
Discrete Optimization 21 (2016) 25–41

Contents lists available at ScienceDirect

Discrete Optimization

www.elsevier.com/locate/disopt

Polyhedral results and a branch-and-cut algorithm for the double
traveling Salesman problem with multiple stacks
Michele Barbato, Roland Grappe, Mathieu Lacroix, Roberto Wolfler Calvo∗
Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS (UMR 7030), F-93430, Villetaneuse, France

a r t i c l e i n f o

Article history:
Received 1 August 2015
Received in revised form 25 April
2016
Accepted 26 April 2016
Available online 5 June 2016

MSC:
90B06
90C10
90C27
90C57

Keywords:
Traveling Salesman problem
Multiple stacks
Polyhedral study
Branch-and-cut

a b s t r a c t

In the double TSP with multiple stacks, one performs a Hamiltonian circuit to pick
up n items, storing them in a vehicle with s stacks of finite capacity q satisfying last-
in-first-out constraints, and then delivers every item by performing a Hamiltonian
circuit. We introduce an integer linear programming formulation with arc and
precedence variables. We show that the underlying polytope shares some polyhedral
properties with the ATSP polytope, which let us characterize large number of facets
of our polytope. We convert these theoretical results into a branch-and-cut algorithm
for the double TSP with two stacks. Our algorithm outperforms the existing exact
methods and solves instances that were previously unsolved.

© 2016 Elsevier B.V. All rights reserved.

In this paper, we study a generalization of the Traveling Salesman Problem (TSP), namely the double
TSP with multiple stacks. In this problem, n items have to be picked up in one city, stored in a vehicle
having s identical stacks of finite capacity, and delivered to n customers in another city. We will assume
that the pickup and the delivery cities are very far from each other, thus the pickup phase has to be
entirely completed before the delivery phase starts. The pickup (resp. delivery) phase consists in performing
a Hamiltonian circuit, i.e., starting from a depot, the n pickup (resp. delivery) locations have to be visited
in sequence exactly once before coming back to the depot. Each time a new item is picked up, it is stored
on the top of an available stack of the vehicle according to its capacity and no rearrangement of the stacks
is allowed. During the delivery circuit the stacks are unloaded following a last-in-first-out policy, that is,
only items currently on the top of their stack can be delivered. The goal is to find the pickup and delivery
circuits which minimize the total traveled distance, subject to the last-in-first-out consistency.

∗ Corresponding author. Tel.: +33 1 49 40 4071; fax: +33 1 48 26 0712.
E-mail address: roberto.wolfler@lipn.fr (R. Wolfler Calvo).

http://dx.doi.org/10.1016/j.disopt.2016.04.005
1572-5286/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.disopt.2016.04.005
http://www.sciencedirect.com
http://www.elsevier.com/locate/disopt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disopt.2016.04.005&domain=pdf
mailto:roberto.wolfler@lipn.fr
http://dx.doi.org/10.1016/j.disopt.2016.04.005

26 M. Barbato et al. / Discrete Optimization 21 (2016) 25–41

The double TSP with multiple stacks is introduced in [1] as a fleet management project initiated in
cooperation with a software company. The problem arises from real-world applications. As the authors point
out in [1], the items to be transported are usually standardized Euro Pallets, which are identical from a
packing point of view. Moreover, repacking is not allowed because of insurance issues.

The double TSP with multiple stacks is NP-hard since, when the vehicle has only one stack, it corresponds
to the Asymmetric Traveling Salesman Problem (ATSP): indeed, in this case, due to the last-in-first-out
policy, the delivery circuit is nothing but the pickup circuit performed in the reverse order. Moreover,
deciding if a given pair of pickup and delivery circuits satisfies the last-in-first-out policy is NP-complete [2].
It becomes polynomial when the number of stacks is fixed [3] or if the stacks have infinite capacity [4,2].

Since its first appearance, the double TSP with multiple stacks has received increasing attention. Both
exact algorithms and heuristics have been designed for this problem over the past few years. Regarding the
exact algorithms, in [5,6], the authors design a procedure to iteratively generate the k-best ATSP pickup
and delivery solutions and to find the best combination satisfying the last-in-first-out consistency. Several
exponential and polynomial size mixed integer linear programming formulations have been proposed and
tested in branch-and-cut frameworks [7,8]. An additive branch-and-bound algorithm [9] has been developed
for the case with two stacks. In [10], the authors adapt a branch-and-cut algorithm for the pickup and
delivery TSP with multiple stacks to the double TSP with multiple stacks.

From a computational point of view, these algorithms clearly show that the double TSP with multiple
stacks is extremely hard to solve with exact methods. In particular, the difficulty of the problem increases
with the capacity of the stacks [8]. As a consequence, given a number of items equal to the total capacity,
the hardest case is the double TSP with two stacks. Currently, no algorithm efficiently solves instances with
capacity greater than seven.

In this paper, we first focus on the double TSP with multiple stacks of infinite capacity. Section 1 is
devoted to notation and definitions. In Section 2, we introduce an integer linear programming formulation
with arc and precedence variables. We then show in Section 3 that the underlying polytope shares some
polyhedral properties with the ATSP polytope. These links let us characterize a super-polynomial number of
facets of our polytope. Afterwards, in Section 4, we strengthen our formulation by exploiting the last-in-first-
out consistency of the pickup and delivery circuits. In Section 5, we convert these theoretical results into a
branch-and-cut algorithm for the double TSP with two stacks. It turns out that our algorithm outperforms
the existing exact methods and solves new instances of the benchmark from the literature—see Section 6.

1. Definitions

Given a set S ⊆ Rm, conv(S) is the convex hull of S; the symbol dim(S) denotes the dimension of
the affine hull of S. Given S ⊆ Rn × Rd, its projection into Rn is the set projx(S) = {x ∈ Rn : ∃y ∈
Rd such that (x, y) ∈ S}. The projection projy(S) of S into Rd is defined in an analogous manner. For S a
finite set, x ∈ R|S| and H ⊆ S, we write x(H) for

h∈H xh.

We denote by Gn the complete digraph having V = {0, . . . , n} as vertex set and A = {(i, j) : i ̸= j ∈ V } as
arc set. A circuit of Gn is a set of arcs that induces a connected subgraph in which every vertex has exactly
one entering and one leaving arc. Its length is the number of arcs it contains. A circuit is said Hamiltonian if
its corresponding subgraph contains all the vertices. The reverse of a circuit C, denoted by

←
C, is the circuit

composed of the opposite arcs of C.
A relation ≺ on {1, . . . , n} is a linear ordering if it is reflexive, antisymmetric, transitive and total. Such

a relation is represented by an order v1, . . . , vn of {1, . . . , n}, where vi ≺ vj whenever i < j. It is noteworthy
that a Hamiltonian circuit C = {(0, v1), (v1, v2), . . . , (vn−1, vn), (vn, 0)} of Gn induces a linear ordering
v1, . . . , vn of {1, . . . , n}. This ordering will be denoted by ≺C . Moreover, the converse holds because Gn is
complete. Hence, such a Hamiltonian circuit C will also be written C = 0, v1, . . . , vn, 0.

M. Barbato et al. / Discrete Optimization 21 (2016) 25–41 27

Given two integers s and q, two Hamiltonian circuits are s, q-consistent if there exists an s, q-loading plan
for them, that is, there exists a partition of {1, . . . , n} into s classes of size at most q such that each class
can be ordered as a subsequence of both linear orderings induced by one circuit and the reverse of the other
one. A couple of Hamiltonian circuits will be said s, q-consistent if the pair is. When q is infinite, we write
s-consistent.

Given a Hamiltonian circuit C of Gn, we call characteristic point of C the point (χC , γC) ∈ {0, 1}n(n+1)×
{0, 1}n(n−1) defined by:

χCij =

1 if (i, j) ∈ C,
0 otherwise,

for all i ̸= j ∈ V ,

γCij =

1 if i≺C j,
0 otherwise,

for all i ̸= j ∈ V \ {0}.

When no confusion may arise, we will use the same terminology for the different representations described
above; for instance, we will say that a family of Hamiltonian circuits is affinely independent whenever their
characteristic points are.

We now describe the double TSP with multiple stacks in terms of graphs. An instance of this problem
with n items is defined on the digraph Gn by two cost vectors cP and cD on its arcs, and a number s of
identical stacks of capacity q. The digraph Gn models both cities; vertex 0 is the depot and the other ones
are the locations where the items have to be picked up or delivered. The vectors cP and cD represent the
distances between the locations of the pickup and delivery cities, respectively. The pickup and the delivery
circuits are two Hamiltonian circuits of Gn. In the double TSP with multiple stacks, one seeks a solution of
minimum cost, that is, a pair of s, q-consistent Hamiltonian circuits C1 and C2 whose cost cP (C1) + cD(C2)
is minimum.

2. A new integer linear programming formulation

In this section, we introduce an integer linear programming formulation with arc and precedence variables
for the double TSP with multiple stacks of infinite capacity.

Given costs on the arcs of Gn, the well-known ATSP consists in finding a Hamiltonian circuit of Gn with
minimum total cost. The ATSP has been widely studied over the past few decades and many mathematical
formulations have been proposed—see e.g., [11] for a recent survey. A point (x, y) is the characteristic point
of some Hamiltonian circuit if and only if it satisfies the following system of constraints—see [12]:

n
j=0
xij = 1 for all i ∈ V, (1)

n
i=0
xij = 1 for all j ∈ V, (2)

yij + yji = 1 for all i ̸= j ∈ V \ {0}, (3)
yij + yjk + yki − xji ≥ 1 for all i ̸= j ̸= k ̸= i ∈ V \ {0}, (4)

xij ≤ yij for all i ̸= j ∈ V \ {0}, (5)
x0i ≤ yij for all i ̸= j ∈ V \ {0}, (6)
xi0 ≤ yji for all i ̸= j ∈ V \ {0}, (7)
yij ∈ {0, 1} for all i ̸= j ∈ V \ {0}, (8)
xij ∈ {0, 1} for all i ̸= j ∈ V. (9)

28 M. Barbato et al. / Discrete Optimization 21 (2016) 25–41

Throughout this paper, variables x are called arc variables, and variables y precedence variables. The convex
hull of the points satisfying (1)–(9) is called Precedence ATSP polytope – PATSP polytope for short – and
is denoted by PATSPn. Under the integrality constraints (8) and (9), constraints (1) and (2) impose that
each vertex of a Hamiltonian circuit C has exactly one entering and one leaving arc. Constraints (3) and (4)
respectively describe the antisymmetry and the transitivity of the linear ordering ≺C and (5) implies that
if (i, j) ∈ C then i≺C j. Inequalities (6) (resp. (7)) indicate that if arc (0, i) (resp. (i, 0)) belongs to C, then
i is the first (resp. last) vertex of the linear ordering C induces. We add (6) and (7) for later convenience;
note that they are not necessary to this formulation.

The correspondence between Hamiltonian circuits in a complete digraph and linear orderings implies the
following.

Remark 2.1. For n ≥ 2, projy{(x, y) : (1)–(9) are satisfied} is the set of incidence vectors of the linear
orderings of {1, . . . , n}. Its convex hull is the Linear Ordering Polytope, see e.g., [13].

The s-consistency of a pair of Hamiltonian circuits is characterized by Proposition 2.2, which
independently appeared in [4,2]—see also [14] for a short proof.

Proposition 2.2 ([4,2]). Two Hamiltonian circuits of Gn are s-consistent if and only if less than s+1 vertices
of V \ {0} appear in the same order in both circuits.

To describe the solutions to the double TSP with multiple stacks, we introduce the set of variables
(xP , yP , xD, yD), where (xP , yP) and (xD, yD) are the variables used to describe the pickup and delivery
Hamiltonian circuit, respectively.

The s-consistency is enforced by constraints (10) below:
s
i=1

(yPjiji+1
+ yDjiji+1

) ≥ 1 for all distinct j1, . . . , js+1 ∈ {1, . . . , n}. (10)

Indeed, by Proposition 2.2, if two Hamiltonian circuits C1 and C2 are not s-consistent, then there exists a
sequence j1, . . . , js+1 which is a subsequence of both C1 and C2. Remark 2.1 implies γC1

jiji+1
= γC2

jiji+1
= 1,

for i = 1, . . . , s. By constraints (3), this implies
s
i=1(γC1

ji+1ji
+ γC2
ji+1ji

) = 0 which contradicts constraints
(10). We call constraints (10) s-consistency constraints.

The integer linear programming formulation we propose to model the double TSP with multiple stacks of
infinite capacity is given by constraints (1)–(9), each expressed in the sets of variables (xP , yP) and (xD, yD),
along with constraints (10). The convex hull of these solutions is referred to as the DTSPMS polytope, and
denoted by DTSPMSn,s. Its vertices are the characteristic points of the s-consistent couples of Hamiltonian
circuits (C1, C2), denoted by (χC1 , γC1 , χC2 , γC2).

It is worth noticing that our formulation ensures the existence of an s-loading plan for each solution. If
required, one can explicitly construct such an s-loading plan in polynomial time with respect to the number
of items n (in particular, independently from the number of stacks), as shown in [4,2].

3. Polyhedral links with the PATSP polytope

The main result of this section states that the DTSPMS polytope inherits all the facets of the PATSP
polytope, see Theorem 3.2. This is a desirable property since the latter has 2Ω(

√
n) facets [15]. Hence, our

result characterizes a super-polynomial number of facets of the DTSPMS polytope. To prove this theorem, we
will use a number of intermediate results which are postponed to the Appendix, due to their technicality. We
only mention here Proposition 3.1 which provides the dimension of the PATSP polytope—see the Appendix
for the proof. To the best of our knowledge, this is a new result.

M. Barbato et al. / Discrete Optimization 21 (2016) 25–41 29

Proposition 3.1. If n ≥ 5, then dim(PATSPn) = 3n2−3n−2
2 .

We now sketch the proof of Theorem 3.2. This result asserts that every facet-defining inequality of the
PATSP polytope induces two facet-defining inequalities for the DTSPMS polytope. The detailed proof can
be found in the Appendix.

Theorem 3.2. For n ≥ 5 and s ≥ 2, if ax+ by ≥ c defines a facet of PATSPn, then axT + byT ≥ c defines
a facet of DTSPMSn,s, for T = P,D.

Sketch of proof. We denote by dn the dimension of the PATSP polytope. Let ax+ by ≥ c be a facet-defining
inequality for the PATSP polytope. We now prove, without loss of generality, that F = {(xP , yP , xD, yD) ∈
DTSPMSn,s : axP + byP = c} is a facet of the DTSPMS polytope.

First, since ax+ by ≥ c is a valid inequality for PATSPn and

DTSPMSn,s ⊆ PATSPn × PATSPn for all s ≥ 2, (11)

F is a face of DTSPMSn,s. By definition, there exist two Hamiltonian circuits C1 and C2 of the PATSP
polytope such that exactly one of them satisfies ax + by ≥ c with equality. Since (Ci,

←
Ci) is a point

of the DTSPMS polytope for i = 1, 2, the face F is a proper face of the DTSPMS polytope. Hence,
dim(F) ≤ dim(DTSPMSn,s)−1. By (11), we have dim(DTSPMSn,s) ≤ 2dn, implying that dim(F) ≤ 2dn−1.

To end the proof, we provide a family S of 2dn affinely independent points of F . Since DTSPMSn,2 ⊆
DTSPMSn,s for s ≥ 2, it is enough to exhibit these 2dn affinely independent points for the case s = 2.

The inequality ax+by ≥ c being facet-defining for the PATSP polytope, there exist dn affinely independent
Hamiltonian circuits P1, . . . , Pdn satisfying this inequality with equality. By relabeling the vertices, we may
assume that P1 is the circuit 0, n, n− 1 . . . , 2, 1, 0.

To start the construction of the family S, remark that the face of the DTSPMS polytope F ′ =
{(xP , yP , xD, yD) ∈ DTSPMSn,s : (xP , yP) = (χP1 , γP1)} has dimension dn − 3. Indeed, dim(F ′) ≤ dn
by definition. Since the last two vertices of P1 are 2 and 1, if a Hamiltonian circuit C forms a 2-consistent
pair with P1 and 2≺C 1, then by Proposition 2.2, vertex 2 is the first vertex of C. This implies that xD02 ≥ yD21
is valid for F ′. Inequality (6) associated with i = 2 and j = 1, gives that equality actually holds. Hence

xD02 = yD21, (12)

is valid for F ′. The validity of (13) and (14) below can be proved similarly.

xD(n−1)0 = yDn(n−1), (13)

xDn1 = yDn1. (14)

Equalities (12)–(14) are independent from the ones of PATSPn. Therefore, dim(F ′) ≤ dn − 3, and the
equality holds by Lemma A.1—see the Appendix.

Let S = {(P1, D1), . . . , (P1, Ddn−2)} be a family of affinely independent points of F ′. The 2-consistent
couples (Pi, D̃i), i = 2, . . . , dn, where D̃i is obtained by perturbing

←
Pi so that (Pi, D̃i) satisfies (12)–(14),

are added to S. This addition preserves the affine independence of S, because the Hamiltonian circuits Pj ,
for j = 1, . . . , dn, are affinely independent. Since F ′ ⊆ F , we have S ⊆ F . Moreover, the 2dn − 3 points of
S all satisfy (12)–(14) with equality.

To conclude, we need to find three more points of F that, together with those of S, form an affinely
independent family. This is done by exhibiting three points, each of them violating a different equality
among (12)–(14). �

30 M. Barbato et al. / Discrete Optimization 21 (2016) 25–41

A result of this flavor can be found in [14]. More precisely, it is proved that every facet of projx(PATSPn)
induces two facets of proj(xP ,xD)(DTSPMSn,s). Nevertheless, their result cannot be applied to derive facet-
defining inequalities involving precedence variables for our formulation.

We want to stress that several families of inequalities that are valid for the PATSP polytope have
previously been introduced—see e.g., [16,17]. To the best of our knowledge, it is still unknown whether
those inequalities are facet-defining.

4. Strengthening the formulation

Theorem 3.2 yields a super-polynomial number of facets of the DTSPMS polytope yet they are not
sufficient to characterize the convex hull. Here we provide a new family of inequalities in order to strengthen
the linear relaxation of our formulation.

Consider the following example of the double TSP with multiple stacks. Suppose that there are 5 items
and 2 stacks. Let cP and cD be such that P ⋆ = 0, 1, 2, 3, 4, 5, 0 and D⋆ = 0, 1, 2, 5, 4, 3, 0 are Hamiltonian
circuits which minimize cP and cD, respectively. Suppose also that costs are symmetric, that is, cPij = cPji and

cDij = cDji for all i ̸= j ∈ V . Neither (P ⋆, D⋆) nor (P ⋆,
←
D⋆) is 2-consistent, and the point S⋆ = (P ⋆, 1

2D
⋆+ 1

2

←
D⋆)

does not belong to the DTSPMS polytope. However, S⋆ belongs to the linear relaxation of our formulation
and is actually one of its extreme points; the point S⋆ is also an optimal solution to this linear relaxation
with respect to cP and cD. Moreover, no facet given by Theorem 3.2 can cut off S⋆ since both P ⋆ and
1
2D
⋆ + 1

2

←
D⋆ belong to the PATSP polytope.

More generally, for symmetric costs, the value of the linear relaxation of our formulation cannot be
better than the value obtained by independently optimizing the pickup and delivery circuits, that is, by
independently solving two symmetric Traveling Salesman problems. The following family of valid inequalities
strengthens the linear relaxation of our formulation by cutting off such extreme points.

Proposition 4.1. Let C be a circuit of Gn \ {0} with |C| ≥ s+ 1. Then the inequality

yP (C) + yD(C) ≥

|C|
s

(15)

is valid for DTSPMSn,s.

Proof. For each arc a of C, consider the inequality (10) associated with the s consecutive arcs of C, starting
from a. Summing these |C| inequalities and dividing by s yields

yP (C) + yD(C) ≥ |C|
s
. (16)

The vertices of DTSPMSn,s being integer, we round up the right hand side of (16) to get (15). �

Inequality (15) is a circuit inequality of order |C|. When s = 2 and |C| is odd, we call it an odd circuit
inequality. Such inequality is redundant when the length of the circuit is a multiple of s. When s = 2 and
|C| = 3, it is dominated by the sum of the transitivity constraints (4) associated with C.

The extreme point S⋆ of the example given in the beginning of this section is cut off by an odd circuit
inequality. Indeed, consider the circuitH = 5, 4, 3, 2, 1, 5. We have γP⋆(H) = 0 and 1

2γ
D⋆(H)+ 1

2γ
←
D⋆(H) = 5

2 ,
thus less than the value 3 required by the odd circuit inequality associated with H.

The validity of inequalities (15) can also be proven using the results of Sassano on the set covering
polytope [18]. The set covering polytope associated with a 0/1 matrix A is the convex hull of the 0/1
solutions to Ax ≥ 1. Let S be the set of points (yP , yD) ∈ {0, 1}n(n−1) × {0, 1}n(n−1) satisfying inequalities

M. Barbato et al. / Discrete Optimization 21 (2016) 25–41 31

(10) together with

yTij + yTji ≥ 1 for all i ̸= j ∈ V \ {0} and T = P,D, (17)
yTij + yTjk + yTki ≥ 1 for all i ̸= j ̸= k ̸= i ∈ V \ {0}. (18)

Clearly, conv(S) is a set covering polytope, and proj(yP ,yD)(DTSPMSn,s) is one of its faces by Remark 2.1
and because (17) is a relaxation of (3). Then, for each odd circuit C, the inequality yP (C) ≥

|C|
s

is the

so-called s-rose inequality of order |C| of the restriction of conv(S) to the variable set yP . Using the Lifting
Theorem 4.1 of [18], one can lift this inequality into the circuit inequality associated with C.

5. Branch-and-cut algorithm for the double TSP. . .

As explained in the introduction, given a number of items equal to the total capacity, the hardest case is
the double TSP with two stacks. We develop a specific branch-and-cut algorithm for this case based on the
formulation of Section 2. From the theoretical results of the previous sections, we first derive a branch-and-
cut algorithm for the double TSP with two stacks of infinite capacity. We then modify this algorithm to take
into account stacks of finite capacity. We refer the reader to [19] for a thorough description of branch-and-cut
algorithms.

5.1. . . . with two stacks of infinite capacity

Here we consider the double TSP with two stacks of infinite capacity. Specifying s = 2 in the formulation
of Section 2 provides a formulation for this problem. We embed this formulation into a branch-and-cut
algorithm.

To speed up our branch-and-cut algorithm, we add the 2-consistency inequalities and the transitivity
inequalities in a dynamic way. Moreover, we strengthen our formulation with the odd circuit inequalities
and two families of inequalities for the PATSP polytope: the subtour elimination constraints [20] and the
2-simple cut inequalities [16]. The subtour elimination constraints are the following:

i∈S

j∈S
xij ≤ |S| − 1 S ⊂ V such that S ̸= ∅. (19)

The 2-simple cut inequalities include three (non-equivalent) families of inequalities, defined for each pair
i, j ∈ {1, . . . , n} as follows:

yij ≤

r∈V \(S∪{j})

s∈S
xrs S ⊆ V such that 0, j ̸∈ S, i ∈ S (20)

yij ≤

r∈V \(S∪{0})

s∈S
xrs S ⊆ V such that 0, i ̸∈ S, j ∈ S (21)

yij ≤

r∈V \(S∪{i})

s∈S
xrs S ⊆ V such that i, j ̸∈ S, 0 ∈ S. (22)

These constraints are valid due to the following observation. Given a Hamiltonian circuit C and two distinct
vertices i and j of V \ 0, if i precedes j in C then there exists a path in C from 0 to i not containing j
(constraint (20)), a path from i to j not containing 0 (constraint (21)) and a path from j to 0 not containing
i (constraint (22)).

We mention that, even if there exist several other families of inequalities that are valid for the PATSP
polytope, they do not seem to be efficient from a computational point of view [16].

32 M. Barbato et al. / Discrete Optimization 21 (2016) 25–41

When costs are symmetric, the points (P,D) and (
←
P ,
←
D) have the same value. Since the instances we

consider for tests have symmetric costs, we add the following equation to break this symmetry

yP12 = 1. (23)

We initiate our branch-and-cut algorithm with the starting formulation composed of inequalities (1)–(3),
(5)–(7) and (23). The solutions to our problem are precisely the integer points satisfying the constraints from
the starting formulation together with (4) and (10). At each node of the branch-and-cut tree, we perform a
cutting plane phase by separating in that order the following families of inequalities:

• 2-consistency constraints (10),
• subtour elimination constraints (19),
• 2-simple cut inequalities (20)–(22),
• transitivity constraints (4),
• odd circuit inequalities (15).

The separation of each family is done when separating the previous ones yielded no violated constraint. We
now describe the separation algorithms for each family with respect to the optimal solution z̄ = (x̄1, ȳ1, x̄2, ȳ2)
of the current linear relaxation.
2-consistency constraints. Since s = 2, there are Θ(n3) inequalities of type (10). Consider ̄ ∈ V \ {0}. Let
ı̄ and k̄ be the vertices minimizing ȳ1ī + ȳ2ī and ȳ1̄k + ȳ2̄k, respectively. If ȳ1ı̄̄ + ȳ2ı̄̄ + ȳ1

̄k̄
+ ȳ2
̄k̄
< 1, then

the inequality (10) associated with ı̄, ̄ and k̄ is violated because (3) guarantees that ı̄ ̸= k̄. Otherwise, no
inequality (10) associated with i, ̄ and k is violated by z̄. Applying this procedure to each ̄ ∈ V \ {0} gives
an exact separation of the 2-consistency constraints in O(n2).
Subtour elimination constraints. We use the Hao–Orlin algorithm [21] which provides a minimum cut in
O(n3).
2-simple cut inequalities. We use the O(n5) exact separation algorithm of [16].
Transitivity constraints. The separation is done in O(n3) by enumeration.
Odd circuit inequalities. By the order of our separation procedure, the point z̄ satisfies (10). Given an odd
circuit C of Gn \ {0}, we have ȳ1(C) + ȳ2(C) ≥

|C|
2

if and only if 2(ȳ1(C) + ȳ2(C)) ≥ |C|+ 1. The latter

can be rewritten as w(C) ≥ 1, where wij = 2(ȳ1ij + ȳ2ij)− 1, for all i ̸= j ∈ V \ {0}. Now, one of inequalities
(15) is violated if and only if there exists an odd circuit of the weighted graph (Gn \ {0}, w) of weight less
than 1. Since z̄ satisfies (10), it also satisfies (16). Therefore, (Gn \ {0}, w) contains no circuit of negative
weight. Finding a minimum odd circuit in such a weighted graph can be done in O(n4) [22], hence so can
the separation of odd circuit inequalities.

5.2. . . . with two stacks of finite capacity

When the stacks have a finite capacity q, inequalities (10) are no more sufficient to ensure the 2, q-
consistency of couples of Hamiltonian circuits. In this case, we obtain a formulation by adding a family of
constraints from [7] to the formulation of Section 2, namely the tournament constraints.

We briefly describe these constraints. Given a path R of Gn, denote by T (R) the set of arcs (i, j) such
that R visits i before j. Let RP and RD be two paths of Gn such that if P̃ and D̃ are Hamiltonian circuits
with P̃ ⊇ RP and D̃ ⊇ RD, then (P̃ , D̃) is not 2, q-consistent. Then, the inequality

xP (T (RP)) + xD(T (RD)) ≤ |RP |+ |RD| − 1, (24)

is satisfied by the characteristic points of 2, q-consistent pairs of Hamiltonian circuits.

M. Barbato et al. / Discrete Optimization 21 (2016) 25–41 33

We modify the branch-and-cut algorithm of Section 5.1 by separating constraints (24) whenever the
current optimal solution is integer. For this separation, we use the exact separation algorithm of [7].

6. Computational results

All the exact algorithms for the double TSP with two stacks are tested on a benchmark of instances
introduced in [1]. This benchmark contains the following instances. For every even n from 8 to 32, 20
instances are created with n items. Each instance is generated as follows. For both the pickup and delivery
cities, n points are randomly generated in a square, the depot being in the center of the square. The costs
are the Euclidean distances between these points, rounded to the nearest integers, and the objective is to
minimize the total cost. The capacity of both stacks equals n2 .

We briefly review the different performances on these instances of the exact algorithms available in the
literature for the double TSP with two stacks of capacity n

2 . All the instances of the benchmark having
at most 14 items are solved (to optimality), the best results being obtained by the algorithm of [7] using
CPLEX 12 on a 3 GHz Intel Core Duo processor. Only three instances with 16 items are solved, by the
algorithm of [10] using CPLEX 12 on a 2.2 GHz AMD Opteron 275 processor. All these algorithms fail to
solve any other instance within a time limit of three hours.

Our branch-and-cut algorithm is implemented in C++ using CPLEX 12.5 [23] and is run on a 3.40 GHz
Intel Core i7 processor in sequential mode, under Linux operating system. We use the strong branching rule
of CPLEX and let CPLEX add its own generic families of cuts. All the graph-based routines used in the
separation phase are implemented using the COIN-OR library LEMON [24]. An upper bound is initially
given to our algorithm. This upper bound is obtained using the heuristic of [25]. We set a running time limit
of three hours for each instance. Our experimental results on the benchmark described above are summarized
in Table 1. This table is composed of two parts: the left one deals with infinite capacity; the right one takes
into account a capacity of value n2 . These results come from the application of the branch-and-cut algorithms
of Sections 5.1 and 5.2, respectively.

Each instance corresponds to a row. An instance is described by its name and its number of items, which
appear in the corresponding column of the table. Both left and right parts of Table 1 are composed of four
columns. Columns UB and LB respectively contain the value of the best feasible integer solution and the
lower bound output by our algorithm within the time limit. Column CPU contains the CPU time spent
expressed in seconds. Column Nodes contains the number of nodes of the branch-and-cut tree. Column
Gap % contains the gap in percentage between the upper and lower bounds, which is 100(UB − LB)/UB.
For each number of items, we add a row Average containing the average values of each column.

For the double TSP with two stacks of infinite capacity, the left part of Table 1 shows that our algorithm
solves all the instances with up to 16 items and 8 out of the 20 instances with 18 items within the time
limit of 3 h. The gap for the unsolved instances is at most 6.80%. The right part of Table 1 reports the
computational results for the case of two stacks of capacity n2 . Our algorithm solves all the instances having
up to 16 items and 7 out of the 20 instances with 18 items. The gap is less than 6.90% for the instances with
18 items which are not solved. For these instances, note that the number of nodes of the branch-and-cut tree
does not exceed 56 000. We do not report the results for the instances with 20 items since both algorithms
solve none of them.

As the right part of Table 1 shows, our algorithm outputs an optimal solution for all the instances already
solved in the literature. In average, our algorithm is four times faster than the fastest available one which
was run on a 3 GHz Intel Core Duo processor with Cplex 12 [7]. Moreover, we solve 24 previously unsolved
instances: 17 instances with 16 items and 7 instances with 18 items.

The similarity of the left and right parts of Table 1 suggests that the finiteness of the stack capacity does
not deeply modify the problem. Indeed, for the 67 instances which are solved by both algorithms, 37 have the

34 M. Barbato et al. / Discrete Optimization 21 (2016) 25–41

Table 1
Results of our branch-and-cut algorithms.

Instance Items Infinite capacity Capacity n
2

UB LB CPU Nodes Gap % UB LB CPU Nodes Gap %

R00 12 716 716.00 9.24 165 0.00 726 726.00 14.26 296 0.00
R01 12 741 741.00 6.79 175 0.00 741 741.00 6.81 175 0.00
R02 12 651 651.00 19.51 417 0.00 660 660.00 34.43 772 0.00
R03 12 690 690.00 1.80 15 0.00 690 690.00 1.81 15 0.00
R04 12 659 659.00 19.59 451 0.00 659 659.00 19.64 451 0.00
R05 12 627 627.00 35.78 724 0.00 631 631.00 41.73 858 0.00
R06 12 789 789.00 6.54 90 0.00 793 793.00 7.92 123 0.00
R07 12 589 589.00 7.02 138 0.00 593 593.00 8.05 171 0.00
R08 12 749 749.00 23.88 498 0.00 749 749.00 23.96 498 0.00
R09 12 686 686.00 4.53 84 0.00 692 692.00 4.91 107 0.00
R10 12 663 663.00 12.14 339 0.00 663 663.00 12.18 339 0.00
R11 12 622 622.00 12.27 244 0.00 625 625.00 13.90 286 0.00
R12 12 741 741.00 3.28 60 0.00 741 741.00 3.28 60 0.00
R13 12 683 683.00 2.93 49 0.00 694 694.00 5.88 116 0.00
R14 12 680 680.00 5.08 96 0.00 680 680.00 5.11 96 0.00
R15 12 624 624.00 14.26 315 0.00 628 628.00 21.71 493 0.00
R16 12 610 610.00 11.13 209 0.00 610 610.00 11.16 209 0.00
R17 12 780 780.00 44.91 971 0.00 780 780.00 45.09 971 0.00
R18 12 735 735.00 3.71 83 0.00 735 735.00 3.72 83 0.00
R19 12 782 782.00 20.40 490 0.00 789 789.00 36.14 874 0.00

Average 13 .24 280.65 0 .00 16 .08 349.65 0 .00

R00 14 766 766.00 118.39 1 544 0.00 774 774.00 168.63 2 299 0.00
R01 14 761 761.00 27.97 346 0.00 761 761.00 28.03 346 0.00
R02 14 690 690.00 129.33 1 648 0.00 690 690.00 129.62 1648 0.00
R03 14 791 791.00 52.13 593 0.00 791 791.00 52.25 593 0.00
R04 14 756 756.00 509.33 6 918 0.00 756 756.00 510.54 6 918 0.00
R05 14 773 773.00 127.46 1 589 0.00 775 775.00 130.30 1 650 0.00
R06 14 811 811.00 28.71 304 0.00 824 824.00 41.12 510 0.00
R07 14 693 693.00 28.21 319 0.00 697 697.00 31.97 378 0.00
R08 14 824 824.00 259.09 3 573 0.00 824 824.00 259.96 3 573 0.00
R09 14 733 733.00 5.93 58 0.00 739 739.00 9.96 126 0.00
R10 14 733 733.00 99.86 1 330 0.00 733 733.00 100.07 1 330 0.00
R11 14 719 719.00 238.89 2 975 0.00 725 725.00 266.40 3 443 0.00
R12 14 803 803.00 59.10 722 0.00 803 803.00 59.22 722 0.00
R13 14 743 743.00 36.56 508 0.00 746 746.00 41.03 590 0.00
R14 14 747 747.00 353.82 4 847 0.00 765 765.00 1329.61 16 658 0.00
R15 14 765 765.00 32.47 484 0.00 765 765.00 32.51 484 0.00
R16 14 685 685.00 31.57 376 0.00 685 685.00 31.63 376 0.00
R17 14 818 818.00 246.35 2 992 0.00 818 818.00 246.82 2 992 0.00
R18 14 774 774.00 94.40 1 325 0.00 774 774.00 94.57 1 325 0.00
R19 14 833 833.00 237.57 3 002 0.00 836 836.00 289.47 3 685 0.00

Average 135 .86 1772.65 0 .00 192 .69 2482.30 0 .00

R00 16 795 795.00 1498.13 12 002 0.00 804 804.00 2446.04 20 047 0.00
R01 16 794 794.00 169.58 1 467 0.00 794 794.00 169.61 1 467 0.00
R02 16 752 752.00 6688.66 51 700 0.00 752 752.00 7001.64 53 649 0.00
R03 16 855 855.00 1879.71 13 641 0.00 855 855.00 1883.62 13 680 0.00
R04 16 792 792.00 6616.13 52 883 0.00 801 801.00 10 499.83 84 698 0.00
R05 16 820 820.00 4248.95 32 078 0.00 823 823.00 4417.25 33 882 0.00
R06 16 900 900.00 988.01 8 057 0.00 906 906.00 1563.23 12 737 0.00
R07 16 756 756.00 130.26 958 0.00 756 756.00 130.44 958 0.00
R08 16 907 907.00 1526.68 12 634 0.00 909 909.00 1756.94 14 674 0.00
R09 16 796 796.00 99.46 789 0.00 800 800.00 149.97 1 197 0.00
R10 16 755 755.00 664.12 5 300 0.00 755 755.00 796.47 6 634 0.00
R11 16 759 759.00 909.18 7 377 0.00 777 777.00 3385.05 27 916 0.00
R12 16 825 825.00 653.00 5 264 0.00 825 825.00 653.90 5 264 0.00
R13 16 824 824.00 719.47 5 878 0.00 831 831.00 1160.47 9 537 0.00
R14 16 823 823.00 5892.60 41 223 0.00 823 823.00 5948.71 41 328 0.00
R15 16 807 807.00 568.39 4 549 0.00 807 807.00 566.59 4 549 0.00
R16 16 781 781.00 2347.62 18 234 0.00 781 781.00 2353.94 18 234 0.00
R17 16 852 852.00 2136.11 16 101 0.00 858 858.00 3338.61 25 070 0.00
R18 16 846 846.00 1289.01 10 532 0.00 846 846.00 1297.49 10 532 0.00
R19 16 882 882.00 1589.97 12 501 0.00 882 882.00 1910.27 15 243 0.00

Average 2030 .75 15 658.40 0 .00 2571 .50 20 064.80 0 .00

(continued on next page)

M. Barbato et al. / Discrete Optimization 21 (2016) 25–41 35

Table 1 (continued)

Instance Items Infinite capacity Capacity n
2

UB LB CPU Nodes Gap % UB LB CPU Nodes Gap %

R00 18 839 839.00 5128.95 28 232 0.00 839 839.00 5192.40 28 229 0.00
R01 18 825 825.00 1574.57 7 119 0.00 857 857.00 10 038.08 50 055 0.00
R02 18 793 750.06 10 800.00 46 046 5.42 793 750.20 10 800.00 46 183 5.40
R03 18 896 848.67 10 800.00 43 700 5.28 899 847.28 10 800.00 43 286 5.75
R04 18 832 781.50 10 800.00 44 790 6.07 832 781.42 10 800.00 44 570 6.08
R05 18 873 847.60 10 800.00 50 545 2.91 873 847.70 10 800.00 50 529 2.90
R06 18 930 930.00 9257.50 44 850 0.00 930 930.00 9394.32 45 417 0.00
R07 18 805 805.00 1488.97 7 918 0.00 805 805.00 1419.58 7 538 0.00
R08 18 962 907.68 10 800.00 43 758 5.65 962 907.75 10 800.00 43 456 5.64
R09 18 815 815.00 448.44 2 510 0.00 815 815.00 448.36 2 510 0.00
R10 18 856 825.04 10 800.00 44 155 3.62 856 825.12 10 800.00 44 355 3.61
R11 18 823 788.97 10 800.00 51 234 4.13 823 789.86 10 800.00 51 466 4.03
R12 18 871 871.00 4291.89 21 560 0.00 871 871.00 4734.43 23 903 0.00
R13 18 845 845.00 3455.85 19 047 0.00 860 852.53 10 800.00 55 775 0.87
R14 18 873 813.67 10 800.00 40 037 6.80 874 813.75 10 800.00 40 151 6.89
R15 18 869 834.64 10 800.00 47 370 3.95 869 834.89 10 800.00 47 597 3.93
R16 18 811 811.00 5499.46 28 197 0.00 819 819.00 7590.24 39 622 0.00
R17 18 900 840.50 10 800.00 38 099 6.61 900 840.57 10 800.00 38 076 6.60
R18 18 883 867.33 10 800.00 47 342 1.77 883 866.83 10 800.00 47 128 1.83
R19 18 909 893.13 10 800.00 51 974 1.75 909 894.68 10 800.00 52 628 1.58

Average 8037 .28 35 424.15 2 .70 8960 .87 40 123.70 2 .75

same optima. For the other ones, taking into account the capacity increases the cost of an optimal solution
by 0.45% in average and by 3.88% in the worst case. From a computational point of view, all the instances
which are solved with infinite capacity are also solved with finite capacity, except one. The exception is
instance R13 with 18 items for which the branch-and-cut algorithm with finite capacity obtains a gap of
0.81%. Beside, when the optima are equal for both cases, the CPU time is almost identical. For all instances
but R07 with 18 items, taking into account the capacity slightly increases the CPU time. For example, the
average CPU time increases by less than 12% for the instances having 18 items.

We mention here that the heuristic of [25], used to get upper bounds for our algorithms, actually finds an
optimal solution for all the instances with finite capacity we solve. However, running the same algorithms
on the instances with 12, 14 and 16 items without using any upper bound does not affect drastically their
performances. Indeed, all the instances but one are solved within the time limit. Moreover, the CPU time
remains of the same order of magnitude for both algorithms.

These experimental results show that, with our approach, the finiteness of the capacity is not the major
computational difficulty.

7. Concluding remarks

In this paper, we develop a branch-and-cut algorithm based on polyhedral results for the double TSP with
multiple stacks. From a computational point of view, we solve many instances that were previously unsolved.
Our approach, which mainly focuses on the consistency of Hamiltonian circuits when the stack capacity is
infinite, is validated by the experimental results. Moreover, we think that our approach is promising to solve
bigger instances, as the results show that the finiteness of the capacity is not the major computational
difficulty and our branch-and-cut tree suffers from no combinatorial explosion. A possible direction to
improve our algorithm is to strengthen our formulation by studying the facial structure of the PATSP
polytope, thanks to Theorem 3.2.

Acknowledgments

We thank Mart́ınez et al. [7], Côté et al. [25] and Casazza et al. [4] for kindly sharing their code with us.

36 M. Barbato et al. / Discrete Optimization 21 (2016) 25–41

Appendix

Proof of Proposition 3.1. The points of PATSPn satisfy the equalities (1)–(3). The rank of the matrix of
equalities (1)–(3) being

n
2

+ 2n + 1 = n2+3n+2
2 (see e.g., [26,13]), and the number of variables being 2n2,

we get dn ≤ 3n2−3n−2
2 . To prove the result, it is enough to find 3n2−3n−2

2 + 1 affinely independent points of
PATSPn, for every n.

We proceed by induction. One can check by enumeration that the result holds for n = 5. Let us define
for every n ≥ 5, kn = 3n2−3n−2

2 and, assuming that the proposition holds for PATSPn, let us prove that it
also does for PATSPn+1.

By the inductive hypothesis, there exist C1 . . . Ckn+1 affinely independent Hamiltonian circuits of Gn. By
inserting n+1 at the end of each Ci, we get a set of kn+1 affinely independent Hamiltonian circuits of Gn+1.
Since kn+1 − kn = 3n, it suffices to complete this set with 3n new Hamiltonian circuits of Gn, maintaining
the affine independence. The circuits are added in an iterative fashion. We indicate by C(i,j) a circuit that
contains the arc (i, j) not belonging to any of the circuits added in the previous iterations; similarly, C⋆(i,j)
indicates a circuit where i precedes j for the first time until the given iteration. Then, by construction,
adding the 2n+ 1 circuits below, in the order they are presented, preserves the affine independence:

C(n,0) = 0, 2, . . . , n− 1, n+ 1, 1, n, 0
C⋆(n+1,2) = 0, 3 . . . , n− 1, n+ 1, 1, 2, n, 0
C⋆(n+1,i) = 0, 2 . . . , i− 1, i+ 1, . . . , n− 1, n+ 1, 1, i, n, 0 for i = 3, . . . , n− 2
C⋆(n+1,n−1) = 0, 2 . . . , n− 2, n+ 1, 1, n− 1, n, 0
C(n+1,i) = 0, 1, . . . , i− 1, n+ 1, i, . . . , n, 0 for i = 2, . . . , n
C(0,n+1) = 0, n+ 1, 1, 2, . . . , n, 0
C(2,0) = 0, 1, 3, . . . , n− 1, n+ 1, n, 2, 0
C̃1 = 0, 1, 3, . . . , n, n+ 1, 2, 0.

Adding C̃1 maintains the affine independence since every previous circuit C such that γCn(n+1) = 1 also
verifies χC(n+1)0 = 1. Hence, C̃1 cannot be obtained as an affine combination of the previous circuits. Finally,
we add the following n− 1 circuits:

C(1,0) = 0, 2, . . . , n+ 1, 1, 0
C(i,0) = 0, i+ 1, . . . , n+ 1, 1, . . . , i, 0 for i = 3, . . . , n− 1
C̃2 = 0, 2, . . . , n− 1, n+ 1, n, 1, 0.

Adding C̃2 preserves the affine independence since every previous circuit C such that γC(n+1)1 = 1 also verifies
χC(n+1)1 = 1. The whole family of circuits above forms an affinely independent set, and this concludes the
proof. �

Lemma A.1. The set of Hamiltonian circuits that are s-consistent with a fixed Hamiltonian circuit of Gn
has dimension dn for n ≥ 4 and s ≥ 3 and dimension dn − 3 for n ≥ 5 and s = 2.

Proof. Let us fix a Hamiltonian circuit of Gn. We can assume that this circuit is Cn = 0, n, . . . , 1, 0, as
otherwise we can relabel the vertices. Let us call Cn,s the set of Hamiltonian circuits that are s-consistent
with Cn. We split the proof into two cases.

M. Barbato et al. / Discrete Optimization 21 (2016) 25–41 37

Case s ≥ 3. The case n = 4 can be checked by enumeration, showing that dim(C4,3) = 17. This implies
dim(C4,s) = 17 for every s ≥ 3. Then we can apply induction, observing that the circuits constructed in the
proof of Proposition 3.1 are s-consistent with Cn+1 when s ≥ 3.

Case s = 2. Note that in the case with two stacks and n ≥ 5, the following three equalities are valid for the
set Cn,2 by Proposition 2.2:

x02 = y21 (25)
x(n−1)0 = yn(n−1) (26)
xn1 = yn1. (27)

In addition, the Eqs. (25)–(27) are easily seen to be linearly independent. Therefore, adding (25)–(27) to
Eqs. (1)–(3) we get dim(Cn,2) ≤ dn − 3.

Let n ≥ 5 and let us prove by induction that dim(Cn,2) = dn − 3. The base case n = 5 can be checked
by enumeration. Assuming that the result holds for Cn,2, let us prove it also for Cn+1,2. By the inductive
hypothesis, there exist C1 . . . Cdn−2 affinely independent Hamiltonian circuits of Gn that are 2-consistent
with Cn. By inserting n + 1 at the end of each Ci we get a set C of dn − 2 independent Hamiltonian
circuits of Gn+1 that are 2-consistent with Cn+1. For later convenience, let us partition C in the two sets
C1 = {C ∈ C : χC(n−1)(n+1) = 1} and C2 = C \ C1.

Observe that if C ∈ C2, by (3) and (26) it follows that γC(n−1)n = 1. As in the proof of Proposition 3.1, it
suffices to complete C with 3n affinely independent circuits that are 2-consistent with Cn+1. For these new
circuits, we use the notation from the proof of Proposition 3.1. By construction, the affine independence is
ensured when the two circuits below are added in the following order:

C(n,0) := 0, 2, . . . , n− 1, n+ 1, 1, n, 0
C(n+1,n) = 0, 1, . . . , n− 1, n+ 1, n, 0.

Next, we add the circuit:

C̃1 = 0, 2, . . . , n− 1, 1, n+ 1, n, 0.

Claim A.2. The set C ∪ {C(n,0), C(n+1,n), C̃1} is a set of affinely independent circuits.

Proof. By contradiction, we may assume that C̃1 is a combination of the circuits in C ∪

C(n,0), C(n+1,n)

.

We indicate with λC the coefficient of the circuit C in such a combination. Since there is a direct arc from
n to 0 only in C(n,0), C(n+1,n) and C̃1, and a direct arc from n+ 1 to n only in C(n+1,n) and C̃1, we get that
λC(n,0) = 0 and λC(n+1,n) = 1. In addition χC̃1

(n−1)(n+1) = 0, then

C∈C1
λC = −1. Similarly, as χC̃1

(n+1)0 = 0,
we have also that

C∈C1
λC +

C∈C2
λC = 0, i.e.,

C∈C2
λC = 1. But this would imply γC̃1

(n−1)n = 2—a
contradiction. �

Subsequently, we iteratively add the following 2n− 2 circuits:

C⋆(n+1,2) = 0, 3 . . . , n− 1, n+ 1, 1, 2, n, 0
C⋆(n+1,i) = 0, 2 . . . , i− 1, i+ 1, . . . , n− 1, n+ 1, 1, i, n, 0 for i = 3, . . . , n− 2
C⋆(n+1,n−1) = 0, 2 . . . , n− 2, n+ 1, 1, n− 1, n, 0
C(n+1,i) = 0, 1, . . . , i− 1, n+ 1, i, i+ 1, . . . , n, 0 for i = 2, . . . , n− 1
C(0,n+1) = 0, n+ 1, 1, 2, . . . , n, 0
C(2,0) = 0, 1, 3, . . . , n, n+ 1, 2, 0.

38 M. Barbato et al. / Discrete Optimization 21 (2016) 25–41

By construction, the resulting set contains only affinely independent circuits. The next circuit we add is:

C̃2 = 0, 3, . . . , n, n+ 1, 1, 2, 0.

The circuit C̃2 is independent of the previous ones because γC̃2
n1 = 1 and χC̃2

n1 = 0, whereas each circuit
C added in the previous steps such that γCn1 = 1 belongs to C, and also verifies χCn1 = 1, because of (27).
Finally, the last n− 2 circuits we add are the following ones:

C(1,0) = 0, 2, . . . , n+ 1, 1, 0
C(i,0) = 0, i+ 1, . . . , n+ 1, 1, . . . , i, 0 for i = 3, 4, . . . , n− 1

whose independence again follows by construction. The 3n circuits above are 2-consistent with Cn+1, and
this concludes the proof. �

Proposition A.3. For n ≥ 5 and s ≥ 2, we have dim(DTSPMSn,s) = 2dn.

Proof. Given the inclusions DTSPMSn,2 ⊆ DTSPMSn,s ⊆ PATSPn × PATSPn, it is enough to prove the
result for s = 2.

For n ≥ 5, let P1 . . . Pdn+1 be affinely independent Hamiltonian circuits of Gn. From Lemma A.1
there exist D1 . . . Ddn−2 affinely independent Hamiltonian circuits such that Vi = (P1, Di) are pairs of
2-consistent Hamiltonian circuits. By relabeling the vertices, we can assume that P1 = 0, n, . . . , 1, 0. Under
this assumption, every Di satisfies (25)–(27). Given Pj , for some 1 < j ≤ dn + 1, we will now construct
D̃j satisfying (25)–(27) such that Vdn−3+j = (Pj , D̃j) is a pair of 2-consistent Hamiltonian circuits. From
the affine independence of the Pj for j = 1, . . . , n, it will follow that the characteristic points of the pairs
V1 . . . V2dn−2, taken in the order given by the subscripts, will be affinely independent.

Roughly speaking, D̃j is obtained by perturbing
←
P j in such a way that Eqs. (25)–(27) are satisfied; we

exploit the observation that (Pj ,
←
P j) is a pair of 2-consistent Hamiltonian circuits to find a perturbation

such that also the new pair (Pj , D̃j) of circuits is 2-consistent.

In detail, if 2≺←
P j
n, then D̃j is obtained from

←
P j by putting 2 at its beginning and n at its end. Note

that (Pj , D̃j) is a solution to the double TSP with two stacks and D̃j verifies (25)–(27). Therefore, assume
n≺←
P j

2. If also 1≺←
P j

2, then D̃j is obtained from
←
P j by moving n in its last position. Even in this case, D̃j

is 2-consistent with Pj and verifies (25)–(27).

Now, let n≺←
P j

2≺←
P j

1. Suppose
←
P j = 0, X1, n,X2, n − 1, X3, 2, X4, 1, X5, 0 where the Xi’s represent

sequences of vertices. Then, a circuit 2-consistent with Pj and verifying (25)–(27), is D̃j = 0, X1, X2, n −
1, n, 1, X3, 2, X4, X5, 0.

Lastly, if n− 1≺←
P j
n or 2≺←

P j
n− 1, let

←
P j = 0, X1, X2, 0 where X2 is the part of the circuit starting at

node 2. In both cases, D̃j = 0, X2, X1, 0 is 2-consistent with Pj and satisfies (25)–(27).

To conclude the proof, consider the following three Hamiltonian circuits1:

D⋆1 = 0, 3, 2, 1, 4, . . . , n− 2, n, n− 1, 0
D⋆2 = 0, 2, 1, n, n− 1, 3, . . . , n− 2, 0
D⋆3 = 0, 2, n, 3, 1, 4, . . . , n− 1, 0.

1 In the case n = 5, we set D⋆1 = 0, 3, 2, 1, 5, 4, 0.

M. Barbato et al. / Discrete Optimization 21 (2016) 25–41 39

Note that the D⋆k above are well defined because n ≥ 5. Setting P ⋆k =
←
D⋆k, we get that the characteristic

points of the pairs V2dn−2+k = (P ⋆k , D⋆k) are all independent with each other and with the previous points,
because D⋆k only violates the kth equation of (25)–(27). The characteristic points of the pairs V1 . . . V2dn+1
form a family of 2dn + 1 affinely independent points of DTSPMSn,2. �

Proof of Theorem 3.2. Let us consider an inequality ax + by ≥ c valid for the PATSP polytope, such that
the set F ′ = {(x, y) ∈ PATSPn : ax+ by = c} is a facet of PATSPn. Without loss of generality, let us show
that F = {(xP , yP , xD, yD) ∈ DTSPMSn,s : axP + byP = c} is a facet of DTSPMSn,s.

Note that F is a face of DTSPMSn,s: indeed, axP + byP ≥ c is valid for DTSPMSn,s because
DTSPMSn,s ⊆ PATSPn × PATSPn and ax + by ≥ c is valid for PATSPn. To prove that F is a facet
of DTSPMSn,s we will exhibit 2dn affinely independent points in F . Since DTSPMSn,2 ⊆ DTSPMSn,s for
every s ≥ 2, it is enough to prove the existence of these affinely independent points for s = 2.

By hypothesis there exist P1 . . . Pdn affinely independent Hamiltonian circuits belonging to F ′. In addition,
it is not restrictive to assume P1 = 0, n, . . . , 1, 0. Under this assumption, and repeating the reasoning used
in the proof of Proposition A.3, we can construct Hamiltonian circuits D1, . . . , Ddn−2 and D̃2, . . . , D̃dn such
that the 2dn − 3 pairs of circuits

(P1, D1), . . . , (P1, Ddn−2), (P2, D̃2), . . . , (Pdn , D̃dn) (28)

are 2-consistent, and their characteristic points form an affine independent set of F and verify:

xD02 = yD21 (29)
xD(n−1)0 = yDn(n−1) (30)

xDn1 = yDn1. (31)

Now, assume that axP + byP ≥ c coincides with the inequality xP01 ≥ 0. In this case, the Theorem holds,
since we can complete the set in (28) to an affine base of F by adding the pairs of Hamiltonian circuits
(P ⋆k , D⋆k) as constructed in the proof of Proposition A.3. Indeed, their characteristic points satisfy xP01 = 0
and the affine independence of the resulting set is seen as in Proposition A.3. The same also applies if
axP + byP ≥ c coincides with xP(n−1)0 ≥ 0 or with xPn0 ≥ 0.

Therefore, assume that axP +byP ≥ c does not coincide with any of the inequalities xP01 ≥ 0, xP(n−1)0 ≥ 0,
xPn0 ≥ 0.

By hypothesis, there exists a circuit P ⋆1 ∈ F ′ such that χP
⋆
1

01 = 1. In other words, P ⋆1 = 0, 1, X1, 2, X2, 0
for some sequences of vertices X1 and X2. We first assume that X2 ̸= {n}. Then, if X2 ̸= ∅, we define
D⋆1 = 0,

←
X ′2, 2,

←
X ′1, 1, n, 0, where X ′1 and X ′2 are respectively obtained from X1 and X2 by removing n. If

X2 = ∅, then P ⋆1 = 0, 1, X3, n,X4, 2, 0 for some sequences X3 and X4. In this case, when X4 = ∅ we define
D⋆1 = 0, r, 2,

←
X ′3, n, 1, 0, where X ′3 is obtained from X3 by removing its last vertex r. Instead, if X4 ̸= ∅, we

set D⋆1 = 0, t, 2,
←
X ′4,

←
X3, n, 1, 0, where X ′4 is obtained from X4 by removing its first vertex t. In each case,

(P ⋆1 , D⋆1) ∈ F (because it is a pair of 2-consistent Hamiltonian circuits) and its characteristic point violates
(29) (while satisfying (30) and (31)). As a consequence, it cannot be in the affine subspace generated by the
points in (28).

Similarly, there exists a Hamiltonian circuit P ⋆2 ∈ F ′ such that χP
⋆
2

(n−1)0 = 1 (possibly P ⋆2 = P ⋆1). We
distinguish the following two cases, where X5, X6, X7 denote suitable sequences of vertices:

(1) P ⋆2 = 0, X5, n,X6, 1, X7, n− 1, 0

40 M. Barbato et al. / Discrete Optimization 21 (2016) 25–41

(2) P ⋆2 = 0, X5, 1, X6, n,X7, n− 1, 0.

We define D⋆2 = 0, 1, n, n−1,
←
X7,

←
X6,

←
X5, 0 in case (1), whereas in case (2), D⋆2 = 0, n, 1, n−1,

←
X7,

←
X6,

←
X5, 0.

In both cases, (P ⋆2 , D⋆2) ∈ F and the affine independence of its characteristic point with the previous ones
is given by the fact that it violates only (30) while satisfying (29) and (31).

Moreover, let P ⋆3 ∈ F ′ be a Hamiltonian circuit such that χP
⋆
3
n0 = 1 (P ⋆3 may coincide with P ⋆1). Since

P ⋆3 = 0, X8, 1, X9, n, 0 for some sequence of vertices X8 and X9, defining D⋆3 = 0, n,
←
X9,

←
X8, 1, 0 gives that

(P ⋆3 , D⋆3) ∈ F . In addition, its characteristic point cannot be obtained as an affine combination of the
previous ones, as it violates Eqs. (29)–(31).

Completing the set of circuits in (28) with the pairs (P ⋆i , D⋆i) yields a set of 2dn affinely independent
pairs of Hamiltonian circuits belonging to F and this concludes the proof for the case in which X2 ̸= {n}.

Finally, let us assume that X2 = {n} in P ⋆1 , that is, P ⋆1 = 0, 1, X1, 2, n, 0. We define D⋆1 = 0, 2, n −
1, n,

←
X
′
1, 1, 0 where X ′1 is obtained from X1 by removing n − 1. Note that, since n ≥ 5, X ′1 is not empty.

Now, (P ⋆1 , D⋆1) ∈ F and its characteristic vector violates Eq. (31), while satisfying Eq. (29) and Eq. (30). We
construct the points (P ⋆2 , D⋆2) and (P ⋆3 , D⋆3) as done above. The same argument used for the case X2 ̸= {n}
shows that, also in the case X2 = {n}, completing the set of circuits in Eq. (28) with the pairs (P ⋆i , D⋆i)
yields a set of 2dn affinely independent pairs of Hamiltonian circuits belonging to F . This concludes the
proof. �

References

[1] H.L. Petersen, O.B.G. Madsen, The double travelling salesman problem with multiple stacks—formulation and heuristic
solution approaches, European J. Oper. Res. 198 (1) (2009) 139–147.

[2] S. Toulouse, R. Wolfler Calvo, On the complexity of the multiple stack TSP, kSTSP, in: Proceedings of the 6th Annual
Conference on Theory and Applications of Models of Computation, TAMC’09, Springer-Verlag, Berlin, Heidelberg, 2009,
pp. 360–369.

[3] F. Bonomo, S. Mattia, G. Oriolo, Bounded coloring of co-comparability graphs and the pickup and delivery tour
combination problem, Theoret. Comput. Sci. 412 (45) (2011) 6261–6268.

[4] M. Casazza, A. Ceselli, M. Nunkesser, Efficient algorithms for the double traveling salesman problem with multiple stacks,
Comput. Oper. Res. 39 (5) (2012) 1044–1053.

[5] R.M. Lusby, J. Larsen, Improved exact method for the double TSP with multiple stacks, Networks 58 (4) (2011) 290–300.
[6] R.M. Lusby, J. Larsen, M. Ehrgott, D. Ryan, An exact method for the double TSP with multiple stacks, Int. Trans. Oper.

Res. 17 (5) (2010) 637–652.
[7] M.A.A. Mart́ınez, J.-F. Cordeau, M. Dell’Amico, M. Iori, A branch-and-cut algorithm for the double traveling salesman

problem with multiple stacks, INFORMS J. Comput. 25 (1) (2013) 41–55.
[8] H.L. Petersen, C. Archetti, M.G. Speranza, Exact solutions to the double travelling salesman problem with multiple stacks,

Networks 56 (4) (2010) 229–243.
[9] F. Carrabs, R. Cerulli, M.G. Speranza, A branch-and-bound algorithm for the double travelling salesman problem with

two stacks, Networks 61 (1) (2013) 58–75.
[10] J.-F. Côté, C. Archetti, M.G. Speranza, M. Gendreau, J.-Y. Potvin, A branch-and-cut algorithm for the pickup and delivery

traveling salesman problem with multiple stacks, Networks 60 (4) (2012) 212–226.
[11] R. Roberti, P. Toth, Models and algorithms for the asymmetric traveling salesman problem: an experimental comparison,

EURO J. Transp. Logist. 1 (1–2) (2012) 113–133.
[12] S.C. Sarin, H.D. Sherali, A. Bhootra, New tighter polynomial length formulations for the asymmetric traveling salesman

problem with and without precedence constraints, Oper. Res. Lett. 33 (1) (2005) 62–70.
[13] M. Grötschel, M. Jünger, Facets of the linear ordering polytope, Math. Program. 33 (1) (1985) 43–60.
[14] S. Borne, R. Grappe, M. Lacroix, The uncapacitated asymmetric traveling salesman problem with multiple stacks,

in: A.R. Mahjoub, V. Markakis, I. Milis, V.T. Paschos (Eds.), Combinatorial Optimization, in: Lecture Notes in Computer
Science, vol. 7422, Springer, Berlin, Heidelberg, 2012, pp. 105–116.

[15] S. Fiorini, S. Massar, S. Pokutta, H.R. Tiwary, R.D. Wolf, Exponential Lower Bounds for Polytopes in Combinatorial
Optimization, J. ACM 62 (2) (2015) 17:1–17:23.

[16] L. Gouveia, P. Pesneau, On extended formulations for the precedence constrained asymmetric traveling salesman problem,
Networks 48 (2) (2006) 77–89.

http://refhub.elsevier.com/S1572-5286(16)30021-4/sbref1
http://refhub.elsevier.com/S1572-5286(16)30021-4/sbref2
http://refhub.elsevier.com/S1572-5286(16)30021-4/sbref3
http://refhub.elsevier.com/S1572-5286(16)30021-4/sbref4
http://refhub.elsevier.com/S1572-5286(16)30021-4/sbref5
http://refhub.elsevier.com/S1572-5286(16)30021-4/sbref6
http://refhub.elsevier.com/S1572-5286(16)30021-4/sbref7
http://refhub.elsevier.com/S1572-5286(16)30021-4/sbref8
http://refhub.elsevier.com/S1572-5286(16)30021-4/sbref9
http://refhub.elsevier.com/S1572-5286(16)30021-4/sbref10
http://refhub.elsevier.com/S1572-5286(16)30021-4/sbref11
http://refhub.elsevier.com/S1572-5286(16)30021-4/sbref12
http://refhub.elsevier.com/S1572-5286(16)30021-4/sbref13
http://refhub.elsevier.com/S1572-5286(16)30021-4/sbref14
http://refhub.elsevier.com/S1572-5286(16)30021-4/sbref15
http://refhub.elsevier.com/S1572-5286(16)30021-4/sbref16

M. Barbato et al. / Discrete Optimization 21 (2016) 25–41 41

[17] L. Gouveia, J.M. Pires, The asymmetric travelling salesman problem: on generalizations of disaggregated
Miller–Tucker–Zemlin constraints, Discrete Appl. Math. 112 (1–3) (2001) 129–145.

[18] A. Sassano, On the facial structure of the set covering polytope, Math. Program. 44 (1–3) (1989) 181–202.
[19] J.E. Mitchell, Branch-and-Cut Algorithms for Combinatorial Optimization Problems, Oxford University Press, 2002.
[20] G. Dantzig, R. Fulkerson, S. Johnson, Solution of a large-scale traveling-salesman problem, J. Oper. Res. Soc. Am. 2 (4)

(1954) 393–410.
[21] J.X. Hao, J.B. Orlin, A faster algorithm for finding the minimum cut in a directed graph, J. Algorithms 17 (3) (1994)

424–446.
[22] M. Grötschel, L. Lovász, A. Schrijver, Geometric Algorithms and Combinatorial Optimization, in: Algorithms and

Combinatorics, Springer-Verlag, 1988.
[23] IBM. IBM ILOG CPLEX Optimization Studio 12.5, 2012.
[24] COIN-OR project. LEMON–Library for Efficient Modeling and Optimization in Networks, 2013.
[25] J.-F. Côté, M. Gendreau, J.-Y. Potvin, Large neighborhood search for the pickup and delivery traveling salesman problem

with multiple stacks, Networks 60 (1) (2012) 19–30.
[26] E. Balas, M. Fischetti, Polyhedral theory for the asymmetric traveling salesman problem, in: G. Gutin, A.P. Punnen

(Eds.), The Traveling Salesman Problem and Its Variations, in: Combinatorial Optimization, vol. 12, Springer, US, 2007,
pp. 117–168.

http://refhub.elsevier.com/S1572-5286(16)30021-4/sbref17
http://refhub.elsevier.com/S1572-5286(16)30021-4/sbref18
http://refhub.elsevier.com/S1572-5286(16)30021-4/sbref19
http://refhub.elsevier.com/S1572-5286(16)30021-4/sbref20
http://refhub.elsevier.com/S1572-5286(16)30021-4/sbref21
http://refhub.elsevier.com/S1572-5286(16)30021-4/sbref22
http://refhub.elsevier.com/S1572-5286(16)30021-4/sbref25
http://refhub.elsevier.com/S1572-5286(16)30021-4/sbref26

	Polyhedral results and a branch-and-cut algorithm for the double traveling Salesman problem with multiple stacks
	Definitions
	A new integer linear programming formulation
	Polyhedral links with the PATSP polytope
	Strengthening the formulation
	Branch-and-cut algorithm for the double TSP...
	... with two stacks of infinite capacity
	... with two stacks of finite capacity

	Computational results
	Concluding remarks
	Acknowledgments
	References

