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BOX-INTEGRALITY

BOX-PERFECT GRAPHS

THE r-ARBORESCENCE POLYTOPE



POLYHEDRA, POLYTOPES, AND CONES

Polyhedron = intersection of a finite number of half-spaces

= {x ∈ Rd : aT
1 x ⩾ b1, . . . , aT

mx ⩾ bm}

= {Ax ⩾ b}

Facet = inequality of an irredundant description

Polytope = bounded polyhedron

= conv(V)

Cone = polyhedron containing a point that lies on every facet
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RECOGNIZING BOX-INTEGRALITY
OBS: A polyhedron is box-integer if and only if the points obtained by fixing
integer coordinates in any face are all integer

Deciding whether a polyhedron is box-integer is in co-NP

OBS: A polytope in the unit cube is integer if and only if it is box-integer

Deciding whether a polytope is box-integer is co-NP-complete

▶ What about in fixed dimension?

Open Problem

What is the complexity of recognizing box-integer cones?

▶ For the matricial counterparts of this problem, check out:

▶ The simplicial case might be easier
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perfect graphs

Stable set: set of pairwise nonadjacent
vertices

Clique: set of pairwise adjacent vertices

OBS: |clique ∩ stable| ⩽ 1

Perfect graph: for all induced subgraphs
max clique = min coloring

Theorem (Chvatàl — 1975)

A graph is perfect if and only if the clique-formulation is its stable set polytope
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Box-perfect graphs in handwaving

The graphs in which stable sets satisfy a kind of "MaxFlow-MinCut" theorem
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Open Problem (Cameron and Edmonds – 1982)
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+
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THE r-ARBORESCENCE POLYTOPE



ARBORESCENCES
IN A DIRECTED GRAPH D = (V,A) WITH A ROOT r ∈ V

r

An r-arborescence is a set of arcs B ⊆ A:
▶ whose underlying undirected graph is a spanning tree
▶ in which every vertex except r receives exactly one arc

Theorem (Edmonds – 1967)

The r-arborescence polytope is:

ARB =

x ∈ RA :
x(A) = |V| − 1

x(δ−(U)) ⩾ 1 for all U ̸∋ r
x ⩾ 0
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SUMS OF ARBORESCENCES

Theorem (Edmonds – 1967)

Every integer B in

kARB =

x ∈ RA :
x(A) = k(|V| − 1)

x(δ−(U)) ⩾ k for all U ̸∋ r
x ⩾ 0


is the sum of k arborescences

B = B1 + · · ·+ Bk︸ ︷︷ ︸
r-arborecences

Open Problem (Sebő 1991, Gijswijt and Regts 2012)

Can every integer B in kARB be written as:
B = B1 + · · ·+ B1︸ ︷︷ ︸

t1 copies

+ · · ·+ B|A| + · · ·+ B|A|︸ ︷︷ ︸
t|A| copies︸ ︷︷ ︸

B1, . . . , B|A|: r-arborescences, and t1 + · · · + t|A| = k

?
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RECENT RELATED RESULTS

The spannning tree polytope is a matroid polytope

Matroid polytopes
▶ Have the ICP (Gijswijt and Regts 2012)
▶ Have a regular unimodular Hilbert triangulation (Backman and Liu 2024)

OBS: Proofs rely on induction

Open Problem

Find explicit/constructive proofs

The r-arborescence polytope is the intersection of two matroid polytopes

Open Problem (Gijswijt and Regts 2012)

Does the intersection of two matroid polytopes have the ICP?
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META-QUESTION

Pick your favorite combinatorial object:
When does it satisfy some kind of "MaxFlow-MinCut" theorem?

P

Minimal cones of the r-arborescence polytope
and of the stable set polytope of a box-perfect graph are box-integer

THANK YOU FOR YOUR ATTENTION!
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