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 a b s t r a c t

In this paper, we characterize in several manners the class of contraction perfect graphs
which are the perfect graphs that remain perfect after the contraction of any edge set.
We define the utter graph u(G) which is the graph whose stable sets are in bijection with
the co-2-plexes of G, and prove that u(G) is perfect if and only if G is contraction perfect.
Moreover, we exhibit the strong link between co-2-plexes and induced matchings and
discuss its consequences according to known results on these problems. This yields
several classes of graphs for which the maximum weighted co-2-plex is solvable in
polynomial time. Finally, we show how our results extend to a new class of graphs
for which finding a maximum weighted induced matching can be done in polynomial
time.
© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

0. Introduction

A graph G is called perfect if ω(H) = χ (H) for every induced subgraph H of G, where ω(H) is the clique number of 
H and χ (H) its chromatic number. Contracting any pair of vertices, that is, identifying both vertices, does not always 
preserve perfection. For instance, perfection is destroyed if there is an odd induced path of length at least 5 between 
those vertices.

Two nonadjacent vertices in a graph form an even pair if every induced path between them has an even number of 
edges. Fonlupt and Uhry [17] proved that contracting an even pair in a perfect graph preserves perfection, and Meyniel 
proved what is called the Even Pair Lemma [31]: no minimally imperfect graph contains an even pair. Concerning the 
associated decision problems, Bienstock [3] proved that both following are co-NP-complete in the general case: deciding 
whether a given pair of vertices of a graph forms an even pair, and deciding whether a given graph contains an even pair. 
A graph is even-contractile if either it is a clique or there exists a sequence G0, . . . ,Gk of graphs such that G = G0, Gk is a 
clique and for i = 0, . . . , k − 1, the graph Gi has an even pair (x, y) whose contraction yields Gi+1. A graph G is perfectly 
contractile if every induced subgraph of G is even contractile.

In this paper, we approach contractions in perfect graphs with a slightly different point of view: we are interested in 
the graphs for which the contraction of any set of edges preserves perfection, and we call them contraction perfect. Since 
perfection is preserved under taking induced subgraphs, contraction perfect graphs can be seen as the graphs in which 
every induced minor is perfect, where an induced minor is a graph obtained by deleting vertices and contracting edges. 
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A class of graphs is inducedminor closed if, for any element of that class, each of its induced minors also belongs to that 
class.

By definition, a perfect graph remains perfect by any vertex set deletion. Perfect graphs are characterized in terms of 
forbidden induced subgraphs, and this tremendous result is known as the strong perfect graph theorem [11]: a graph is 
perfect if and only if it contains no induced odd hole nor odd antihole. Since perfect graphs do not remain perfect by edge 
set contractions (a hole of length 6 — which is perfect — does not remain perfect by the contraction of a single edge), 
there is no characterization of perfect graphs by forbidden induced minors. An important ingredient of the proof of the 
strong perfect graph theorem has been called the ‘‘wonderful lemma’’ by the authors for its many applications, the latter 
turns out to be a rewriting of Roussel and Rubio’s lemma [36]. Thanks to even pairs, the proof of the strong perfect graph 
theorem has been shortened [13].

By definition of contraction perfect graphs, a characterization in terms of forbidden induced minors can be directly 
deduced from the strong perfect graph theorem. Indeed, if a graph is not contraction perfect, then there exist an edge set 
contraction and a vertex set deletion that gives an odd hole or an odd antihole. Therefore, odd holes and odd antiholes 
are the induced minors to be forbidden to ensure contraction perfection. The strong perfect graph theorem proves that 
this induced minor characterization is minimal.

In this article, we give the minimal induced subgraph characterization of contraction perfect graphs.
A co-2-plex is a subset of vertices inducing a subgraph of maximum degree at most one. This notion, or rather its 

complement version, was introduced in 1978 by Seidman and Foster [37] to seek communities in a graph with more 
freedom than when looking for cliques — a clique is a set of pairwise adjacent vertices. Indeed, a k-plex is a set W  of 
vertices inducing a graph where every vertex has degree at least |W | − k, and cliques are special cases of 2-plexes. The 
underlying optimization problem is to find a maximum weighted k-plex in a given weighted graph. For any fixed k and 
hence for k = 2, this problem is NP-hard [1]. Hence, by complementing the graph, so is the problem of finding a maximum 
co-2-plex. It turns out that the latter optimization problem, which can be seen as a relaxation of the maximum stable set 
problem — a stable set is a set of vertices inducing a subgraph of maximum degree at most 0 — behaves well in contraction 
perfect graphs.

This topic has been especially lively the past few years, mostly in the design of practical algorithms that find a max-
imum weighted k-plex. For this problem, there are exact algorithms [44], algorithms based on local search [9,10,26,35], 
heuristics [42], branch and bound algorithms, some of which incorporate machine learning ingredients [1,7,23,25,34,
41,43], and quadratic models [38]. From a more combinatorial optimization point of view, a combinatorial algorithm 
is devised in [30], and polyhedral studies are conducted in [1,29]. The problem of enumerating the k-plexes also received 
some attention [15,24,40]. In [32], the authors provided a parameterized algorithm and heuristics for the maximum 
co-k-plex problem.

Contributions. We first introduce the class of contraction perfect graphs and characterize them in several manners. We 
show how this class of graphs arises naturally when studying the problem of finding a maximum weighted co-2-plex of 
a graph. This result comes from the study of an auxiliary graph that we called the utter graph u(G) in which the stable 
sets are in bijection with the co-2-plexes of G. We showed that G is contraction perfect if and only if u(G) is perfect. 
Surprisingly, every perfect utter graph is also contraction perfect. For this reason, we investigate sufficient conditions on 
a class of graphs C for the following to hold: G ∈ C ⇔ u(G) ∈ C. By exhibiting the strong link between co-2-plexes and 
induced matchings, we show that finding a maximum weighted induced matching can be done in polynomial time on 
contraction perfect graphs. This allows us to prove that finding a maximum weighted co-2-plex can be done in polynomial 
time on interval filament graphs, circular arc graphs, and asteroidal triple free graphs.
Definitions. All the graphs in this paper are simple and connected. Given a graph G = (V , E), we denote its complement
by G = (V , E), where E = {uv : uv /∈ E}. We denote by V (G) (resp. E(G)) the vertex (resp. edge) set of G. Two vertices u
and v are adjacent if uv ∈ E(G).  Given two disjoint subsets of vertices U and W , U is complete (resp. anticomplete) to W
if every vertex of U is adjacent (resp. nonadjacent) to every vertex of W . When U is a singleton {u}, we write that u is 
complete (resp. anticomplete) to W . A vertex u is universal if it is complete to V \u. Given a subset of vertices W ⊆ V , let 
E(W ) denote the set of edges of G having both endpoints in W  and δ(W ) the set of all edges having exactly one endpoint 
in W . When W  is a singleton {w}, we will simply write δ(w), and |δ(w)| is the degree of w. We say that the edges in δ(w)
are incident to w, and two edges sharing an extremity are said adjacent. A matching is a set of pairwise nonadjacent edges. 
An induced matching M is a set of edges such that G[V (M)] has maximum degree 1. Note that all induced matching are 
matching but the converse does not hold. For F ⊆ E, let V (F ) denote the set of vertices incident to any edge of F . Given 
W ⊆ V  (resp. F ⊆ E), the graph G[W ] = (W , E(W )) (resp. G[F ] = (V (F ), F )) is the subgraph induced by W  (resp. F) in G. 
The set W  is said connected if G[W ] is. When H is an induced subgraph of G, we say that G contains H . Given a vertex 
u ∈ V , we denote by NG(u) = {w ∈ V : uw ∈ E} its neighborhood in G, and by NG[u] = NG(u)∪ {u} its closed neighborhood. 
When the graph G is clear from the context, we simply denote them by N(u) and N[u], respectively. Two vertices u and 
v are true (resp. false) twins if N[u] = N[v] (resp. N(u) = N(v)).

A path (resp. hole) is a graph induced by a set of distinct vertices {v1, . . . , vp} whose edge set is {vivi+1 : i = 1, . . . , p−1}
(resp. {vivi+1 : i = 1, . . . , p − 1} ∪ {v1vp} with p ≥ 4). Note that this definition usually corresponds to induced paths. A 
subset of vertices induces a path (resp. hole) if its elements can be ordered into a sequence inducing a path (resp. hole). 
An antipath (resp. antihole) of G is a path (resp. hole) of G. The length of a hole or path is its number of edges. The length
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of an antihole or antipath is the length of its complement. A path, antipath, hole or antihole of length at least 5 is called 
long. The parity of a path, antipath, hole, antihole is the parity of its length. The distance between two nodes is the length 
of the smallest path between them. The interior of a path or an antipath induced by (v1, . . . , vp) is the graph induced by 
(v2, . . . , vp−1).

A pendant edge uv ∈ E is such that one of u or v has degree one. The contraction of an edge uv in G consists in deleting 
u and v, and adding a new vertex w and the edges wz for all z ∈ N(u)∪N(v). This new graph is denoted G/uv. For F ⊆ E, 
we denote by G/F  the graph obtained from G by contracting all the edges in F . The image of a vertex v of G in G/F  is the 
vertex of G/F  to which v is contracted, and the image of a set of edges L is the set of the images of the vertices of V (L) in 
G/F . An edge uv and a vertex w are adjacent by contraction if w is adjacent to xuv in G/uv, where xuv is the image of uv
in G/uv. In other words, at least one of uw and vw is in E. Two edges uv and xy are adjacent by contraction if contracting 
both edges results in two adjacent vertices, that is, δ({u, v}) ∩ δ({x, y}) ̸= ∅.

The girth of a graph is the length of its smallest hole. A tree decomposition of a graph G = (V , E) is a tree whose vertices 
V1, . . . , Vk are subsets of V  such that:

• if Vi and Vj both contain a vertex v ∈ V , all nodes in the unique path between Vi and Vj contains v.
• for every uv ∈ E there is a Vi that contains both u and v.

The width of a tree decomposition is the size of its largest Vi minus one. The treewidth of a graph G is the minimum width 
of a tree decomposition of G.

Given a total order on a finite set of elements, an interval is a subset of consecutive elements following that order. The 
interval graph GI of a given finite set of intervals I is the graph having one vertex per interval in I and an edge between 
two vertices if their corresponding intervals have a nonempty intersection.

The line graph L(G) of a graph G = (V , E) is a graph having E as vertex set and where two vertices are adjacent if the 
corresponding edges of G are adjacent. The square G2 of a graph G = (V , E) is the graph having V  as vertex set and where 
two vertices are adjacent if the corresponding vertices of G are adjacent or at distance two.

A coloring of a graph is an assignment of colors to its vertices such that two adjacent vertices have different colors, it 
is optimal if there exists no coloring using a smaller amount of colors.

1. Contraction perfect graphs

In this section, we first characterize contraction perfect graphs in several manners. We then establish the links between 
this new graph class and some other subclasses of perfect graphs.

1.1. Characterizing contraction perfect graphs

We investigate how contracting edges in a perfect graph impacts its perfection. We rely on the strong perfect graph 
theorem [11], which states that perfect graphs are the graphs that contain neither odd holes nor odd antiholes. We will 
also use the so-called wonderful lemma. It has been used extensively to prove the strong perfect graph theorem. The 
latter has been proved by Roussel and Rubio [36], another version has been proposed by Chudnovsky et al. [11], and 
finally a last version by Trotignon et al. [28]. We will use the following version of Chudnovsky et al. [11] (written for the 
complement graph).

Lemma 1.1 ([11]).  Let G = (V , E) be a perfect graph, and let W ⊆ V  be a connected set of vertices. Let P be a long odd 
antipath of G \ W, whose extremities are anticomplete to W. One of the two following holds:

• a vertex of the interior of P is anticomplete to W,
• there exists an antipath between two members of W  with the same interior as P.
In our settings, a rewriting of the wonderful lemma will be more convenient. This rewriting goes through the use of 

expanded antiholes defined as follows.

Definition 1.2. An edge e and an odd antipath P induced by (w1, . . . , wp) with p ≥ 6 form an expanded antihole if one 
extremity of e is complete to V (P) \ {w1, wp−1, wp} and anticomplete to {w1, wp−1, wp}, while the other extremity is 
complete to V (P) \ {w1, w2, wp} and anticomplete to {w1, w2, wp}.

Fig.  1 represents an expanded antihole where (w1, . . . , wp) induces an odd antipath. An edge e is involved in an 
expanded antihole if there exists an odd antipath forming an expanded antihole with e. Note that, by definition of an 
expanded antihole, the extremities of e are not vertices of P , and contracting e yields an odd antihole. Moreover, if e = uv, 
either (u, w2, . . . , wp−1, v) or (v,w2, . . . , wp−1, u) induces an odd antipath that forms an expanded antihole with edge 
w1wp. Note that u, v, and P form a leap [39] in the complement graph.

Lemma 1.3. Let G = (V , E) be a perfect graph and F ⊆ E be a set of edges inducing a connected subgraph. If G/F  is an odd 
antihole of length at least 7, then G contains an expanded antihole involved by an edge of F  and the odd antipath G \ V (F ).
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Fig. 1. An expanded antihole.

Proof. As G/F  is an odd antihole, it contains an odd antipath induced by P = (p1, . . . , pk) forming an odd antihole with 
the image p0 of F . Moreover, in G, {p1, pk} is anticomplete to V (F ), and each vertex in the interior of P is not anticomplete 
to V (F ). By Lemma  1.1 applied to W = V (F ), there exists an edge uv ∈ F  such that (v, p2, . . . , pk−1, u) induces an odd 
antipath of G. Hence, G contains an expanded antihole induced by the edge uv and the antipath (p1, . . . , pk). □

Note that Lemma  1.3 is another version of Roussel and Rubio’s lemma as Lemma  1.3 can be proved from Lemma  1.1 
as follows. If every vertex in the interior of P is not anticomplete to W , then contracting W  yields an odd antihole. By 
Lemma  1.3, the graph contains an expanded antihole given by an edge uv and the antipath P . By definition of expanded 
antiholes, u, v, and the interior of P induce an antipath.

Lemma  1.3 will be used to characterize when contracting an edge set of a perfect graph yields an odd antihole. The 
other case of imperfect structures appearing when contracting an edge set is when an odd hole appears. It will be dealt 
with using the following lemma.

Lemma 1.4. If G/F  contains a hole H for some edge set F , then G contains a hole of length at least |V (H)|.

Proof. We proceed by induction on |F |. The result holds if |F | = 0. Otherwise, some vertex v of H is obtained by contracting 
the edges of a connected subgraph (V ′, F ′) of G with ∅ ̸= F ′

⊆ F . Let a and b be the neighbors of v in H , and let P be 
an ab-path in G[V ′

∪ {a, b}]. Then, V (H) \ {v} ∪ V (P) induces a hole of G/(F \ F ′) of length at least |V (H)|, and induction 
concludes. □

Now, we show the equality between the class of perfect graphs remaining perfect when contracting a single edge and 
the class of perfect graphs remaining perfect when contracting any edge set. This characterization yields as a byproduct 
the induced subgraph characterization of this graph class.

Theorem 1.5. Given a perfect graph G, the following are equivalent:
(i) G is contraction perfect, that is, G/F  is perfect for all F ⊆ E,
(ii) G/e is perfect for all e ∈ E,
(iii) G contains no long hole and no expanded antihole.

Proof. The following implications are immediate: (i) ⇒ (ii) ⇒ (iii). We now prove (iii) ⇒ (i). By contradiction, suppose 
that G/F  is not perfect for some minimal set of edges F ⊆ E.

If G/F  contains an odd hole, by Lemma  1.4, there exists a long hole in G, a contradiction.
Hence, by the strong perfect graph theorem, G/F  contains a long odd antihole induced by (p0, . . . , pk), where k ≥ 6

is even. Suppose that F  induces a connected subgraph of G and let p0 be the unique image of F  in G/F . Then Lemma  1.3 
gives the existence of an expanded antihole in G induced by (p1, . . . , pk) and an edge of F , a contradiction.

Therefore, F  induces a disconnected set of vertices. There exist F0, Fi ⊆ F  verifying V (Fi) ∩ V (F0) = ∅ such that p0 and 
pi are respectively the images of F0 and Fi in G/F . By Lemma  1.3, there exists an edge u0v0 (resp. uivi with 1 ≤ i ≤

k
2

up to node relabeling) of F0 (resp. Fi) that forms an expanded antihole of G/(F \ F0) (resp. G/(F \ Fi)) with the antipath 
(p1, . . . , pk) (resp. (pi+1, . . . , pi−1)). By definition of expanded antiholes, without loss of generality, suppose that u0 (resp. 
u ) is adjacent to p  (resp. p ) but not to p  (resp. p ). Hence, H = (u , p , . . . , p ) induces an even antihole of 
i 2 i−2 k−1 i+2 u0 0 1 k−1

383



A. Dupont-Bouillard, P. Fouilhoux, R. Grappe et al. Discrete Applied Mathematics 377 (2025) 380–389
Fig. 2. Illustration for the proof of Theorem  1.5: the odd antihole Hu ∪ u′
\ {pi, pi+1} is given in light gray.

G/(F \ Fi). Fig.  2 gives an illustration of Hu0 ∪ {ui} \ {pi, pi+1} which induces an antihole in G/(F \ F0 \ Fi) of length k − 1, 
and hence is odd. This contradicts the minimality assumptions on F . □

Theorem  1.5 and the strong perfect graphs theorem imply the following characterization of contraction perfect graphs.

Corollary 1.6. A graph is contraction perfect if and only if it contains no long hole, no odd antihole, and no expanded antihole.
A graph is minimally non contraction perfect if it is not contraction perfect and each of its proper induced subgraphs is 

contraction perfect.
Note that the list of forbidden induced subgraphs of Theorem  1.5 is inclusionwise minimal. Indeed, removing any 

vertex to each of these forbidden induced subgraphs yields a contraction perfect graph.

Observation 1.7. Expanded antiholes, odd antiholes, and long holes are minimally non contraction perfect.

Proof. Every proper induced subgraph of a hole is a set of disjoint paths, which means it contains no triangles and no 
holes. Then, it also contains no antiholes, expanded antiholes, or complements of expanded antiholes, since these graphs 
contain triangles. This implies that every proper subgraph of a hole and its complement are contraction perfect. Therefore, 
odd antiholes and long holes are minimally non contraction perfect.

We show that expanded antiholes are minimally non contraction perfect by considering the complement of an 
expanded antihole. Let us consider an expanded antihole G. Note that, G contains no antihole of length more than 6 
since it contains precisely 6 vertices whose degree is greater or equal to 3, that are W = {u, v, w1, w2, wp−1, wp}. Indeed, 
since an antihole of length at least 6 is a regular graph whose vertices have degree at least 3, these are the only candidates 
that may belong to such an antihole. Since G[W ] is not regular, it is not an antihole of length 6, this proves that G does not 
contain any holes of length at least 6. Obviously, G does not contain any complement of an expanded antihole as proper 
induced subgraph. Now, note that the holes of G are even, which means that G only contains even antiholes and hence, 
no hole of length 5. By Theorem  1.5, expanded antiholes are minimally non-contraction perfect. □

We can devise from Theorem  1.5 algorithms to recognize contraction perfect graphs, and to detect expanded antiholes 
in perfect graphs. 

Corollary 1.8. Recognizing contraction perfect graphs can be done in polynomial time.

Proof. By Theorem  1.5, deciding whether a graph G = (V , E) is contraction perfect amounts to check if G is perfect and 
if, for each contraction of a single edge, the resulting graph is perfect. Each of these |E| + 1 perfection tests can be done 
in polynomial time [27]. □

Corollary 1.9. Detecting expanded antiholes in perfect graphs can be done in polynomial time

Proof. The algorithm is as follows: check whether the graph is contraction perfect by checking the perfection of each 
minor obtained by a single edge contraction (using our characterization). If the graph is contraction perfect, it does not 
contain any expanded antiholes. If not, by Lemma  1.3, it is sufficient to detect an odd antihole in one of the single-edge 
contraction minors, which can be done in polynomial time [12]. □
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1.2. Relations to other graph classes

A prism is a graph that consists of two vertex disjoint triangles and three vertex disjoint paths, each of them having 
as extremities a vertex of each triangle. A prism is odd if its three vertex disjoint paths are odd. Grenoble graphs are 
the perfect graphs containing no long antiholes or odd prisms. They generalize Artemis graphs which are the perfect 
graphs containing no long antiholes or prisms. A graph is Meyniel if every odd cycle of length at least 5 has at least two 
chords. Artemis graphs and Meyniel graphs are known to be perfectly contractile [2,28]. Perfectly contractile graphs form 
a subclass of Grenoble graphs, and both classes are conjectured to be equal [16]. Given an ordered graph (G,<) (order 
< on its vertices), assigning the smallest color possible to each vertex following < is a greedy algorithm for computing 
a coloring however, it is not always optimal. Given an ordered graph (G,<), the ordering < is called perfect if for each 
induced ordered subgraph (H,<) the greedy algorithm produces an optimal coloring of H . The graphs admitting a perfect 
ordering are called perfectly orderable. They are proven to be perfectly contractile [2].

Note that the complement of a contraction perfect graph may not be contraction perfect. For instance, C6 is contraction 
perfect on the contrary to its complement. The complement graph of an expanded antihole formed by an edge uv and an 
odd antipath (w1, . . . , wp) is a prism formed by the triangles {u, w1, w2}, {v,wp, wp−1}, and its pairwise vertex disjoint 
path are (u, wp), (w2, . . . , wp−1), and (w1, v). For this reason, complements of expanded antiholes are special cases of odd 
prisms, which implies the following result.

Observation 1.10. Complements of Grenoble graphs are contraction perfect, hence in particular so are complements of Meyniel 
graphs, complements of Artemis graphs, and complements of  perfectly orderable graphs.

Note that this inclusion is strict as the prism with two paths of length 3 and one of length 1 is not Grenoble but its 
complement is contraction perfect.

A graph is weakly chordal if it contains no long hole and no long antihole. As expanded antiholes contain even antiholes 
of length at least 6 we get the following.

Observation 1.11. A graph G is weakly chordal if and only if G and G are contraction perfect.

2. Utter graphs, co-2-plexes, and induced matchings

In this section, we start by defining the utter graph u(G) whose stable sets are in bijection with the co-2-plexes of 
G. We provide sufficient conditions for a graph class C to be closed by utter graph, meaning that G belongs to C if and 
only if u(G) does. When a class C satisfies these conditions and the maximum weighted stable set problem is polynomial 
in C, then so is the maximum weighted co-2-plex problem. In this way, we prove the polynomiality of the maximum 
co-2-plex on interval, chordal, circular arc, interval filament, weakly chordal, and asteroidal triple-free graphs, as finding 
a maximum weighted stable set can be done in polynomial time on these graphs [18–20]. A similar scheme has been used 
by Kathie Cameron [4–6] to give polynomial results for the maximum weighted induced matching problem by exhibiting 
a bijection between the induced matchings of a graph G and the stable sets of L(G)2. After that, we highlight the links 
between co-2-plexes and induced matchings. This permits us to prove that finding maximum weighted co-2-plexes or 
induced matchings can be done in polynomial time on contraction-perfect graphs.

2.1. Utter graphs and contraction perfect graphs

Let S be a co-2-plex. The vertex edge representation of a S is a couple (W , F ) where W  are the isolated vertices of 
G[S] and F  are its isolated edges. Then, by definition of co-2-plexes, F  is an induced matching and contracting F  yields |F |

pairwise non-adjacent vertices and anticomplete to W . In other words, W  and the image of F  in G/F  form a stable set of 
G/F  of size |W | + |F |.

The utter graph u(G) of a graph G = (V , E) has vertex set V ∪E and two vertices in u(G) are adjacent if and only if their 
corresponding elements in G are either adjacent, incident, or adjacent by contraction in G. Fig.  3 gives an illustration of 
this definition where the vertices 12 and 23 of u(G) respectively correspond to the edges 12 and 23 of G. For each edge uv
of G, G/uv is the subgraph of u(G) induced by V ∪{uv} \ {u, v} where uv denotes the vertex of u(G) associated with edges 
uv. Similarly, for a matching F ⊆ E, G/F  is the subgraph of u(G) induced by V \ V (F ) and the vertices of u(G) associated 
with edges in F .

Lemma 2.1. There is a bijection between the co-2-plexes of G and the stable sets of u(G).

Proof. By definition of utter graphs, a vertex subset W  and an edge set F  is a vertex edge representation (W , F ) if and 
only if W ∪ T  is a stable set of u(G). □

We say that a graph class is replicable if adding true twins in any graph of that class yields another graph of that class.

Theorem 2.2. Let C be an induced minor closed and replicable graph class, then G ∈ C if and only if u(G) ∈ C.
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˜

Fig. 3. A graph G and its utter graph u(G).

Proof. (⇐) Since G is an induced subgraph of u(G), the result follows from the assumptions on C.
(⇒) Let ̃G be obtained from G by adding, for every edge uv ∈ E, a true twin u′ (resp. v′) to u (resp. v). By construction, 

G contains the edge u′v′. Let F  be the set of u′v′ for every edge uv ∈ E. Note that ̃G/F = u(G) and that ̃G/F  is obtained by 
adding true twins and contracting edges. Since C is replicable and induced minor closed, u(G) belongs to C. □

Theorem  2.2 gives conditions for graph classes to be closed by utter graphs without considering what Kathie 
Cameron [5] calls a ‘‘nice representations as intersection graphs’’ which is not always trivial to deduce from an arbitrary 
graph class definition. We denote by uk(G) the graph obtained by applying the utter graph transformation k times.

As states the next observation, there exist graph classes that are closed by utter graph but that are not induced minor 
closed nor replicable.

Observation 2.3. The conditions given in Theorem  2.2 are not necessary for a graph class to be closed by utter graph.

Proof. Consider the sequence Gi+1 = u(Gi), for i ∈ Z+, where G0 = C4. Let C be the set of all Gi completed by induction 
with the graphs whose utter graph is in C. Then, for any graph G and its utter graph u(G), we have that G ∈ C if and only 
if u(G) ∈ C. Note that each Gi contains a C4 and by construction, if G is in C, then there exists i ∈ Z+ such that, G = Gi
or there exists k ∈ Z+ such that uk(G) = Gi. Since G is a clique if and only if u(G) is a clique, no element of C is a clique, 
in particular K2 = ({v1, v2}, {v1v2}) is not in C but is an induced subgraph of every element in C. Hence C is not induced 
minor closed. □

As a consequence of Theorem  1.5 we obtain the following.

Corollary 2.4. Adding true or false twins preserves contraction perfection.
Since the class of contraction perfect graphs is replicable by Corollary  2.4 and induced minor closed by definition, the 

following equivalence can be deduced from Theorem  2.2.

Corollary 2.5. A graph is contraction perfect if and only if its utter graph is contraction perfect.
Now, we show that contraction perfect graphs are precisely those for which the utter graph is perfect. This means that 

every perfect utter graph is also contraction perfect.

Corollary 2.6. A graph is contraction perfect if and only if its utter graph is perfect.

Proof. Let G = (V , E) be a graph.
(⇐) By definition of utter graphs, G and G/e for e ∈ E are induced subgraphs of u(G). Hence, all those graphs are 

perfect since u(G) is. By statement (ii) of Theorem  1.5, this implies that G is contraction perfect.
(⇒) If G is contraction perfect, then so is u(G) by Corollary  2.5. By definition of contraction perfect graphs, this implies 

that u(G) is perfect. □

2.2. Co-2-plexes and induced matchings

In this section, we highlight that the problems of maximum weighted co-2-plexes and induced matchings are strongly 
related by giving two simple reductions going from one problem to the other and deduce from these reductions corollaries 
on computational complexity for the maximum weighted co-2-plex problem.
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Given a graph G = (V , E), we denote by star(G) the graph obtained by adding to each vertex u a pendant edge upu, 
where pu is a new vertex.

Observation 2.7. Given a graph G = (V , E), we have L(star(G))2 = u(G).

Proof. Identifying the vertices of u(G) associated with V  to vertices upu of L(star(G))2 and identifying the vertices associated 
with E in u(G) to the ones associated with E in L(star(G))2 gives the equality. □

Observation 2.8. Finding a maximum w-weighted co-2-plex on G = (V , E) is equivalent to finding a maximum w′-weighted 
induced matching on star(G) where w′

uv =

{
wu if v = pu,

wu + wv  otherwise,  for uv ∈ E.

Let us denote by T (G) the graph obtained by adding a true twin to each vertex of the graph G.

Observation 2.9. Finding a maximum w-weighted induced matching on G = (V , E) is equivalent to finding a maximum 
w′-weighted co-2-plex on T (L(G)2) where w′

e =

{ we
2  if e ∈ E,

wf
2  if e is the twin of f .

Proof. Let F  be a maximum induced matching of G with respect to w. It corresponds to a maximum stable set S of L(G)2. 
Then, S ∪ S ′, where S ′ is the set of twins of S, gives a co-2-plex of T (L(G)2) whose cost with respect to w′ is the same as 
F . Consider now a maximum co-2-plex K  with respect to w′. If a vertex u belongs to K  and its twin u′ does not belong 
to K , by maximality there exists v ∈ N(u) that belongs to K . Then, K ∪ u′

\ v, K \ u ∪ v′ are co-2-plexes and one of them 
has a cost greater or equal to the one of K . Contracting the edges of G[K ] we obtain a stable set of L(G)2 and hence an 
induced matching of G with the same cost. □

Note that the proof of Observation  2.9 corresponds to the polynomial reduction showing that the maximum weighted 
2-plex is NP-hard [1].

It is known that finding an induced matching of size k is FPT when parameterized by the treewidth [8]. It is also FPT 
on line/bounded degree/planar and graphs with girth at least six when parameterized by k [33].

Using Observation  2.8 one eventually obtains the following.

Corollary 2.10. Finding a co-2-plex of size k is FPT on bounded degree, planar graphs, and graphs with girth at least 6 when 
parameterized by k.

Corollary 2.11. Finding a co-2-plex of size k can be done in polynomial time on bounded treewidth graphs.

Proof. Given a tree decomposition (V1, . . . , Vk) of G, we can construct a tree decomposition having the same width for 
star(G) by adding a new neighbor {u, pu} to any vertex associated with a Vi containing u. □

Note that Corollary  2.11 is also a consequence of Courcelle’s theorem [14] as the property of having a co-k-plex of size 
d is expressable in monadic second order logic (with a d polynomial sized formula with monomials of degree k).

2.3. Polynomial results for the maximum co-2-plex and induced matching problems

In this section, we use Theorem  2.2 to give new classes of graphs for which the maximum weighted co-2-plex problem 
is polynomial. As a byproduct, we obtain that the maximum weighted induced matching problem is solvable in polynomial 
time on contraction perfect graphs. Note that perfect graphs are not closed by utter graphs as C6 is perfect, yet u(C6) is 
not as it contains several C5.

Let us first start with a few definitions of graph classes. A k-hole free graph is a graph having no hole of length at 
least k. A chordal graph is a graph having no holes of length at least 4. A circular arc graph is a graph whose vertex set 
can be associated with intervals on a circle and where two vertices are adjacent if their corresponding intervals intersect. 
Note that circular arc graphs are not necessarily perfect. A line interval is a curve starting at the beginning of an interval 
on a line and finishing at the endpoint of this interval such that it lies on the upper half space of this line. An interval 
filament graph is a graph whose vertex set can be associated with line intervals and where two vertices are adjacent if 
their corresponding line intervals intersect. An asteroidal triple is a stable set of 3 vertices such that each pair of its vertices 
is linked by a path disjoint from the neighborhood of the third.

Corollary 2.12. Each of the following graph classes are closed by utter graphs: split, trivially perfect, interval, chordal, 
k-hole-free, circular arc, interval filament, and asteroidal triple-free graphs.

Proof. By Theorem  2.2 it is sufficient to show that all these graph classes are induced minor closed and replicable.

387



A. Dupont-Bouillard, P. Fouilhoux, R. Grappe et al. Discrete Applied Mathematics 377 (2025) 380–389
Trivially perfect. Trivially perfect graphs are the graphs with no P4 nor C4 as induced subgraphs [21]. Hence, they are 
induced minor closed. Moreover, as P4 and C4 do not contain true twins, trivially perfect graphs are replicable.

Interval graphs, circular arc, interval filament. Contracting an edge uv in one of those graphs corresponds to replacing 
the intervals, arcs or interval filaments associated with u and v in I by their union. Adding a true twin to a vertex v such 
a graph corresponds to duplicating the interval, arc, interval filament associated with v in I. For this reason, they are 
replicable and induced minor closed.

k-hole-free graphs. The induced minor closeness follows from their definition and Lemma  1.4.
Chordal graphs. It is the special case k = 4 of the previous one.
Asteroidal triple-free. The fact that asteroidal triple-free graphs are replicable follows from the fact their minimal 

forbidden induced subgraphs do not contain any true twin. Moreover, suppose that contracting an edge uv of a graph 
G yields an asteroidal triple, if the image wuv of uv in G/uv belongs to the triple then, replacing wuv by u or v yields 
another asteroidal triple (up to the addition of the other vertex to the corresponding path if necessary). □

Given a cost function c on the vertices of G, let ̃cu = cu, for all u ∈ V , and ̃cuv = cu + cv , for all uv ∈ E. Then finding 
a maximum c-weighted co-2-plex in G is equivalent to finding a maximum ̃c-weighted stable set in u(G). This gives the 
following corollary by Corollary  2.6 and the fact that maximum weighted stable set problem is polynomial on perfect 
graphs, circular arc, interval filament, weakly chordal and asteroidal triple-free graphs [19,20,22].

Corollary 2.13. Finding a maximum weighted co-2-plex in a contraction perfect (resp. circular arc, interval filament, asteroidal 
triple-free) graph can be done in polynomial time.

Finally, contraction perfect graphs yield a new class of graphs for which a maximum weighted induced matching can 
be found in polynomial time.

Corollary 2.14. Finding a maximum weighted induced matching in a contraction perfect graph can be done in polynomial time.

Conclusion

We introduce a new class of perfect graphs: those which remain perfect under the contraction of any edge set, and 
we give several characterizations. We show how this family of graph naturally appears when studying polynomial cases 
for the maximum weighted co-2-plex and induced matching problems when considering the utter graph or the squared 
line graph. Moreover, we give sufficient conditions on a graph class to be closed by utter graph so that polynomial results 
for maximum weighted co-2-plex or induced matching could be deduced from new upcoming polynomial cases for the 
maximum weighted stable set problem.

For k = 2, it remains an intriguing question whether a coloring of the utter graph can be used to get a minimal 
covering of the input graph with co-2-plexes. When k > 2, another interesting question is whether some extension of 
utter graphs could capture co-k-plexes as familiar combinatorial objects, like stable sets in utter graphs do for co-2-plexes. 
From a polyhedral point of view, the equivalence between co-2-plexes of a graph and stable sets of its utter graph will 
give extended formulations for the co-2-plex polytope from the stable set polytope.

Contraction perfect graphs being a new subclass of perfect graphs, one may also be interested in combinatorial 
algorithms to find a maximum clique/stable set or a minimum coloring on such graphs. Since, unlike for perfect graphs, 
the complement of a contraction perfect graph is not necessarily contraction perfect, finding a maximum clique or a stable 
set may lead to distinct studies.

Acknowledgments

We thank Daria Pchelina for her contribution to Lemma  1.3. We also thank an anonymous referee for his precious 
remarks, reports and particularly for highlighting the links with Roussel and Rubio’s lemma, Artemis graphs, and Grenoble 
graphs.

Data availability

No data was used for the research described in the article.

References

[1] B. Balasundaram, S. Butenko, I. Hicks, Clique relaxations in social network analysis: The maximum k-plex problem, Oper. Res. 59 (1) (2011) 
133–142.

[2] M.E. Bertschi, Perfectly contractile graphs, J. Combin. Theory Ser. B 50 (2) (1990) 222–230.
[3] D. Bienstock, On the complexity of testing for odd holes and induced odd paths, Discrete Math. 90 (1) (1991) 85–92.
[4] K. Cameron, Induced matchings, Discrete Appl. Math. 24 (1) (1989) 97–102.
[5] K. Cameron, Induced matchings in intersection graphs, Discrete Math. 278 (1) (2004) 1–9.
[6] K. Cameron, R. Sritharan, Y. Tang, Finding a maximum induced matching in weakly chordal graphs, Discrete Math. 266 (1) (2003) 133–142.
388

http://refhub.elsevier.com/S0166-218X(25)00413-5/sb1
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb1
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb1
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb2
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb3
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb4
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb5
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb6


A. Dupont-Bouillard, P. Fouilhoux, R. Grappe et al. Discrete Applied Mathematics 377 (2025) 380–389
[7] L. Chang, M. Xu, D. Strash, Efficient maximum K-plex computation over large sparse graphs, Proc. VLDB Endow. 16 (2) (2022) 127–139.
[8] J. Chaudhary, M. Zehavi, P-Matchings Parameterized by Treewidth, Springer Nature Switzerland, Cham, 2023, pp. 217–231, 
[9] P. Chen, H. Wan, S. Cai, J. Li, H. Chen, Local search with dynamic-threshold configuration checking and incremental neighborhood updating for 

maximum k-plex problem, Proc. AAAI Conf. Artif. Intell. 34 (03) (2020) 2343–2350.
[10] P. Chen, H. Wan, S. Cai, W. Luo, J. Li, Combining reinforcement learning and configuration checking for maximum k-plex problem, 2019, ArXiv.
[11] M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas, The strong perfect graph theorem, Ann. Math. 164 (2006) 51–229.
[12] M. Chudnovsky, A. Scott, P. Seymour, S. Spirkl, Detecting an odd hole, J. ACM 67 (5) (2019) 1–12.
[13] M. Chudnovsky, P. Seymour, Even pairs in Berge graphs, J. Combin. Theory Ser. B 99 (2) (2009) 370–377.
[14] B. Courcelle, The monadic second-order logic of graphs. I. Recognizable sets of finite graphs, Inform. Comput. 85 (1) (1990) 12–75.
[15] Q. Dai, R.-H. Li, H. Qin, M. Liao, G. Wang, Scaling up maximal K-plex enumeration, in: 31st ACM International Conference on Information & 

Knowledge Management, CIKM ’22, Association for Computing Machinery, New York, NY, USA, 2022, pp. 345–354.
[16] H. Everett, C.M. de Figueiredo, C. Linhares-Sales, F. Maffray, O. Porto, B.A. Reed, Path parity and perfection, Discrete Math. 165–166 (1997) 

233–252, Graphs and Combinatorics.
[17] J. Fonlupt, J.-P. Uhry, Transformations which preserve perfectness and H-perfectness of graphs, in: A. Bachem, M. Grötschel, B. Korte (Eds.), 

Bonn Workshop on Combinatorial Optimization, in: North-Holland Mathematics Studies, vol. 66, North-Holland, 1982, pp. 83–95.
[18] F. Gavril, Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph, 

SIAM J. Comput. 1 (2) (1972) 180–187.
[19] F. Gavril, Algorithms on circular-arc graphs, Networks 4 (4) (1974) 357–369.
[20] F. Gavril, 3D-interval-filament graphs, Discrete Appl. Math. 155 (18) (2007) 2625–2636.
[21] M.C. Golumbic, Trivially perfect graphs, Discrete Math. 24 (1) (1978) 105–107.
[22] M. Grötschel, L. Lovász, A. Schrijver, Polynomial algorithms for perfect graphs, in: C. Berge, V. Chvátal (Eds.), in: North-Holland Mathematics 

Studies, vol. 88, 1984, pp. 325–356.
[23] Y. Huang, C. Shen, Learning computation bounds for branch-and-bound algorithms to k-plex extraction, 2022, CoRR abs/2208.05763.
[24] S. Jabbour, N. Mhadhbi, B. Raddaoui, L. Sais, A declarative framework for maximal k-plex enumeration problems, in: Adaptive Agents and 

Multi-Agent Systems, 2022.
[25] H. Jiang, D. Zhu, Z. Xie, S. Yao, Z.-H. Fu, A new upper bound based on vertex partitioning for the maximum K-plex problem, in: Z.-H. Zhou 

(Ed.), Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, WangAI-21, 2021, pp. 1689–1696.
[26] Y. Jin, J.H. Drake, K. He, U. Benlic, Reinforcement learning based coarse-to-fine search for the maximum k-plex problem, Appl. Soft Comput. 

131 (2022) 109758.
[27] X. Liu, G. Cornuéjols, K. Vušković, A polynomial algorithm for recognizing perfect graphs, in: 2013 IEEE 54th Annual Symposium on Foundations 

of Computer Science, Oct 2003, IEEE Computer Society, Los Alamitos, CA, USA, 2003, p. 20.
[28] F. Maffray, N. Trotignon, A class of perfectly contractile graphs, J. Combin. Theory Ser. B 96 (1) (2006) 1–19.
[29] B. McClosky, I. Hicks, The Co-2-plex polytope and integral systems, SIAM J. Discret. Math. 23 (2009) 1135–1148.
[30] B. McClosky, I. Hicks, Combinatorial algorithms for the maximum k-plex problem, J. Comb. Optim. 23 (2012) 29–49.
[31] H. Meyniel, A new property of critical imperfect graphs and some consequences, European J. Combin. 8 (3) (1987) 313–316.
[32] H. Moser, R. Niedermeier, M. Sorge, Exact combinatorial algorithms and experiments for finding maximum k-plexes, J. Comb. Optim. (2012).
[33] H. Moser, S. Sikdar, The parameterized complexity of the induced matching problem, Discrete Appl. Math. 157 (4) (2009) 715–727.
[34] Y. Okubo, M. Matsudaira, M. Haraguchi, Detecting maximum k-plex with iterative proper l-plex search, Discov. Sci. (2014) 240–251.
[35] W. Pullan, Local search for the maximum k-plex problem, J. Heuristics 27 (3) (2021) 303–324.
[36] F. Roussel, P. Rubio, About skew partitions in minimal imperfect graphs, J. Combin. Theory Ser. B 83 (2) (2001) 171–190.
[37] S. Seidman, B. Foster, A graph-theoretic generalization of the clique concept, J. Math. Sociol. 6 (1978) 139–154.
[38] P.I. Stetsyuk, O. Khomiak, Y. Blokhin, A.A. Suprun, Optimization problems for the maximum k-plex, Cybernet. Systems Anal. 58 (2022) 530–541.
[39] N. Trotignon, K. Vušković, On Roussel–Rubio-type lemmas and their consequences, Discrete Math. 311 (8) (2011) 684–687.
[40] Z. Wang, Q. Chen, B. Hou, B. Suo, Z. Li, W. Pan, Z.G. Ives, Parallelizing maximal clique and k-plex enumeration over graph data, J. Parallel 

Distrib. Comput. 106 (2017a) 79–91.
[41] Y. Wang, X. Jian, Z. Yang, J. Li, Query optimal k-plex based community in graphs, Data Sci. Eng. 2 (4) (2017b) 257–273.
[42] K. Wu, J. Gao, R. Chen, X. Cui, Vertex selection heuristics in branch-and-bound algorithms for the maximum k-plex problem, Int. J. Artif. Intell. 

Tools 28 (05) (2019) 1950015.
[43] J. Zheng, M. Jin, Y. Jin, K. He, Relaxed graph color bound for the maximum k-plex problem, 2023, CoRR abs/2301.07300.
[44] Y. Zhou, S. Hu, M. Xiao, Z.-H. Fu, Improving maximum k-plex solver via second-order reduction and graph color bounding, Proc. AAAI Conf. 

Artif. Intell. 35 (14) (2021) 12453–12460.
389

http://refhub.elsevier.com/S0166-218X(25)00413-5/sb7
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb8
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb9
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb9
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb9
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb10
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb11
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb12
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb13
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb14
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb15
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb15
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb15
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb16
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb16
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb16
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb17
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb17
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb17
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb18
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb18
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb18
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb19
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb20
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb21
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb22
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb22
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb22
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb23
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb24
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb24
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb24
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb25
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb25
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb25
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb26
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb26
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb26
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb27
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb27
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb27
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb28
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb29
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb30
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb31
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb32
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb33
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb34
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb35
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb36
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb37
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb38
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb39
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb40
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb40
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb40
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb41
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb42
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb42
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb42
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb43
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb44
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb44
http://refhub.elsevier.com/S0166-218X(25)00413-5/sb44

	Contractions in perfect graphs
	Introduction
	Contraction perfect graphs
	Characterizing contraction perfect graphs
	Relations to other graph classes

	Utter graphs, co-2-plexes, and induced matchings
	Utter graphs and contraction perfect graphs
	Co-2-plexes and induced matchings
	Polynomial results for the maximum co-2-plex and induced matching problems

	Conclusion
	Acknowledgments
	Data availability
	References


