting:

• For a new object to be classified:

• Find its h-nearest neighbors in the original learning set.

• Reclassify them by all sub-classifiers.

• Use weighted voting, where a sub-classifier weight
corresponds to its accuracy on the h-nearest neighbors.

Diversification of classifiers
• Different training sets (different samples or splitting,..)

• Different classifiers (trained for the same data)

• Different attributes sets

(e.g., identification of speech or images)

• Different parameter choices

(e.g., amount of tree pruning, BP parameters, number
of neighbors in KNN,…)

• Different architectures (like topology of ANN)

• Different initializations

Different approaches to create multiple systems

• Homogeneous classifiers – use of the same
algorithm over diversified data sets

• Bagging (Breiman)

• Boosting (Freund, Schapire)

• Multiple partitioned data

• Multi-class specialized systems, (e.g. ECOC pairwise
classification)

• Heterogeneous classifiers – different learning
algorithms over the same data

• Voting or rule-fixed aggregation

• Stacked generalization or meta-learning

Stacked generalization [Wolpert 1992]

• Use meta learner instead of averaging to combine
predictions of base classifiers.

• Predictions of base learners (level-0 models) are used as
input for meta learner (level-1 model)

• Method for generating base classifiers usually apply
different learning schemes.

• Hard to analyze theoretically.

The Combiner - 1

Chan & Stolfo : Meta-learning.
• Two-layered architecture:

• 1-level – base classifiers.

• 2-level – meta-classifier.

• Base classifiers created by applying the different
learning algorithms to the same data.

Learning alg. 1

Training
data

Learning alg. 2

Learning alg. k

…

Base classifier 1

Base classifier 2

Base classifier k

…

1-level

Meta-level

Different algorithms!

Learning the meta-classifier

• Predictions of base classifiers on an extra validation set (not
directly training set – apply „internal” cross validation) with correct
class decisions → a meta-level training set.

• An extra learning algorithm is used to construct a meta-classifiers.
• The idea → a meta-classifier attempts to learn relationships

between predictions and the final decision;
It may correct some mistakes of the base classifiers.

Base classifier 1

Base classifier 2

Base classifier k

…

V
al

id
at

io
n

se
t

Meta-level
training

set
Learning alg.

Meta
classifier

BC…BA
AB…AA

Dec.
classCl.K…Cl.2Cl.1

Predictions

The Combiner - 2

Classification of a new instance by the combiner

• Chan & Stolfo [95/97] : experiments that their combiner
({CART,ID3,K-NN}→NBayes) is better than equal voting.

New
object

Base classifier 1

Base classifier 2

Base classifier k

…

1-level
Meta-level

attributes

Meta
classifier

predictions

Final decision

More on stacking

• Other 1-level solutions: use additional attribute
descriptions, introduce an arbiter instead of simple meta-
combiner.

• If base learners can output probabilities it’s better to use
those as input to meta learner

• Which algorithm to use to generate meta learner?

• In principle, any learning scheme can be applied

• David Wolpert:
• Base learners do most of the work
• Reduces risk of overfitting

• Relationship to more complex approaches: SCANN
[Mertz] create a new attribute space for the
metalearning.

Bagging [L.Breiman, 1996]

• Bagging = Bootstrap aggregation

• Generates individual classifiers on bootstrap samples of the
training set

• As a result of the sampling-with-replacement procedure,
each classifier is trained on the average of 63.2% of the
training examples.

• For a dataset with N examples, each example has a
probability of 1-(1-1/N)N of being selected at least once in the
N samples. For N→∞, this number converges to (1-1/e) or
0.632 [Bauer and Kohavi, 1999]

• Bagging traditionally uses component classifiers of the
same type (e.g., decision trees), and combines prediction
by a simple majority voting across.

More about „Bagging”
• Bootstrap aggregating – L.Breiman [1996]

input S – learning set, T – no. of
bootstrap samples, LA – learning
algorithm

output C* - multiple classifier

for i=1 to T do

begin

Si:=bootstrap sample from S;

Ci:=LA(Si);

end;

∑ = == T
i iy yxCxC 1

*))((argmax)(

Bagging Empirical Results

Breiman “Bagging Predictors” Berkeley Statistics Department TR#421, 1994

27%10.614.5soybean

22%24.932.0glass

20%18.823.4diabetes

23%8.611.2ionosphere

30%4.26.0breast cancer

47%5.310.0heart

33%19.429.0waveform

DecreaseBaggingSingleData

Misclassification error rates [Percent]

Bagging – how does it work?
• Related works – experiments Breiman [96], Quinlan

[96], Bauer&Kohavi [99]; Conclusion – bagging
improves accuracy for decision trees.

• The perturbation in the training set due to the
bootstrap re+sampling causes different base
classifiers to be built, particularly if the classifier is
unstable

• Breiman says that this approach works well for
unstable algorithms:
• Whose major output classifier undergoes major changes

in response to small changes in learning data.

• Bagging can be expected to improve accuracy if the
induced classifiers are uncorrelated!

Bias-variance decomposition

• Theoretical tool for analyzing how much specific
training set affects performance of a classifier

• Total expected error: bias + variance

• The bias of a classifier is the expected error of the
classifier due to the fact that the classifier is not
perfect

• The variance of a classifier is the expected error
due to the particular training set used

Why does bagging work and may hurt?
• Bagging reduces variance by voting/ averaging,

thus reducing the overall expected error

• Usually, the more classifiers the better but …

• In the case of classification there are pathological
situations where the overall error might increase

• For smaller training samples and too stable
classifiers …

Experiments with rules
• The single use of the MODLEM induced classifier is

compared against bagging classifier (composed of rule
sub-classifiers - also induced by MODLEM)

• Comparative studies on 18 datasets. Predictive accuracy
evaluated by 10-fold cross-validation (stratified or random)

• An analysis of the change parameter T (number of sub-
classifiers) on the performance of the bagging classifier

Comparing classifiers

Classification accuracy [%] – average over 10 f-c-v with standard
deviations; Asterik – difference is not significant α =0.05

Some remarks
• Bagging outperformed the single classifiers on 14 of 18

datasets;
• for others (easier e.g. iris, bank, buses) difference non-

significant; the single classifier is better for zoo and auto data
sets.

• The bagging is a „winner” for more difficult data and it
improves for higher number of examples.

• We should expect good result as
• The MODLEM is an unstable algorithm in the sense of

Breiman’s postulate

(the choice of the best elementary condition to the rule, the
choice of thresholds for numerical attributes)

• The bagging additional computational costs – depends on T.

Analysis of the number of component classifiers

• For some data (e.g. hsv, glass, pima, vote) increasing T has
lead to better accuracy

• For majority of data T > 5 but is seems to be difficult do
indicate one the best value

• Breiman says: „more replicants are required with an
increasing number of classes”

Boosting [Schapire 1990; Freund & Schapire 1996]

• In general takes a different weighting schema of resampling than
bagging.

• Freund & Schapire: theory for “weak learners” in late 80’s
• Weak Learner: performance on any train set is slightly better than

chance prediction

• Schapire has shown that a weak learner can be converted into a
strong learner by changing the distribution of training examples

• Iterative procedure:

• The component classifiers are built sequentially, and examples that
are misclassified by previous components are chosen more often
than those that are correctly classified!

• So, new classifiers are influenced by performance of previously
built ones. New classifier is encouraged to become expert for
instances classified incorrectly by earlier classifier.

• There are several variants of this algorithm – AdaBoost the most
popular (see also arcing).

AdaBoost
• Weight all training examples equally (1/n)

• Train model (classifier) on train sample Di

• Compute error ei of model on train sample Di

• A new training sample Di+1 is produced by decreasing the weight
of those examples that were correctly classified (multiple by ei/(1-
ei))), and increasing the weight of the misclassified examples.

• Normalize weights of all instances.

• Train new model on re-weighted train set

• Re-compute errors on weighted train set

• The process is repeated until (# iterations or error stopping)

• Final model: weighted prediction of each classifier

• Weight of class predicted by component classifier log(ei/(1-ei))

Remarks on Boosting

• Boosting can be applied without weights using re-
sampling with probability determined by weights;

• Example weights might be harder to deal with some
algorithms or packages.

• Draw a bootstrap sample from the data with the probability
of drawing each example is proportional to it’s weight

• Boosting should decrease exponentially the training error
in the number of iterations;

• Boosting works well if base classifiers are not too complex
and their error doesn’t become too large too quickly!

Boosting vs. Bagging with C4.5 [Quinlan 96]

Boosting vs. Bagging

• Bagging doesn’t work so well with stable models.
Boosting might still help.

• Boosting might hurt performance on noisy
datasets. Bagging doesn’t have this problem.

• On average, boosting helps more than bagging,
but it is also more common for boosting to hurt
performance.

• In practice bagging almost always helps.

• Bagging is easier to parallelize.

Randomization Injection

• Inject some randomization into a standard
learning algorithm (usually easy):

• Neural network: random initial weights

• Decision tree: when splitting, choose one of the
top N attributes at random (uniformly)

• Dietterich (2000) showed that 200 randomized
trees are statistically significantly better than
C4.5 for over 33 datasets!

Feature-Selection Ensembles

• Key idea: Provide a different subset of the input features in
each call of the learning algorithm.

• Example: Venus&Cherkauer (1996) trained an ensemble
with 32 neural networks. The 32 networks were based on 8
different subsets of 119 available features and 4 different
algorithms. The ensemble was significantly better than any
of the neural networks!

•See also Random Subspace Methods by Ho.

Integrating attribute selection with bagging
• Diversification of classifiers by selecting subsets of

attributes (some related works,…)
• What about integration of attribute selection (MFS) and

bagging together?
• Study of P.Latinne et al. → encouraging results of

simple random technique (BagFS, Bag vs. MFS)
• In my and M.Kaczmarek study → we have used

different techniques of attribute subset selection
(random choice, correlation subsets, contextual merit,
Info-gain, χ2 ,…) inside WEKA toolkit

• Dynamic selection of classifiers (nearest neighbor,…)
• Results → selection of attributes and classifiers +

standard bagging – slightly improves the classification
performance

Random forests [Breiman]

• At every level, choose a random subset of the
attributes (not examples) and choose the best split
among those attributes.

• Combined with selecting examples like basic
bagging.

• Doesn’t overfit.

Breiman, Leo (2001). "Random Forests". Machine Learning 45 (1), 5-32

The n2 classifier for multi-class problems

• Specialized approach for multi-class difficult problems.

• Decompose a multi-class problem into a set of two-class
sub-problems.

• Combine them to obtain the final classification decision

• The idea based on pairwise coupling by Hastie T.,
Tibshirani R [NIPS 97] and J.Friedman 96.

• The n2 version proposed by Jacek Jelonek and Jerzy
Stefanowski [ECML 98].

• Other specialized approaches:

• One-per-class,

• Error-correcting output codes.

• The problem is to classify objects into a set of n decision
classes (n>2)

• Some problems may be difficult to be learned (complex
target concepts with non-linear decision boundaries).

• An example of three-class problem, where pairwise
decision boundaries between each pairs of classes are
simpler.

Solving multi-class problems

The n2-classifier
It is composed of (n2-n)/2 base binary classifiers

(all combinations of pairs of n classes).

• discrimination of each pair of the classes (i,j), where
i,j ∈[1.. n], i≠j, by an independent binary classifier Cij

• The specificity of training binary classifier Cij - only
examples from two classes i,j.

• classifier Cij yields binary
classification (1 or 0),
classifiers Cij and Cji
are equivalent

Cji(x) = 1 - Cij(x)

nn-11 p2 q

1

2

p

q

n-1
n

0
0
0

0
0
0

1 1 1 1 1 1

0

1

1
?

1
?

1
?

1
?

1
?

1
?

...

...

...

...

Final classification decision of the n2-classifier
• For an unseen example x, a final classification of the n2-

classifier is a proper aggregation of predictions of all base
classifiers Cij(x)

• Simplest aggregation - find a class that wins the most
pairwise comparison

• The aggregation could be extended by estimating
credibility of each base classifier
(during learning phase) Pij

• Final classification decision - a weighted majority rule:

• choose such a decision class „i” that maximizes:

P C xij
j i j

n

ij⋅
= ≠
∑
1,

()

Conditions of experiments

• We examine an influence of the learning algorithm on the
classification performance of n2-classifier:

• Decision trees

• Decision rules (MODLEM)

• Artificial neural network (feed forward multi-layer network
trained by Back-Propagation)

• Instance based learning (k-nn, k=1, Euclidean distance)

• Computations on MLR-UCI benchmark data sets and our
medical ones.

• The classification accuracy estimated by stratified 10-fold
cross validation

Performance of n2 classifier based on decision trees

3.752.8 ± 1.849.1 ± 2.1Yeast

2.683.7 ± 0.581.1 ± 1.1Vowel

0.5*92.4 ± 0.591.9 ± 0.7Soybean-large

4.945.1 ± 1.240.2 ± 1.5Primary Tumor

2.649.8 ± 1.447.2 ± 1.4Meta-data

1.773.0 ± 1.871.3 ± 2.3Hist

3.374.0 ± 1.170.7 ± 2.1Glass

1.381.0 ± 1.779.7 ± 0.8Ecoli

5.059.0 ± 1.754.0 ± 2.0Cooc

1.5*87.0 ± 1.985.5 ± 1.9Automobile

Improvement
n2 vs. DT (%)

Classification
accuracy n2 (%)

Classification
accuracy DT (%)

Data set

Discussion of experiments with various algorithms

• Decision trees → significant better classification for 8
of all data sets; other differences non-significant

• Comparable results for decision rules
Artificial neural networks → generally better
classification for 9 of all data sets; some of highest
improvements but difficulties in constructing networks

• However, k-nn does not result in improving
classification performance of the n2-classier with
respect to single multi-class instance-based learner!

• We proposed an approach to select attribute subsets
discriminating each pair of classes → it improved a k-nn
constructed classifier.

The n2-classifier with decision rules induced by MODLEM

Notice → improvements of classification accuracy
But also for computational costs

Few comments on the use of MODLEM
• Unlike other methods does not increase the computation time

• In experiments time is even decreased (8 sets)

• Pairwise decision boundaries are easier to be learned

• Smaller number of attributes (elementary conditions / rules) is
sufficient to discriminate

• Properties of MODLEM sequential covering scheme

• Given class against all other (n-1) classes vs. only pair

• Smaller number of examples and attribute-value tests to be
verified

• Analysis of the rules for Ecoli data set:

• MODLEM → 46 rules (av. Length 3.7, strength 9.3)

• n2-classifier → 118 rules (av. Length 1.8, strength 26.5)

Some Practical Advices [Smirnov]

If the classifier is unstable (i.e, decision trees) then apply
bagging!

If the classifier is stable and simple (e.g. Naïve Bayes) then apply
boosting!

If the classifier is stable and very complex (e.g. Neural Network)
then apply randomization injection!

If you have many classes and a binary classifier then try error-
correcting codes! If it does not work then use a complex binary
classifier!

Any questions, remarks?

