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Abstract. In this paper, we study the complexity of some fundamental
questions regarding box-totally dual integral (box-TDI) polyhedra. First,
although box-TDI polyhedra have strong integrality properties, we prove
that Integer Programming over box-TDI polyhedra is NP-complete, that
is, finding an integer point optimizing a linear function over a box-TDI
polyhedron is hard. Second, we complement the result of Ding et al. (The
complexity of recognizing linear systems with certain integrality proper-
ties. Mathematical Programming 114(2), 321–334 (2008)) who proved
that deciding whether a given system is box-TDI is co-NP-complete:
we prove that recognizing whether a polyhedron is box-TDI is co-NP-
complete.
To derive these complexity results, we exhibit new classes of totally
equimodular matrices — a generalization of totally unimodular matrices
— by characterizing the total equimodularity of incidence matrices of
graphs.

Keywords: Box-TDI polyhedron· Totally equimodular matrix· Incidence ma-
trix

1 Introduction

Totally dual integral systems were introduced in the late 70’s and serve as a
general framework for establishing various min-max relations in combinatorial
optimization [22]. A rational system of linear inequalities Ax ≤ b is totally dual
integral (TDI) if the minimization problem in the linear programming duality
relation:

max{c⊤x : Ax ≤ b} = min{b⊤y : A⊤y = c, y ≥ 0}
⋆⋆ Corresponding author
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admits an integer optimal solution for each integer vector c such that the maxi-
mum is finite. As is well-known, such systems Ax ≤ b can be used to define every
integer polyhedron, with b integral [13].

A stronger property is the box-total dual integrality, where a system Ax ≤ b
is box-totally dual integral (box-TDI) if Ax ≤ b, ℓ ≤ x ≤ u is TDI for all rational
vectors ℓ and u (with possible infinite components). General properties of such
systems can be found in Cook [6] and Section 22.4 of Schrijver [22].

Box-TDI systems are intimately related to totally unimodular matrices. A
matrix is totally unimodular (TU) if every subset of linearly independent rows
forms a unimodular matrix, a matrix being unimodular if it has full row rank
and all its nonzero maximal minors have value ±1. A matrix A is TU if and only
if the system Ax ≤ b is box-TDI for each rational vector b [22, Page 318].

Until recently, the vast majority of known box-TDI systems were systems
associated with TU matrices. For instance, König’s Theorem [20] can be seen as
a consequence of the fact that the vertex-edge incidence matrix of a graph is TU
if and only if the graph is bipartite [16].

In the last two decades, several new box-TDI systems were exhibited. Chen,
Ding, and Zang [9] characterized box-Mengerian matroid ports. In [3], they pro-
vided a box-TDI system describing the 2-edge-connected spanning subgraph
polyhedron for series-parallel graphs. Ding, Tan, and Zang [10] characterized the
graphs for which the Edmonds system for defining the matching polytope [12],
which is always TDI as shown by Cunningam and Marsh [8], is box-TDI. Ding,
Zang, and Zhao [11] introduced new subclasses of box-perfect graphs. Cornaz,
Grappe, and Lacroix [7] provided several box-TDI systems in series-parallel
graphs. More recently, these graphs have also been characterized by the box-
TDIness of their flow cone [2] and that of their k-edge-connected polyhedron [1].
These last two results use characterizations of box-TDI polyhedra given by
Chervet, Grappe, and Robert [4].

As stated before, every integer polyhedron can be defined by a TDI system.
Yet, the statement no longer holds if we replace TDI by box-TDI. A polyhedron
that can be described by a box-TDI system is a box-TDI polyhedron, and every
TDI system describing it is actually box-TDI [6]. Box-TDI polyhedra character-
ize the following generalization of TU matrices. A matrix is totally equimodular
(TE) if every subset of linearly independent rows forms an equimodular matrix,
a matrix being equimodular if it has full row rank and all its nonzero maxi-
mal minors have the same absolute value. A matrix A is TE if and only if the
polyhedron {x : Ax ≤ b} is box-TDI for each rational vector b [4].

Several complexity results relative to TDIness and box-TDIness are known.
Deciding whether a system Ax ≤ b is TDI or whether it is box-TDI are two
co-NP-complete problems [9]. The first problem remains co-NP-complete even
for conic systems [21], that is, when b = 0. A tractable case for the recognition
of box-TDI systems is when A is TU, since total unimodularity can be tested in
polynomial time [23]. We continue along this line by providing two new hardness
results.
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Contributions. In this paper, we prove that the problem of deciding whether
a given polyhedron is box-TDI is co-NP-complete. Our proof builds upon the
hardness result of Ding et al. [9] about the recognition of box-TDI systems.

We also prove that the edge-vertex incidence matrix of any graph is TE.
This implies that the edge relaxation of the stable set problem is a box-TDI
polyhedron. From the NP-hardness of the maximum stable set problem, it follows
that optimizing a linear function over {x ∈ Zn : Ax ≤ 1} is NP-hard when A is
TE. Since the latter problem is polynomial when A is TU, this unveils a major
difference between TE and TU matrices. Moreover, this hardness result also
implies that integer optimization over box-TDI polyhedra is NP-hard.

Another difference between TE and TU matrices is that the transpose of
a TE matrix is not always TE. We highlight this fact by characterizing the
equimodularity and the total equimodularity of the vertex-edge incidence matrix
of a graph.

Outline. In Section 2, we provide the definitions and some results needed throu-
ghout the paper. In Section 3, we characterize the equimodularity and the total
equimodularity of the edge-vertex and of the vertex-edge incidence matrix of a
graph. Based on these results, in Section 4, we characterize the box-TDIness
of the stable set polytope and that of the edge cover dominant polyhedron of
a graph. As a consequence, we prove that Integer Programming over box-TDI
polyhedra is NP-complete and that recognizing whether a polyhedron is box-TDI
is co-NP-complete.

2 Preliminaries

2.1 Matrices and polyhedra

In a given matrix, a minor is the determinant of any square submatrix. When
the latter has maximal size, the associated minor is maximal.

Recall that an integer matrix is unimodular if it has full row rank and all its
nonzero maximal minors are ±1. More generally, a rational matrix is equimod-
ular if it has full row rank and all its nonzero maximal minors have the same
absolute value. As observed in [4], checking equimodularity can be done in poly-
nomial time. Indeed, equimodular matrices are TU up to a basis change, and
checking total unimodularity can be done in polynomial time [23].

A face of a polyhedron P = {x : Ax ≤ b} is the polyhedron obtained by
imposing equality on some inequalities in the description of P . A matrix M
is face-defining for a face F of P if it has full row rank and the affine space
generated by F can be written as {x : Mx = d} for some vector d of appropriate
size. These matrices characterize box-TDI polyhedra as follows.

Theorem 1 (Chervet et al. [4]). A polyhedron P is box-TDI if and only if
every face-defining matrix of P is equimodular.

In our proofs, we will use Theorem 1 combined with the following observation.
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Observation 2 (see, for instance, Chervet et al. [4]). A full row rank
matrix M is face-defining for a face F of a polyhedron P ⊆ Rn if and only if
there exist a vector d and a set H ⊆ F ∩ {x : Mx = d} of dim(F ) + 1 affinely
independent points such that |H| + rank(M) = n + 1.

Recall that a matrix is TE if every subset of linearly independent rows forms
an equimodular matrix. By Theorem 1, every polyhedron whose constraint ma-
trix is TE is box-TDI. It turns out that this characterizes TE matrices.

Theorem 3 (Chervet et al. [4]). A matrix A of Qm×n is totally equimodular
if and only if the polyhedron {x : Ax ≤ b} is box-TDI for all b ∈ Qm.

TE matrices are to box-TDI polyhedra what TU matrices are to box-TDI
systems.

Theorem 4 (Hoffman et al. [16]). A matrix A of Zm×n is totally unimodular
if and only if the system Ax ≤ b is box-TDI for all b ∈ Zm.

2.2 Matrices and graphs

In this paper, all graphs are undirected. Without loss of generality, we assume
that they are simple, connected, and have at least one edge, as our results extend
immediately to general undirected loopless graphs.

Let G = (V, E) be a graph. Given W ⊆ V , let δ(W ) (respectively E(W ))
be the set of edges with exactly one extremity (respectively both extremities)
in W . An edge uv is said to cover u and v. Given F ⊆ E, V (F ) is the union
of the vertices covered by each edge of F . A graph G′ = (V ′, E′) is a subgraph
of G if E′ ⊆ E and V ′ = V (E′). A subgraph G′ ⊆ G is a spanning subgraph
of G if V ′ = V . The degree of a vertex v of G is the number of edges of G
covering v and is denoted by dG(v). A set of edges C ⊆ E is a circuit if the
subgraph (V (C), C) is connected and all its vertices have degree 2. A hole is a
circuit for which E(V (C)) = C 4. An odd circuit is a circuit with an odd number
of edges, similarly, an odd hole is a hole with an odd number of edges. A graph
is bipartite if it does not contain any odd circuit. A perfect matching of a graph
is a set of pairwise nonadjacent edges covering all the vertices.

Let AG denote the edge-vertex incidence matrix of G, that is the matrix whose
rows are the characteristic vectors of the edges of G, where the characteristic
vector of an edge e = uv is the vector χe ∈ {0, 1}V with χe

w = 1 if w ∈ {u, v}
and χu

w = 0 otherwise. Similarly, A⊤
G is the vertex-edge incidence matrix. When a

result applies to both the edge-vertex and the vertex-edge incidence matrices, we
simply write incidence matrix. For F ⊆ E, let AF be the edge-vertex incidence
matrix of the graph (V (F ), F ). The characteristic vector of a vertex u is the
vector χu ∈ {0, 1}V with χu

w = 1 if w = u and χu
w = 0 otherwise.

Odd circuits are involved in the value of the determinants of incidence matri-
ces.
4 In this paper, triangles are considered holes.
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Theorem 5 (Grossman et al. [14]). For a connected graph G with n vertices
and n edges, | det(AG)| is equal to 0 if G is bipartite, and 2 otherwise.

Theorem 5 comes from the fact that since G is connected, it has exactly one
circuit, and then the value of the determinant of its incidence matrix depends on
the parity of that circuit. Theorem 5 can be used to deduce a well-known result
characterizing bipartite graphs, generally referred to as Hoffman and Kruskal’s
Theorem [16].
Theorem 6 (Hoffman et al. [16]). The incidence matrix of a graph is totally
unimodular if and only if the graph is bipartite.

In our proofs, we will use the following lemma to show that a matrix is not
equimodular.
Lemma 7. For an odd circuit C, and for every u ∈ V (C), the matrix

[
A⊤

C , χu
]

has full row rank but is not equimodular.

Proof. Reordering the rows and the columns of
[
A⊤

C , χu
]
, we may assume that

the matrix is as follows. 

1 1
1 1

. . . . . .
1 1

1 1 1


︸ ︷︷ ︸

A⊤
C

︸︷︷︸
χu

Since C is an odd circuit, | det(A⊤
C)| = 2, hence

[
A⊤, χu

]
has full row

rank. Moreover, the last |C| columns form a lower triangular matrix with 1s
on the main diagonal, thus they have determinant 1. Therefore, the matrix is
not equimodular. ⊓⊔

The definition of bipartite graphs can be generalized as follows. A graph G is
quasi-bipartite if for each odd circuit C of G, the graph G\V (C) has at least one
isolated vertex. These graphs characterize the box-TDIness of the system given
in the following theorem, where K4 denotes the complete graph with 4 vertices.
Theorem 8 (Ding et al. [9]). Given a connected graph G, the system A⊤

Gx ≥
1, x ≥ 0 is box-TDI if and only if G is a quasi-bipartite graph different from K4.

3 Incidence matrices and total equimodularity

In this section, we characterize when the incidence matrix of a graph is TE. Since
total equimodularity is not preserved under taking the transpose, this section is
divided into two parts: edge-vertex incidence matrices and vertex-edge incidence
matrices.
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3.1 Edge-vertex incidence matrices

Recall that the edge-vertex incidence matrix of a graph is TU if and only if
the graph is bipartite. This extends to all graphs as follows in the more general
context of total equimodularity.

Theorem 9. The edge-vertex incidence matrix of a graph is totally equimodular.

Proof. Let G = (V, E) be a graph and let M be a full row rank matrix formed by
a subset of k rows of the edge-vertex incidence matrix of G. Let us prove that M
is equimodular by induction on its number of rows: the base case is when M has
one row, and then M is equimodular since a row has only values in {0, 1}. The
matrix M encodes a subgraph H = (V, F ) of G with k = |F | edges.

We have |V (F )| ≥ |F |, as otherwise M would have too many columns of zeros
to have full row rank. If |V (F )| = |F |, then M has exactly one k × k submatrix
which is nonsingular, hence M is equimodular. If |V (F )| > |F |, then H has a
vertex u of degree one. Indeed, if every vertex of V (F ) had degree at least two
we would have 2|F | =

∑
w∈V (F )

dH(w) ≥ 2|V (F )|, a contradiction.

The column of u in M contains a single one, in uv’s row, where v is the
neighbor of u in H. Let M ′ be the matrix obtained from M by removing uv’s row.
Note that M ′ has full row rank since M has it. A nonsingular k ×k submatrix N
of M has to contain at least one of u and v, as otherwise it has only zeros
in uv’s row. When N contains exactly one of them, then develop, by using
the cofactor expansion, with respect to uv’s row. When N contains both of
them, then develop, as before, with respect to u’s column. In both cases, the
determinant of N is equal to a maximal minor of M ′, up to the sign. By the
induction hypothesis, M ′ is equimodular, so all these determinants are equal in
absolute value. Therefore, so are the nonzero k × k determinants of M , and M
is equimodular. ⊓⊔

In [14], the authors proved that the problem of determining the maximum
absolute value of a minor of a given incidence matrix is NP-hard. Hence, Theo-
rem 9 implies the following.

Corollary 10. Determining the maximum absolute value of a minor of a totally
equimodular matrix is NP-hard.

3.2 Vertex-edge incidence matrices

In contrast to edge-vertex incidence matrices, vertex-edge incidence matrices of
graphs are rarely TE. We characterize below the classes of graphs for which they
are. We also characterize when these matrices are equimodular. Note that when
the graph G is bipartite the incidence matrix of G does not have full row rank
by Theorem 5. Otherwise, the determinant of a square incidence matrix is 2k,
where k ≥ 1 is the number of vertex-disjoint odd circuits [14]. Therefore, to get
an equimodular vertex-edge incidence matrix, one should forbid vertex-disjoint
odd circuits. It turns out that it is an equivalence, as proved below.



Hard Problems in box-TDI polyhedra 7

Theorem 11. The vertex-edge incidence matrix of a connected nonbipartite
graph G = (V, E) is equimodular if and only if G has no pair of vertex-disjoint
odd circuits.

Proof. Note that every maximal square submatrix of a vertex-edge incidence
matrix induces a spanning subgraph of G having |V | edges. Since a spanning
tree of G has |V | − 1 edges, this subgraph contains a circuit.

(⇒) Suppose that G has two vertex-disjoint odd circuits C1 and C2, and let e1
and e2 be edges of C1 and C2, respectively. Since G is connected, there exists a
spanning tree T of G containing C1 ∪ C2 \ {e1, e2}. Since C1 and C2 are vertex-
disjoint, there exists an edge e of T whose removal splits T into two trees T1 and
T2 with C1 \ {e1} ⊆ T1 and C2 \ {e2} ⊆ T2.

By Theorem 5, | det(A⊤
Ti∪{ei})| = | det(A⊤

T ∪{ei})| = 2, for i = 1, 2. By
construction, | det(A⊤

T ∪{e1,e2}\{e})| = | det(A⊤
T1∪{e1}) det(A⊤

T2∪{e2})| = 4. The
determinants of the maximal nonsingular square submatrices A⊤

T ∪{e1,e2}\{e} and
A⊤

T ∪{e1} of A⊤
G differ in absolute value, thus A⊤

G is not equimodular.

(⇐) Suppose that G is not bipartite and has no two vertex-disjoint odd circuits.
Note that since G is connected, it contains a nonbipartite connected spanning
subgraph H with |V | edges. By Theorem 5, we have | det(A⊤

H)| = 2 and A⊤
G has

full row rank. This holds for every nonbipartite connected spanning subgraph
with |V | edges. The other spanning subgraphs of G with |V | edges are either
connected and bipartite or a product of smaller minors corresponding to connec-
ted subgraphs. In the first case, the associated minor is zero by Theorem 5. In
the second case, by Theorem 5 and the fact that G has no two vertex-disjoint
odd circuits, one of these smaller minors is zero. Therefore, every maximal minor
of A⊤

G belongs to {−2, 0, 2}, and A⊤
G is equimodular. ⊓⊔

Theorem 11 gives a characterization of graphs having two vertex-disjoint
odd circuits in terms of total equimodularity. A graph-theoretic characterization
of these graphs was given by Lovász — see [24, page 546], or [18] for a proof
without matroid decomposition. They also appear in the context of extended
formulations [5] and unimodular covers [15]. In particular, since equimodularity
can be tested in polynomial time [4, Section 4.1], Theorem 11 provides another
polynomial-time algorithm for their recognition [19].

Theorem 12. The vertex-edge incidence matrix of a connected graph G = (V, E)
is totally equimodular if and only if G is an odd hole or a bipartite graph.

Proof. (⇒) Suppose that G is neither bipartite nor an odd hole. Then, G contains
an odd hole C and two edges uv and uw in C and δ(V (C)), respectively.

The submatrix of A⊤
G restricted to the rows associated with V (C) can be

reordered such that the first |C| + 1 columns form the matrix
[
AC , χu

]
. By

Lemma 7, it has full row rank but is not equimodular. This implies that A⊤
G is

not TE.
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(⇐) If G is bipartite, then A⊤
G is TU by Theorem 6, and hence TE. Now, if G

is an odd hole, then A⊤
G is also the edge-vertex incidence matrix of an odd hole,

and hence is TE by Theorem 9. ⊓⊔

By Theorem 12, deciding whether a vertex-edge incidence matrix is TE can
be done in polynomial time. This might be a first step towards the complexity
of recognizing TE matrices, which is an open problem raised in [4].

4 Box-TDIness and complexity consequences

In this section, we provide several complexity results based on the characteri-
zation of total equimodularity of incidence matrices devised in the previous sec-
tion.

4.1 Edge relaxation of the stable set polytope

Given a graph G = (V, E), a stable set is a set of pairwise nonadjacent vertices.
The polytope {x ∈ RV : AGx ≤ 1, x ≥ 0} is called the edge relaxation of the
stable set polytope of G and its integer points are precisely the characteristic
vectors of the stable sets of G.

By Theorems 3 and 9, every polyhedron of the form {x ∈ RV : AGx ≤ b}
with b rational is box-TDI. As adding x ≥ 0 preserves box-TDIness, we have the
following.

Corollary 13. The edge relaxation of the stable set polytope is box-TDI.

Since finding a maximum stable set in a given graph is NP-hard [17], Corolla-
ry 13 implies that integer programming over a box-TDI polyhedron is NP-hard.

Corollary 14. Given a box-TDI polyhedron P and a cost vector c, finding an
integer point x maximizing c⊤x over P is NP-hard.

4.2 Edge relaxation of the edge cover dominant

Since multiplying a row by −1 preserves total equimodularity, by Theorems 3
and 12, when G is an odd hole or a bipartite graph, the polyhedron {x ∈
RE : A⊤

Gx ≥ 1} is box-TDI. It turns out that the converse holds.

Theorem 15. Given a connected graph G = (V, E), the polyhedron {x ∈ RE :
A⊤

Gx ≥ 1} is box-TDI if and only if G is an odd hole or a bipartite graph.

Proof. To prove the reverse direction, suppose that G is neither an odd hole
nor a bipartite graph. Let us build a subgraph H = (V, F ) of G for which the
polytope is not box-TDI. Since {x ∈ RF : A⊤

Hx ≥ 1} is the projection onto F of
{x ∈ RE : A⊤

Gx ≥ 1} intersected with {x ∈ RE : xe = 0, for all e ∈ E \ F}, this
will imply that {x ∈ RE : A⊤

Gx ≥ 1} is not box-TDI.
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Since G is connected, nonbipartite, and different from an odd hole, it contains
an odd hole C with δ(V (C)) nonempty. Denote by U the set of vertices of
V \ V (C) whose neighbors are all in V (C). Let S be a subset of δ(U) such that
each vertex of U is covered by exactly one edge of S. Let F = (E \ δ(U)) ∪ S,
and let H = (V, F ). This graph is obtained from G by deleting edges in δ(U) so
that every vertex of U has exactly one neighbor in C.

Let M be the |V (C)| × |F | matrix formed by the rows of A⊤
H associated with

the vertices of V (C). By considering the columns of M associated to C and an
edge of δ(V (C)), observe that M contains a matrix of the type

[
A⊤

C , χu
]

for some
u ∈ V (C). Therefore, by Lemma 7, M has full row rank but is not equimodular.

We now show that M is face-defining for P = {x ∈ RF : A⊤
Hx ≥ 1}. Since

M has full row rank, by Observation 2 it is sufficient to exhibit |F | − |V (C)| + 1
affinely independent points of the face Q = P ∩ {x : Mx = 1} of P . Let K =
F \ (C ∪ δ(V (C)), we define:

p0 = 1
2χC + χS∪K + 1

2
∑

u∈V (C)

|δ(u) ∩ S|(χLu − χC\Lu),

where Lu is the unique perfect matching of the path C \ δ(u). Then, we define
two types of points:

• pe = p0 + χe, for each e ∈ K,
• quv = p0 + χuv + 1

2(χLu − χC\Lu), for each uv ∈ δ(V (C)) with u ∈ V (C).

Together with p0, the points p are affinely independent because pe −p0 = χe,
for each e in K. Adding the points q maintains affine independence since quv is
the only point with uv’s coordinate different from 1.

Moreover, all these points belong to Q since they satisfy x(δ(u)) = 1 for all
u ∈ V (C) and x(δ(v)) ≥ 1 for all v ∈ V \ V (C). To see this, note that for each u
in V (C), χLu − χC\Lu satisfies x(δ(u)) = −2 and x(δ(v)) = 0 for all v ̸= u. The
number of points p is |K| + 1 = |F | − |V (C)| − |δ(V (C))| + 1 and the number of
points q is |δ(V (C))|, hence M is face-defining for F .

The matrix M is nonequimodular and face-defining for {x ∈ RF : A⊤
Hx ≥

1}. Therefore, the latter is not box-TDI by Theorem 1, and neither is {x ∈
RE : A⊤

Gx ≥ 1}. ⊓⊔

Given a graph G = (V, E), an edge cover is a set of edges covering each vertex.
The polyhedron {x ∈ RE : A⊤

Gx ≥ 1, x ≥ 0} is called the edge relaxation of the
edge cover dominant of G and its binary points are precisely the characteristic
vectors of the edge covers of G.

Since adding box constraints preserves box-TDIness, by Theorem 15, the
edge relaxation of the edge cover dominant of an odd hole or a bipartite graph
is box-TDI. The converse does not hold, because adding x ≥ 0 might cut off
faces defined by nonequimodular matrices, such as the one given in the proof of
Theorem 15. The larger class of graphs to be considered to get the converse is
given in Theorem 16 below.
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The parallel between Theorem 8 and Theorem 16 highlights once more the
subtle difference between the TDIness of a system and that of a polyhedron.
In particular, for an odd hole Cn, the system A⊤

Cn
x ≥ 1, x ≥ 0 is not box-TDI

while the associated polyhedron is box-TDI. This means that this system is not
TDI. This can be seen as the right-hand side is integer but, since n is odd, the
point 1

2 1 is a noninteger vertex of the associated polyhedron. A box-TDI system
describing this polyhedron is obtained by adding the inequality 1⊤x ≥ |C|

2 , which
is one half of the sum of every inequality in A⊤

Cn
x ≥ 1.

Theorem 16. The edge relaxation of the edge cover dominant of a connected
graph G is box-TDI if and only if G is an odd hole or a quasi-bipartite graph
different from K4.

Proof. Let PG denote the edge relaxation of the edge cover dominant of G.
(⇐) By Theorem 8, if G is a quasi-bipartite graph different from K4, then the
system A⊤

Gx ≥ 1, x ≥ 0 is box-TDI, hence PG is box-TDI.
If G is an odd hole, PG is the intersection of the polyhedron stated in Theo-

rem 15 with the box {x : x ≥ 0}. Theorem 15 and the definition of box-TDI
polyhedra imply that PG is box-TDI.
(⇒) Let us show that PK4 is not box-TDI. By definition, PK4 = {x : A⊤

K4
x ≥

1, x ≥ 0}, where

A⊤
K4

=


1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

 .

The full row rank matrix formed by the last three rows of A⊤
K4

, say B, is not
equimodular because the determinant of the first three columns is 1, whereas
that of the last three is 2. Moreover, the four points z1 = (1, 0, 0, 0, 0, 1)⊤, z2 =
(0, 1, 0, 0, 1, 0)⊤, z3 = (0, 0, 1, 1, 0, 0)⊤ and z4 = (1, 1, 1, 0, 0, 0)⊤ belong to PG,
satisfy Bx = 1, and are affinely independent. Therefore, by Observation 2, B is a
face-defining matrix of PK4 . This implies that PK4 is not box-TDI by Theorem 1.

To complete the proof there remains to show that PG is not box-TDI when
G is neither quasi-bipartite nor an odd hole. In this case, there exists an odd
circuit C such that G \ V (C) is nonempty and has no isolated vertices. If C has
a chord e, then C ∪ {e} contains a smaller odd circuit C ′. Since C \ C ′ is a path
of length at least two, G \ V (C ′) has no isolated vertices. Therefore, we may
assume that C is an odd hole.

Let M be the submatrix of A⊤
G formed by the rows associated with the

vertices of V (C). By construction, δ(V (C)) is nonempty, hence M contains[
A⊤

C , χu
]
, for some u ∈ V (C). By Lemma 7, M is not equimodular.

We show that M is face-defining for PG. Since M has full row rank, by
Observation 2 it is sufficient to exhibit |E| − |V (C)| + 1 affinely independent
points of the face F = PG ∩ {x : Mx = 1} of PG. We exhibit the same points as
in the proof of Theorem 15, the difference is that, here, the set U is empty since
there are no isolated vertices when removing V (C):
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• p0 = 1
2 χC + χK ,

• pe = p0 + χe, for each e ∈ K,
• quv = χuv + χLu + χK , for each uv ∈ δ(V (C)) with u ∈ V (C).

As shown in the proof of Theorem 15, these points are affinely independent
and satisfy A⊤

Gx ≥ 1, Mx = 1. Since these points also satisfy x ≥ 0, they
belong to the face PG ∩ {x : Mx = 1} for which M is a face-defining matrix. By
Theorem 1, PG is not box-TDI. ⊓⊔

Theorem 16 implies that recognizing box-TDI polyhedra is co-NP-complete
since recognizing quasi-bipartite graphs is [9].

Corollary 17. Recognizing box-TDI polyhedra is co-NP-complete.

Conclusion

In this paper, we provide two hardness results regarding box-TDI polyhedra, and
their proofs are based on the exhibition of new classes of binary TE matrices. A
natural subsequent question is the characterization of binary TE matrices, and
further that of {0, 1, −1} TE matrices.
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