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Data Mining a step in A KDD Process

e Data mining: the core
step of knowledge
discovery process.
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Steps of a KDD Process

e Learning the application domain:
 relevant prior knowledge and goals of application
« Creating a target data set: data selection
« Data cleaning and preprocessing
e Data reduction and projection:

* Find useful features, dimensionality/variable reduction, invariant
representation.

e Choosing the mining algorithm(s)
« Data mining: search for patterns of interest
e Interpretation: analysis of results.
 visualization, transformation, removing redundant patterns, etc.
« Use of discovered knowledge



Interacting with a user / expert in KDD

e KDD is not a fully automatically way of analysis.
e The user is an important element in KDD process.
e Should decide about, e.g.

e Choosing task and algorithms, selection in
preprocessing.
e Interpretation and evaluation of patterns
e Objective interestingness measures, ...
e Subjective,...
e By definition, KDD may have several iterations.




Data Preparation
for
Knowledge Discovery

A crucial issue: The majority of time / effort is put there.



Data Understanding: Relevance

 \What data is available for the task?
e |s this data relevant?

e |s additional relevant data available?

e How much historical data is available?

 Who is the data expert ?



Data Understanding: Quantity

 Number of instances (records)
e Rule of thumb: 5,000 or more desired

o If less, results are less reliable; use special methods
(boosting, ...)

 Number of attributes (fields)
e Rule of thumb: for each field, 10 or more instances
« If more fields, use feature reduction and selection
 Number of targets
e Rule of thumb: >100 for each class

o if very unbalanced, use stratified sampling



Data Cleaning Steps

e Data acquisition and metadata

Missing values

Unified date format

Converting nominal to numeric

Discretization of numeric data

Data validation and statistics



Data Cleaning: Metadata

* Field types:
e binary, nominal (categorical), ordinal, numeric, ...

 For nominal fields: tables translating codes to full

descriptions
* Field role:

 Input : inputs for modeling

 target : output

 |d/auxiliary : keep, but not use for modeling

* ignore : don’t use for modeling

e weight : instance weight

* Field descriptions



Data Cleaning: Unified Date Format

« We want to transform all dates to the same format internally
Some systems accept dates in many formats

e e.g. “Sep 24, 2003”, 9/24/03, 24.09.03, etc

» dates are transformed internally to a standard value
Frequently, just the year (YYYY) is sufficient
For more details, we may need the month, the day, the hour, etc

Representing date as YYYYMM or YYYYMMDD can be OK, but
has problems

Q: What are the problems with YYYYMMDD dates?
« A: Ignoring for now the Looming Y10K (year 10,000 crisis ...)

* YYYYMMDD does not preserve intervals:
e 20040201 - 20040131 /= 20040131 — 20040130
e This can introduce bias into models



Data Cleaning: Missing Values

* Missing data can appear in several forms:
o <empty field> “0” “.” “999” “NA”" ...
e Standardize missing value code(s)

e Dealing with missing values:

* ignore records with missing values
(only if you have enough data)

 treat missing value as a separate value
* Not-recommended approach

« Imputation / Substitution:

 Fill in with mean or mode values
« Several options (all examples vs. class)

» Regression or dependency from other fields



Data Cleaning: Discretization

e« Some methods require discrete values, e.g.
most versions of Naive Bayes, CHAID

e Discretization is very useful for generating a
summary of data

 Also called “binning”

 Many approaches have been proposed:
e Supervised vs. unsupervised,
e Global vs. local (attribute point of view),

 Dynamic vs. Statitic choice of paramteres



Discretization: Equal-Width

Temperature values:
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Discretization: Equal-Height

Temperature values:
64 6568 69 707172727575 80 81 83 85
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Supervised discretization

e Use information about attribute value distribution + class
assignment.
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 Minimal entropy based approaches; Chi-Merge, others



Data Cleaning: Attribute Selection

First: Remove fields with no or little variability

« Examine the number of distinct field values

* Rule of thumb: remove a field where almost all
values are the same (e.g. null), except possibly in
minp % or less of all records.

 minp could be 0.5% or more generally less than
5% of the number of targets of the smallest class

 More sophisticated (statistical or ML)
techniques specific for data mining tasks

e In WEKA see attribute selection



A few remarks on selecting attributes

* Irrelevant attributes (features) in the input data may
decrease the classification performance

» Attribute (feature) selection:

* Find the smallest subset of attributes leading to a higher
classification accuracy than all attributes

« Search problem in the space of attribute subsets
 Three components:

e Search algorithm

. Evalu.a.tlon function /: -.:-: * .
e Classifier “‘Y

%E



Wrapper approach

 Filter vs. Wrapper approach (Kohavi, and ...)

Search Algorithm
Data set i@> Attribute Evaluation selected Classifier
attributeg ¢ attribute
Classifier

 The classifier is used by the evaluation function
e Search algorithms:

e Forward selection

e Backward elimination

e Random search



Different attribute selection methods

e Random selection.
e Correlation-based measure.
e Contextual-merit.

 Info-Gain.
— Galin ratio
— Chi-squared statistic
— Liu Consistency measure

and
— Relief method
 Wrapper model



Conclusion

Good data preparation Is
key to producing valid and
reliable models!



Examples of Systems for Data Mining

e IBM: QUEST and Intelligent Miner

« Silicon Graphics: MineSet

o SAS Institute: Enterprise Miner

« SPSS/Integral Solutions Ltd.: Clementine

e Qracle Miner

 Rapid Miner (YALE)

 QOrange

e Other systems
 Information Discovery Inc.: Data Mining Suite
 SFU: DBMiner, GeoMiner, MultiMediaMiner



RapidMiner (YALE)
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Orange (Slovenia)
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IBM Intelligent Miner: Major Features

Highly scalable, large database-oriented data mining
algorithms

Multiple data mining functions:
e Association
 Classification

e Sequencing analysis

e Clustering.

Visual graphical display

Influential in database and data mining research
communities.



IBM Miner — example of visualisation
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Statistica — Statsoft (www.statsoft.pl / *.com)

User friendly for MS Windows; mainly based on statistical approaches.
It contains numerous data analysis methods.

Efficient calculations, good managing results and reports.

Excellent graphical visualisation.

Comprehensive help, documentations, supporting books and teaching
materials.

Drivers to data bases and other data sources

Main systems:

Statistica 6.0 — mainly statistical software

Statistica Data Miner — specific for DM / user friendly
Specialized systems — Statistica Neural Networks.
Quality and Control Cards

Corporation Tools



DataMiner — main panel
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Data Miner — loading data and selecting attributes

Select Spreadzheet
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Data Miner — ch

00sing methods
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Extra tools for defining projects
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Using several methods on the same data
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SAS Enterprise Miner
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Enterprise miner project
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Data Mining and Business Intelligence

A

Increasing potential
to support

business decisions End User

Business
Analyst

Data
Analyst




Industries/fields where you currently apply data
mining [KDD Pool - 216 votes total]

Banking (29) 13% Manufacturing (9) 4%
Bioinformatics/Biotech (18) 8% Medical/Pharma (15) 7%
Direct Marketing/Fundraising (19) 9% Retail (9) 4%
eCommerce/Web (12) 6% Scientific data (20) 9%
Entertainment/News (1) 0% Security (8) 4%

Fraud Detection (19) 9% Telecommunications (12) 6%
Insurance (15) 7% Travel (2) 1%

Investment/Stocks (9) 4% Other (19) 9%



Controversial Issues: Society and Privacy

Data mining (or simple analysis) on people may come with a profile
that would raise controversial issues of

e Discrimination
* Privacy

e Security

Examples:

» Should males between 18 and 35 from countries that produced
terrorists be singled out for search before flight?

e Can people be denied mortgage based on age, sex, race?
« Women live longer. Should they pay less for life insurance?

Can discrimination be based on features like sex, age, national origin?

In some areas (e.g. mortgages, employment), some features cannot
be used for decision making



Data Mining and Privacy

e Can information collected for one purpose be
used for mining data for another purpose

* In Europe, generally no, without explicit
consent!

e In US, generally yes,...

« Companies routinely collect information about
customers and use it for marketing, etc.

e People may be willing to give up some of their
privacy in exchange for some benefits



Data Mining Future Directions

e Currently, most data mining is on flat tables
* Richer data sources

e text, links, web, images, multimedia, knowledge
bases

e Advanced methods
 Link mining, Stream mining, ...
* Applications

e Web, Bioinformatics, Customer modeling, ...



Challenges for Data Mining

e Technical
e tera-bytes and peta-bytes
e complex, multi-media, structured data
e Integration with domain knowledge
e Business
« finding good application areas
e Societal

* Privacy issues



Data Mining Central Quest

Find true patterns
and avold

(false patterns due
to randomness).

So, be lucky In using this course!



Background literature

 Witten lan and Eibe Frank, Data Mining, Practical Machine
[ Learning Tools and Techniques with Java Implementations,
Morgan Kaufmann, 1999.

« Han Jiawei and Kamber M. Data mining: Concepts and
technigues, Morgan Kaufmann, 2001.

« Hand D., Mannila H., Smyth P. Principles of Data Mining, MIT
Press, 2001.

« Fayyad, Piatetsky-Shapiro, Smyth, and Uthurusamy, Advances
In Knowledge Discovery and Data Mining, AAAI/MIT Press
1996.

e Mitchell T.M., Machine Learning, McGrawHill, 1997.

« Krawiec K, Stefanowski J., Uczenie maszynowe i sieci
neuronowe, PP Press, 2003. %



Thank you !



