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This is 1st lecture  
in 1st ADT conference 

(International Conference on Algorithmic Decision Theory), 
Venice, Italy 

Welcome all of us to a new community, joining many European 
forces! 



I asked participants about central topic here: 
Multicriteria optimization. 
“Criteria” can be:  
1. Beliefs or well-being of different people 

(aggregating over people); 
2. Resolutions of uncertainty (decision making 

under uncertainty); 
3. Payoff at different time points (dynamic/

sequential decision making). 
4. And so on! 
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Most people here work algorithmically: find optimal 
solution. 
I work in behavioral decision theory: what do 
people really do, empirically?  Where deviate from 
optimum?  So, where to improve actual decisions? 



What better to start ADT with here in Italy 
than: 
The nicest multi-criteria optimization problem 
ever invented? 
You will see … 
Was invented by Bruno de Finetti! 
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Topic this lecture: Uncertainty in optimization.  
How extract knowledge using decision making 
theory?  
How measure subjective belief of others (such 
as of experts, say weather forecasters)?  

Say about the uncertain event:  
D = Next president of US will be Democrat; 
       or: Will client repay loan? 
Major part of lecture: measure belief of, say, you 
                                  in D. 

We first consider another application:  
grading students. 
`We measure their belief in D. 
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Say, you grade a multiple choice exam in 
geography to test students' knowledge about  
Statement D: Capital of North Holland =  
                       Amsterdam. 
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Reward: if D true    if not D true 
        D 
   not-
D 

                   1                   0  
                   0                   1  

Problem: Correct answer does not completely 
identify student's knowledge.   
Some correct answers, and high grades, are 
due to luck.  There is noise in the data. 



Attempted solution: 
Find r such that student indifferent between: 
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   partly know D, 
     to degree r 

                      r                  r 

  D 
Reward: if D true    if not D true 
                     1                 0  

Then r = P(D). (Assuming expected value 
maximization …) 

How measure r? 
1. Observe many binary choices between such 

options.  Popular in decision theory.  Problem: 
too crude and time consuming. 

2. Just ask student what r is.  Problem: why 
would they tell the truth?? 
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I now promise a perfect way out: 
de Finetti's dream-optimization problem;  
a very clever two-criteria continuous 
optimization problem. 
Will exactly identify state of knowledge of each 
student, no matter what it is. 
Takes little time; no more than multiple choice. 
Rewards students fairly, with little noise. 
Best of all worlds.  Here it is: 

For all conceivable degrees of knowledge. 
----------------------------------------------------------- 
Student can choose reported probability r for D 
from the [0,1] continuum, as follows: 
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               Criterium 1  Criterium 2 

Claim: Under "subjective expected value,"  
optimal reported probability r  
                      =  
  true subjective probability p. 

                     1                 0  r=1 

                      0                1  r=0 

               1 – (1–r)2        1–r2 r 

(have no clue!?)                     0.75           0.75  r=0.5: 

: (D = sure!?) 

: (not-D is sure!?) 

degree of 
belief in D (?) : 

Reward: if D true       if not D true  



Reward: if D true    if not D true 
               1 – (1–r)2       1–r2  

r: 
degree of 
belief in D 

To help memory: 
Proof of claim. 9 

p true probability; r reported probability. 
Optimize  EV  =   p(1 – (1–r)2)  +  (1–p)(1–r2). 
1st order optimality: 
                            2p(1–r) – 2r(1–p)  =  0. 
                            r = p! 
 



Easy in algebraic sense. 
Conceptually: !!! Wow !!! 

Can read minds of people! 
Incentive compatible ... Many implications ... 
de Finetti (1962) and Brier (1950) were the 
first neuro-scientists. 
They invented the nicest multi-criteria 
optimization problem ever! 
Useful in many domains. 
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"Bayesian truth serum" (Prelec, Science, 2005). 
Superior to elicitations through preferences . 
Superior to elicitations through indifferences ~. 

Widely used: Hanson (Nature, 2002), Prelec (Science 2005). In 
accounting (Wright 1988), Bayesian statistics (Savage 1971), 
business (Stael von Holstein 1972), education (Echternacht 1972), 
finance (Shiller, Kon-Ya, & Tsutsui 1996), medicine (Spiegelhalter 
1986), psychology (Liberman & Tversky 1993; McClelland & Bolger 
1994), experimental economics (Nyarko & Schotter 2002). 

Remember: based on expected value; in 2009 …!? 

We bring 
- realism 
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               (of prospect theory) to proper scoring rules; 
- the beauty of proper scoring rules to prospect theory 
   and studies of ambiguity. 



Survey 

Part I.   Deriving reported prob. r from theories 
                                  (different goal functions): 
             • expected value; 
             • expected utility; 
             • nonexpected utility for probabilities; 
             • imprecize/unknown probabilities. 

Part II.  Deriving theories from observed r.   
             In particular: Derive beliefs/ambiguity 
             attitudes.  Will be surprisingly easy. 

Part III. Implementation in an experiment. 
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Part I.  Deriving r from Theories (EV, and 
            then 3 deviating goal functions). 
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Event D: Next president US is Democrat. 
not-D:     Next president is not democrat. 

We quantitatively measure your subjective 
belief in this event  
(subjective probability?; imprecize probability?),  
i.e. how much you believe in D. 



Say your subjective probability of D = 0.75. 

EV:  
Then your optimal rD = 0.75. 
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Reported probability R(p) = rD 
as function of true probability 
p, under: 

nonEU 

0.69 

EU 

0.61 

rEV 

EV 

rnonEU 

rnonEUA 

rnonEUA: nonexpected utility for 
unknown probabilities 
("Ambiguity"). 

(c) nonexpected utility for 
known probabilities, with U(x) 
= x0.5 and with w(p) as 
common; 

(b) expected utility with U(x) = 
√x (EU); 

(a) expected value (EV);  

rEU 

next p. 
go to p. 18, 
Example EU 
go to p. 22, 
Example nonEU 

0.25 0.50 0.75 10 
p 

R(p) 

0 

0.50 

1 

0.25 

0.75 

go to p. 26, 
Example nonEUA 



So far we assumed EV  
(as in every application of proper scoring rules; 
as in no modern risk-ambiguity theory ...) 

Deviation 1 from EV: EU with U nonlinear 

Now optimize 
pU(1 – (1– r)2) + (1 – p)U(1 – r2) 

r = p need no more be optimal. 
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Theorem.  Under expected utility with true 
probability p, 
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U´(1–r2) 
U´(1 – (1–r)2) (1–p) p  +  

p 
r  =  

U´(1–r2) 
U´(1 – (1–r)2) (1–r) r  +  

r 
p  =  

Reversed (and explicit) expression: 



How bet on D? [Expected Utility].  
EV: rEV = 0.75. 
Expected utility, U(x) = √x:  
rEU = 0.69.   
You now bet less on D.  Closer to safety (50-50) 
(Winkler & Murphy 1970). 
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go to p. 15  
with figure of 
R(p) 



Deviation 2 from EV: nonexpected utility for 
probabilities (Allais 1953, Machina 1982, Kahneman & 
Tversky 1979, Quiggin 1982, Gul 1991, Luce & Fishburn 1991, 
Tversky & Kahneman 1992; Birnbaum 2005; survey: Starmer 
2000) 
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For two-gain prospects, virtually all those 
theories are as follows: 

For r ≥ 0.5, nonEU(r)  =   
w(p)U(1 – (1–r)2) + (1–w(p))U(1–r2). 

r < 0.5, symmetry, etc. 
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p 

w(p) 

1 

1 

0 

Figure.  The common weighting function w. 
w(p) = exp(–(–ln(p))α) for α = 0.65. 

w(1/3) ≈ 1/3; 

1/3 

1/3 

w(2/3) ≈ .51 

2/3 

.51 



Theorem.  Under nonexpected utility with 
true probability p, 
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U´(1–r2) 
U´(1 – (1–r)2) (1–w(p)) w(p) +  

w(p) 
r  =  

U´(1–r2) 
U´(1 – (1–r)2) (1–r) r  +  

r 
p  =  

Reversed (explicit) expression: 

w –1 ( )



How bet on D now? [nonEU with probabilities].  
EV: rEV = 0.75. 
EU: rEU = 0.69. 
Nonexpected utility, U(x) = √x,  
                                w(p) = exp(–(–ln(p))0.65). 
rnonEU = 0.61. 
You bet even less on D.  Again closer to  
50-50 safety. 
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go to p. 15, 
with figure of 
R(p) 



Deviation 3 from EV: Ambiguity  
(unknown probabilities). 

How deal with unknown/impricise probabilities? 

Even have to give up probabilities (“Bayesian 
beliefs”). 
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Instead of additive beliefs p = P(D), nonadditive 
beliefs B(D): 

• Imprecise probabilities; 
• upper/lower probabilities; 
• Dempster&Shafer belief functions; 
• Tversky& Koehler support functions; 
• Zadeh-Morufushi/Sugeno fuzzy measures. 
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Virtually all decision models existing today: 
For r ≥ 0.5, nonEU(r)  =   

W(D)U(1 – (1–r)2) + (1–W(D))U(1–r2). 
or 
W(B(D))U(1 – (1–r)2) + (1–w(B(D)))U(1–r2). 

Can always write B(D) = w–1(W(D)), 
so W(D) = w(B(D)).) 

Is '92 prospect theory, = Schmeidler (‘89). 
Includes multiple priors (Wald ’50; Gilboa & Schmeidler ’89); 
For binary gambles: Einhorn & Hogarth ’85; Pfanzagl ’59; Luce 
(’00 Chapter 3); Ghirardato & Marinacci (’01, "biseparable"). 



25 

U´(1–r2) 
U´(1 – (1–r)2) (1–w(B(D))) w(B(D)) +  

w(B(D)) 
rD =  

U´(1–r2) 
U´(1 – (1–r)2) (1–r) r  +  

r 
B(D)  =  

Reversed (explicit) expression: 

w –1 ( )

Theorem.  Under nonexpected utility with 
ambiguity, 



How bet on D now? [Ambiguity, nonEUA].  
rEV = 0.75. 
rEU = 0.69. 
rnonEU = 0.61. 
Similarly, 
rnonEUA = 0.52 (under plausible assumptions). 
r's are close to insensitive fifty-fifty. 
"Belief" component B(D) = w–1(W) = 0.62. 
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go to p. 15, 
with figure of 
R(p) 



B(D): ambiguity attitude ⊃/=/≠  beliefs?? 
Before entering that debate: 
How measure B(D)? 
Our contribution: through proper scoring rules 
with "risk correction." 

This ends Part I.   
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We reconsider reversed (explicit) expressions: 

U´(1–r2) 
U´(1 – (1–r)2) (1–r) r  +  

r 
p  =  w –1 ( )

U´(1–r2) 
U´(1 – (1–r)2) (1–r) r  +  

r 
B(D)  =  w –1 ( )

Corollary. p = B(D) if related to the same r!! 

Part II.  Deriving Theoretical Concepts 
from Empirical Observations of r 
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Our proposal takes the best of several worlds! 

Need not measure U,W, and w. 

Get "matching probability" without measuring 
indifferences (BDM …; Holt 2006). 

Calibration without needing many repeated 
observations. 

Get ambiguity attitude without measuring U,w. 

Do all that with no more than simple proper-
scoring-rule questions. 



30 Example (subject 25) 
stock 20, CSM 
certificates 
dealing in sugar 
and bakery-
ingredients. 
Reported 
probability: 
r = 0.75 

91 91 

For objective probability p=0.70, subject 25 
also reported probability r = 0.75. 
Conclusion: B(elief) of ending in bar is 0.70! 
We simply measure the R(p) curves, and use 
their inverses: is risk correction. 
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Directly implementable empirically. We did so in 
an experiment, and found plausible results. 



Part III. Experimental Test of 
Our Correction Method 
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                   Method 

Subjects.  N = 93 students.  
Procedure. Computarized in lab.   
                   Groups of 15/16 each.  
                   4 practice questions. 
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34 Stimuli 1. First we did proper scoring rule 
for unknown probabilities.  72 in total. 

For each stock two small intervals, and, third, 
their union.  Thus, we test for additivity. 



35 Stimuli 2. Known probabilities:  
Two 10-sided dies thrown.   
Yield random nr. between 01 and 100. 
Event D: nr. ≤ 75 (p = 3/4 = 15/20) (etc.). 
Done for all probabilities j/20. 
Motivating subjects.  Real incentives.   
Two treatments.   
1. All-pay.  Points paid for all questions. 
    6 points = €1.   
    Average earning €15.05. 
2. One-pay (random-lottery system). 
    One question, randomly selected afterwards, 
    played for real. 1 point = €20.  Average 
    earning: €15.30. 
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                   Results 
(of group average; at individual level 
more corrections) 
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Average 
correction 
curves 
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Figure 9.1. Empirical density of additivity bias for the two treatments 

Fig. b.  Treatment t=ALL 
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Fig. a.  Treatment t=ONE 
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For each interval [(j-2.5)/100, (j+2.5)/100] of length 0.05 around j/100, we counted the number of additivity biases 
in the interval, aggregated over 32 stocks and 89 individuals, for both treatments.  With risk-correction, there were 
65 additivity biases between 0.375 and 0.425 in the treatment t=ONE, and without risk-correction there were 95 
such; etc. 

corrected 

corrected 

uncorrected 
uncorrected 

Corrections reduce nonadditivity, but more than half remains: ambiguity generates 
more deviation from additivity than risk. 
Fewer corrections for Treatment t=ALL.  Better use that if no correction possible. 



Summary and Conclusion 
•  Modern risk&ambiguity theories: traditional  
   proper scoring rules are heavily biased. 
•  We correct for those biases.  Benefits  
   for proper-scoring rule community and for 
   risk- and ambiguity theories. 
•  Experiment: correction improves quality; 
   reduces deviations from ("rational"?) 
   Bayesian beliefs. 
•  Do not remove all deviations from Bayesian 
   beliefs.  Beliefs are genuinely nonadditive/ 
   nonBayesian/sensitive-to-ambiguity. 
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The end. 
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