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POLYHEDRA, POLYTOPES, AND CONES

Polyhedron = intersection of a finite number of half-spaces
={xeR:alx>by,...,alx>b,}
= {Ax > b}
Facet = inequality of an irredundant description
Polytope = bounded polyhedron
= conv(V)
Cone = polyhedron containing a point that lies on every facet
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RECOGNIZING BOX-INTEGRALITY

OBs: A polyhedron is box-integer if and only if the points obtained by fixing
integer coordinates in any face are all integer

- o

Deciding whether a polyhedron is box-integer is in co-NP

OBs: A polytope in the unit cube is integer if and only if it is box-integer

Deciding whether a polytope is box-integer is co-NP-complete

» What about in fixed dimension?

What is the complexity of recognizing box-integer cones?

» For the matricial counterparts of this problem, check out:
11:20 - 11:50 Totally equimodular matrices: decomposition and triangulation. (Amphi S3 043) - M. Vallée

» The simplicial case might be easier
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Theorem (Ford and Fulkerson — 1956)
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st-flow = sum of st-paths
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Stable sets

clique-formulation

x(C) <1 VCclique
x =0

Theorem (Chvatal — 1975)

Stable set: set of pairwise nonadjacent
vertices

Clique: set of pairwise adjacent vertices

OBs: |clique N stable| < 1

Perfect graph: for all induced subgraphs
max clique = min coloring

A graph is perfect if and only if the clique-formulation is its stable set polytope
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Stable set: set of pairwise nonadjacent
vertices

Clique: set of pairwise adjacent vertices

OBs: |clique N stable| < 1

Perfect graph: for all induced subgraphs
max clique = min coloring

A graph is perfect if and only if the clique-formulation is its stable set polytope
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box-integer polyhedron for
box-perfect graphs

Box-perfect graphs in handwaving

The graphs in which stable sets satisfy a kind of "MaxFlow-MinCut" theorem
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Characterize box-perfect graphs by forbidding induced subgraphs

G* u

Theorem (Chervet, G. — 2024)
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ARBORESCENCES

IN A DIRECTED GRAPH D = (V,A) WITH A ROOT r € V

An r-arborescence is a set of arcs B C A:
» whose underlying undirected graph is a spanning tree
> in which every vertex except r receives exactly one arc

Theorem (Edmonds — 1967)
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SUMS OF ARBORESCENCES
Theorem (Edmonds — 1967)

Open Problem (Sebd 1991, Gijswijt and Regts 2012)
Can every integer B in kARB be written as:
B= B+ -4+Bi+ - -+By+ -+By ?
N———— \ ,

1, copies t|4| copies
— —————
By, ..., Bja: r-arborescences, and 1 + - - - + 14 = k
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RECENT RELATED RESULTS

The spannning tree polytope is a matroid polytope

Matroid polytopes

» Have the ICP (Gijswijt and Regts 2012)

» Have a regular unimodular Hilbert triangulation (Backman and Liu 2024)
OBs: Proofs rely on induction

Find explicit/constructive proofs

The r-arborescence polytope is the intersection of two matroid polytopes

Does the intersection of two matroid polytopes have the ICP?
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Pick your favorite combinatorial object:
When does it satisfy some kind of "MaxFlow-MinCut" theorem?

Minimal cones of the r-arborescence polytope
and of the stable set polytope of a box-perfect graph are box-integer

THANK YOU FOR YOUR ATTENTION!
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