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Abstract

We introduce the reverse Chvátal-Gomory rank r∗(P ) of an integral
polyhedron P , defined as the supremum of the Chvátal-Gomory ranks
of all rational polyhedra whose integer hull is P . A well-known exam-
ple in dimension two shows that there exist integral polytopes P with
r∗(P ) = +∞. We provide a geometric characterization of polyhedra with
this property in every dimension, and investigate upper bounds on r∗(P )
when this value is finite.

Key words. Chvátal-Gomory closure, Chvátal rank, cutting plane, inte-
gral polyhedron
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1 Introduction

A polyhedron is integral if it is the convex hull of its integer points. Given
an integral polyhedron P ⊆ Rn, a relaxation of P is a rational polyhedron
Q ⊆ Rn such that Q ∩ Zn = P ∩ Zn. Note that if Q is a relaxation of P ,
then P = conv(Q ∩ Zn), i.e., P is the integer hull of Q, where we denote the
convex hull of a set S by conv(S) (for the definition of convex hull and other
standard preliminary notions not given in here, we refer the reader to textbooks,
e.g. [14] and [25]). An inequality cx ≤ ⌊δ⌋ is a Chvátal–Gomory inequality (CG
inequality for short) for a polyhedron Q ⊆ Rn if c is an integer vector and cx ≤ δ
is valid for Q. Note that cx ≤ ⌊δ⌋ is a valid inequality for Q ∩ Zn. The CG
closure Q′ of Q is the set of points in Q that satisfy all the CG inequalities for Q.
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If Q is a rational polyhedron, then Q′ is again a rational polyhedron [24]. For
p ∈ N, the p-th CG closure Q(p) of Q is defined iteratively as Q(p) = (Q(p−1))′,
with Q(0) = Q. If Q is a rational polyhedron, then there exists some p ∈ N such
that Q(p) = conv(Q ∩ Zn) [24]. The minimum p for which this occurs is called
the CG rank of Q and is denoted by r(Q).

Cutting plane procedures in general and CG inequalities in particular are
of crucial importance to the integer programming community, because of their
convergence properties (see e.g. [13, 25]) and relevance in practical applications
(see e.g. [16]). Hence, a theoretical understanding of their features has been the
goal of several papers from the literature. Many of them aimed at giving upper
or lower bounds on the CG rank for some families of polyhedra. For instance,
Bockmayr et al. [5] proved that the CG rank of a polytope Q ⊆ [0, 1]n is at most
O(n3 log n). The bound was later improved to O(n2 log n) by Eisenbrand and
Schulz [11]. Recently, Rothvoß and Sanità [23], improving over earlier results
of Eisenbrand and Schulz [11] and Pokutta and Stauffer [22], showed that this
bound is almost tight, as there are polytopes in the unit cube whose CG rank is
at least Ω(n2). An upper bound on the CG rank for polytopes contained in the
cube [0, ℓ]n for an arbitrary given ℓ was provided by Li [19]. Recently, Averkov
et al. [1] studied the rate of convergence – in terms of number of iterations of
the CG closure operator – of the affine hull of a rational polyhedron to the
affine hull of its integer hull.

Our contribution. In this paper we investigate a question that is, in a
sense, reverse to that of giving bounds on the CG rank for a fixed polyhedron
Q. In fact, in most applications, even if we do not have a complete linear
description of the integer hull P , we know many of its properties: for instance,
the integer points of most polyhedra stemming from combinatorial optimization
problems have 0-1 coordinates. Hence, for a fixed integral polyhedron P , we
may want to know how “bad” a relaxation of P can be in terms of its CG rank.
More formally, we want to answer the following question: given an integral
polyhedron P , what is the supremum of r(Q) over all rational polyhedra Q
whose integer hull is P? We call this number the reverse CG rank of P and
denote it by r∗(P ):

r∗(P ) = sup{r(Q) : Q is a relaxation of P}.

Note that r∗(P ) < +∞ if and only if there exists p ∈ N such that r(Q) ≤ p for
every relaxation Q of P . Our main result gives a geometric characterization of
those integral polyhedra P for which r∗(P ) = +∞. Recall that the recession
cone of a polyhedron P is the set of vectors v such that x + αv ∈ P for each
x ∈ P and α ∈ R+. Denoting by rec(P ) the recession cone of P , by 〈v〉 the line
generated by a non-zero vector v, and by + the Minkowski sum of two sets, we
prove the following:

Theorem 1 Let P ⊆ Rn be an integral polyhedron. Then r∗(P ) = +∞ if and
only if P is non-empty and there exists v ∈ Zn \ rec(P ) such that P + 〈v〉 does
not contain any integer point in its relative interior.
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Theorem 1 can also be interpreted in terms of proof systems for integer
programming. As the CG procedure always terminates in finite time, CG cuts
provide one such proof system. One of the main aims of this research area
is to understand what are the “obstacles” on the way to determination of the
integer hull using those proof systems (see e.g. [4, 10]). In our context, this boils
down to highlighting the features of a given integral polyhedron which make it
difficult to be “proved” using CG cuts. Theorem 1 gives an exact description
of those obstacles, characterizing when the finiteness of the CG procedure is
an intrinsic property of the integer hull rather than a property of one of its
infinitely-many relaxations.

Let us illustrate Theorem 1 with an example in dimension two. Let P =
conv{(0, 0), (0, 1)}, and consider the family {Qt}t∈N of relaxations of P , where
we define Qt = conv{(0, 0), (0, 1), (t, 1/2)}. It is folklore that the CG rank of
Qt increases linearly with t (see Figure 1). This implies that r∗(P ) = +∞.
Note that if one chooses v = (1, 0), then P + 〈v〉 does not contain any integer
point in its (relative) interior. A simple application of Theorem 1 shows that
the previous example can be generalized to every dimension: any 0-1 polytope
P ⊆ Rn, n ≥ 2, whose dimension is at least 1, has infinite reverse CG rank, since
there always exists a vector v parallel to one of the axis such that P + 〈v〉 does
not contain any integer point in its relative interior. On the other hand, every
integral polyhedron containing an integer point in its relative interior (e.g. one
with full-dimensional recession cone) has finite reverse CG rank, as no vector
v satisfying the condition of Theorem 1 exists in this case. However, there are
also integral polyhedra with finite reverse CG rank that do not contain integer
points in their interior, such as conv{(0, 0), (2, 0), (0, 2)} ⊆ R2.

We then show that for a wide class of polyhedra with finite reverse CG rank,
r∗ can be upper bounded by functions depending only on parameters such as
the dimension of the space and the number of the integer points in the relative
interior of P . Moreover, we give examples showing that r∗ of those polyhedra
grows with those parameters.

Last, we investigate some algorithmic issues. In particular, we show that
the problem “does an integral polyhedron P have finite reverse CG rank?” can
be decided in finite time, and in polynomial time if the dimension is fixed.

Results of this paper are proved combining classical tools from cutting plane
theory (e.g. the lower bound on the CG rank of a polyhedron by Chvátal, Cook,
and Hartmann [6], see Lemma 4) with geometric techniques that are not usually
applied to the theory of CG cuts, mostly from geometry of numbers (such as the
characterization of maximal lattice-free convex sets [3], or Minkowski’s Convex
Body Theorem).

The paper is organized as follows. In Section 2, we settle notation and
definitions, and state some known and new auxiliary lemmas needed in the rest
of the paper. In Section 3, we prove the main result of the paper, that is the
geometric characterization of integral polyhedra with infinite reverse CG rank
(Theorem 1). In Section 4, we focus on two classes of polyhedra with finite
reverse CG rank and investigate upper bounds on r∗ for those classes. Section
5 is devote to algorithmic issues. We conclude with Section 6, where some
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Figure 1: In increasingly lighter shades of grey, polytopes Q1, Q2, and Q3.

extensions of the concept of reverse CG rank are examined.

2 Definitions and tools

Throughout the paper, n will be a strictly positive integer denoting the dimen-
sion of the ambient space. Given a set S ⊆ Rn, we denote by int.cone(S) the set
of all linear combinations of vectors in S using nonnegative integer multipliers.
Given a closed, convex set C ⊆ Rn, the affine hull of C, denoted aff(C), is
the smallest affine subspace containing C. The dimension of C is the dimen-
sion of aff(C). C is full-dimensional if its dimension is n. We also denote by
bd(C) the boundary of C, by CI the integer hull of C, by int(C) the interior
of C, by relint(C) the relative interior of C. We say that C is lattice-free if
int(C) ∩ Zn = ∅, and relatively lattice-free if relint(C) ∩ Zn = ∅. Note that the
relative interior of a single point in Rn is the point itself. Hence, if it is integer,
then it is not relatively lattice-free. Also, note that if C is not lattice-free, then
it is full-dimensional. A convex body is a closed, convex, bounded set with non-
empty interior. A set C is centrally symmetric with respect to a given point
x ∈ C (or centered at x) when, for every y ∈ Rn, one has x+ y ∈ C if and only
if x− y ∈ C.

By distance between two points x, y ∈ Rn (resp. a point x ∈ Rn and a set
S ⊆ Rn) we mean the Euclidean distance, which we denote by d(x, y) (resp.
d(x, S)). We use the standard notation ‖·‖ for the Euclidean norm. For r ∈ Q+,
x ∈ Rn and an affine subspace H ⊆ Rn of dimension d, the d-ball (of radius r
lying on H and centered at x) is the set of points lying on H whose distance
from x is at most r. When referring to the volume of a d-dimensional convex set
C, denoted vol(C), we shall always mean its d-dimensional volume, that is, the
Lebesgue measure with respect to the affine subspace aff(C) of the Euclidean
space Rn.

Bounds on the CG rank

We give here upper and lower bounds on the CG rank of polyhedra. The proof
of the following two results can be found in [8] and [1] respectively.

Lemma 2 Each rational polyhedron Q ⊆ Rn with QI = ∅ has CG rank at most
ϕ(n), where ϕ is a function depending on n only.
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Lemma 3 For every polyhedron Q ⊆ Rn and for every a ∈ Zn and δ, δ′ ∈ R

(with δ′ ≥ δ) such that ax ≤ δ is valid for QI and ax ≤ δ′ is valid for Q, the
inequality ax ≤ δ is valid for Q(p+1), where p = (⌊δ′⌋ − ⌊δ⌋)f(n) and f is a
function depending on n only.

In order to derive lower bounds, one can apply a result by Chvátal, Cook,
and Hartmann [6] that gives sufficient conditions for a sequence of points to be
in successive CG closures of a rational polyhedron. The one we provide next is
a less general, albeit sufficient for our needs, version of their original lemma.

Lemma 4 Let Q ⊆ Rn be a rational polyhedron, x ∈ Q, v ∈ Rn, p ∈ N and,
for j ∈ {1, . . . , p}, let xj = x − j · v. Assume that, for all j ∈ {1, . . . , p} and
every inequality cx ≤ δ valid for QI with c ∈ Zn and cv < 1, one has cxj ≤ δ.
Then xj ∈ Q(j) for all j ∈ {1, . . . , p}.

As a corollary, we have the following result:

Lemma 5 Let Q ⊆ Rn be a rational polyhedron, x ∈ Q, and v ∈ Zn be such
that {x − tv : t ≥ 0} ∩ QI 6= ∅. Let t̄ = min{t ≥ 0 : x − tv ∈ QI}. Then
r(Q) ≥ ⌈ t̄ ⌉.

Proof. The lemma is trivially true if t̄ ∈ [0, 1], so suppose t̄ > 1. By hypothesis,
there exists a point x′ ∈ QI such that x = x′ + t̄v. We apply Lemma 4 with
p = ⌈ t̄ ⌉− 1. Let cx ≤ δ be valid for QI , with c integer. If cv < 1, then cv ≤ 0,
since c and v are integer. Then for j = 1, . . . , ⌈ t̄ ⌉ − 1, one has

cxj = c(x− j · v) = c(x′ + (t̄− j) · v) = cx′ + (t̄− j)cv ≤ δ,

where the inequality follows from x′ ∈ QI , cv ≤ 0, t̄ − j > 0. Hence the
hypothesis of Lemma 4 holds. We conclude x⌈ t̄ ⌉−1 ∈ Q(⌈ t̄ ⌉−1). Since by
construction x⌈ t̄ ⌉−1 /∈ QI , the statement follows. ✷

Unimodular transformations

A unimodular transformation u : Rn → Rn maps a point x ∈ Rn to u(x) =
Ux+v, where U is an n×n unimodular matrix (i.e. a square integer matrix with
|det(U)| = 1) and v ∈ Zn. It is well-known (see e.g. [25]) that a nonsingular
matrix U is unimodular if and only if so is U−1. Furthermore, a unimodular
transformation is a bijection of both Rn and Zn that preserves n-dimensional
volumes. Moreover, the following holds ([11]).

Lemma 6 Let Q ⊆ Rn be a polyhedron and u : Rn → Rn, u(x) = Ux+ v, be a
unimodular transformation. Then for each t ∈ N, an inequality cx ≤ δ is valid
for Q(t) if and only if the inequality cU−1x ≤ δ + cU−1v is valid for u(Q)(t).
Moreover, the CG rank of Q equals the CG rank of u(Q).

Thanks to the previous lemma, when investigating the CG rank of a d-
dimensional rational polyhedron Q ⊆ Rn with Q ∩ Zn 6= ∅, we can apply a
suitable unimodular transformation and assume that the affine hull of Q is the
rational subspace {x ∈ Rn : xd+1 = xd+2 = · · · = xn = 0}.
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3 Geometric characterization of integral polyhedra

with infinite reverse CG rank

In this section we prove Theorem 1. Since it is already known that, when P is
empty, r∗(P ) < +∞ (see Lemma 2), we assume P 6= ∅.

Observation 7 Let C ⊆ Rn be a convex set and v ∈ Rn. Then relint(C)+〈v〉 =
relint(C + 〈v〉).

Observation 8 Let C ⊆ Rn be a convex set contained in a rational hyperplane
such that aff(C) ∩ Zn 6= ∅. Then C is relatively lattice-free if and only if there
exists v ∈ Zn \ rec(C) such that C + 〈v〉 is relatively lattice-free.

Proof. Since C is contained in a rational hyperplane and aff(C) ∩ Zn 6= ∅, up
to unimodular transformations we may assume that C ⊆ Rn−1 × {0}. If C is
relatively lattice-free, then it is easy to verify that the vector en of the standard
basis of Rn is such that en ∈ Zn \ rec(C) and C + 〈en〉 is relatively lattice-
free. Conversely, assume that there exists v ∈ Zn \ rec(C) such that C + 〈v〉 is
relatively lattice-free. Clearly relint(C) ⊆ relint(C + 〈v〉), thus C is relatively
lattice-free. ✷

3.1 Proof of Theorem 1: Sufficiency

Let P ⊆ Rn be a non-empty integral polyhedron and assume that P + 〈v〉 is
relatively lattice-free for some v ∈ Zn \rec(P ): we prove that r∗(P ) = +∞. Let
x̄ ∈ Rn be a point in the relative interior of P such that x̄ + v /∈ P , and V be
the set of vertices of P . For α ∈ Z+, define Qα = conv(V, x̄+αv)+ rec(P ). Qα

is a polyhedron and it contains P . In order to prove that it is a relaxation of
P , it suffices to show that Qα ∩ Zn = P ∩ Zn. x̄+ αv ∈ relint(P ) + 〈v〉 hence,
by Observation 7, x̄+αv ∈ relint(P + 〈v〉). Thus, for each x ∈ Qα, at least one
of the following holds: x lies in P ; x lies in the relative interior of P + 〈v〉, and
since P +〈v〉 is relatively lattice-free by hypothesis, x is not integer. This shows
Qα ∩ Zn = P ∩ Zn. We now apply Lemma 5 with Q = Qα and x = x̄ + αv;
note that ⌈ t̄ ⌉ = α. Hence, we deduce that r(Qα) ≥ α. The thesis then follows
from the fact that α was chosen arbitrarily in Z+.

3.2 Proof of Theorem 1: Necessity

First, we show that the non-full-dimensional case follows from the full-dimensional
one. More precisely, assuming that the statement holds for any full-dimensional
polyhedron, we let P ⊆ Rn be a non-empty integral polyhedron of dimension
d < n so that there is no v ∈ Zn\rec(P ) such that P+〈v〉 is relatively lattice-free,
and we show that r∗(P ) < +∞. Hence, let P be as above. Up to a unimodular
transformation, we can assume that aff(P ) = {x ∈ Rn : xd+1 = xd+2 = · · · =
xn = 0}. Observation 8 implies that P is not relatively lattice-free. We then
make use of the following fact [1, Theorem 1].
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Theorem 9 There exists a function f : N → N such that, for each integral
polyhedron P ⊆ Rn that is not relatively lattice-free, and each relaxation Q of
P , Q(f(n)) is contained in aff(P ).

By Theorem 9, there is an integer p depending only on n such that, for each
relaxation Q of P , Q(p) ⊆ aff(P ), i.e., modulo at most p iterations of the CG
closure, we can assume that both P and Q are full-dimensional, and P is not
lattice-free. Hence, P + 〈v〉 is not lattice-free for any v ∈ Zd, and r∗(P ) < +∞
follows from the full-dimensional case.

Therefore it suffices to show the statement for P full-dimensional. In fact,
we show a stronger property, that will be useful later. Let Ax ≤ b be an
irredundant description of P , with A ∈ Zm×n and b ∈ Zm. For k ∈ N, let
Pk = {x ∈ Rn : Ax ≤ b + k · 1}, where 1 denotes the m-dimensional all-one
vector.

Proposition 10 Let P ⊆ Rn be a full-dimensional integral polyhedron, and
Ax ≤ b an irredundant description of P , with A ∈ Zm×n and b ∈ Zm. Then the
following statements are equivalent.

(1) r∗(P ) = +∞;

(2) for each k ∈ N, there exists a relaxation Qk of P such that Qk \ Pk 6= ∅;

(3) there exists v ∈ Zn \ rec(P ) such that P + 〈v〉 is lattice-free.

Proof. (3) ⇒ (1) follows from the sufficiency implication of Theorem 1, which
we proved in Section 3.1. In order to show (1) ⇒ (2), suppose to the contrary
that there exists some k ∈ N such that Q ⊆ Pk for each relaxation Q of P .
Fix any such relaxation Q. Then, for each inequality ax ≤ β from the system
Ax ≤ b that defines P , ax ≤ β + k is valid for Q. Hence, by Lemma 3, ax ≤ β
is valid for Q(p), with p = kf(n) + 1 and f being an appropriate function of n
only. This implies that all valid inequalities for P are also valid for Q(p), and
consequently Q(p) = P . Since Q was taken to be an arbitrary relaxation of P ,
this implies r∗(P ) < +∞, contradicting the assumptions.

We are left to prove (2) ⇒ (3). This is divided into the following steps:
(a) We construct a candidate vector v /∈ rec(P ); (b) We show that P + 〈v〉 is
lattice-free; (c) We show that v can be assumed wlog to be integral.

(a) Construction of v /∈ rec(P ). By hypothesis, for every k ∈ N there
exists a point yk ∈ Qk \ Pk (see Figure 2). Let xk be the point in P such that
d(yk, xk) = d(yk, P ) and define vk = yk − xk.

Remark 1 For every k ∈ N, the hyperplane H = {x ∈ Rn : vkx = vkxk} is a
supporting hyperplane for P containing xk.

Consider the sequence of normalized vectors
{

vk

‖vk‖

}

k∈N
. Since it is contained

in the (n − 1)-dimensional unit sphere S, which is a compact set, it has a
subsequence that converges to an element of S, say v. We denote by I the set

7
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Figure 2: Illustration from part (a) of the proof of Proposition 10. In dark grey,
the polytope P described by inequalities −x2 ≤ 0; −x1−x2 ≤ −1; x1+2x2 ≤ 2.
In dashed lines, polytope P1. In light grey, polytope Q1.

of indices of this subsequence. Remark 1 shows that every vector vk belongs to
the optimality cone of P , which is defined as the set of vectors c such that the
problem max{cx : x ∈ P} has finite optimum. Since the optimality cone of a
polyhedron is a polyhedral cone, in particular it is a closed set. Then v belongs
to the optimality cone of P . This implies that v /∈ rec(P ), as max{cx : x ∈ P}
is never finite if c is a non-zero vector in rec(P ).

(b) P + 〈v〉 is lattice-free. Assume the existence of z̃ ∈ Zn for some z̃ ∈
int(P + 〈v〉). Observation 7 implies that there exist w̃ ∈ int(P ) and α ∈ R such
that z̃ = w̃+αv. Since P is a rational polyhedron, P = P ∗+int.cone(R), where
R = {r1, . . . , r|R|} is a set of integer generators of rec(P ) and P ∗ is a suitable
polytope such that w̃ ∈ int(P ∗) (for instance, if we let V be the vertex set of

P , we can take P ∗ = conv{V ∪
⋃|R|

i=1(w̃ + ri)}). We denote by δ the geometric
diameter of P ∗, i.e. the maximum distance between two points of P ∗.

Claim 1 There exist a number β > 2δ and points w ∈ int(P ∗) and z ∈ Zn,
such that z = w + βv.

Proof. We make use of the following fact, shown by Basu et al. [3, Lemma 13]
as a consequence of the well-known Dirichlet’s approximation theorem: Given
u ∈ Zn and r ∈ Rn, then for every ε > 0 and λ̄ ≥ 0, there exists an integer
point at distance less than ε from the halfline {u + λr : λ ≥ λ̄}. Apply this
result with u = z̃, r = v, 0 < ε < d(w̃,bd(P ∗)), and λ̄ = max(0, 2δ − α+ ε). It
guarantees the existence of an integer point z at distance less than ε from the
halfline {z̃+λv : λ ≥ 2δ−α+ ε} = {w̃+λv : λ ≥ 2δ+ ε}. Then z = w+βv for
some point w at distance less than ε from w̃ and β > 2δ. As ε < d(w̃,bd(P ∗)),
it follows that w ∈ int(P ∗). ⋄

Let β, w, z be as in Claim 1. If for a ∈ Z
|R|
+ we define P ∗(a) = P ∗ +

∑

i=1,...,|R| air
i, then P =

⋃

a∈Z
|R|
+

P ∗(a) (see Figure 3). Recall that, for k ∈ N,

one has yk ∈ Qk \ Pk, x
k ∈ P , and vk = yk − xk. For k ∈ N, let ak ∈ Z

|R|
+ be

8



r1

r2
βv

w

w1

w2

x2

x1

z

z1

z2

Figure 3: Illustration from part (b) of the proof of Proposition 10. On the
left: the vectors r1 and r2 from rec(P ). On the right: polytope P , and its
covering with polyhedra P ∗(a), a ∈ Z+. In increasingly darker shadows of
grey: P ∗ = P ∗

(0
0

)

, P ∗
(0
1

)

, P ∗
(0
2

)

. If moreover x1 ∈ P ∗
(0
1

)

and x2 ∈ P ∗
(0
2

)

, we
obtain w1, w2, z1, z2 as in the picture.

such that xk ∈ P ∗(ak). Also, let wk = w +
∑|R|

i=1 a
k
i r

i. Note that each wk is a
translation of w by an integer combination of integer vectors r1, . . . , r|R|, so that
wk lies in the same translation of P ∗ as xk. This implies d(wk, xk) ≤ δ. For each

k ∈ N, we also define zk = wk +βv. One easily checks that zk = z+
∑|R|

i=1 a
k
i r

i,
that is, zk is a translation of z by integer vectors r1, . . . , r|R| with the same
multipliers as wk, hence it is an integer vector. The proof of (b) is an immediate
consequence of the following claim, which contradicts the fact that Qk is a
relaxation of P for every k ∈ N.

Claim 2 zk ∈ Qk \ P for each k ∈ I large enough.

Proof. We first show that zk /∈ P for k ∈ I large enough. By Remark 1,
the hyperplane H = {x ∈ Rn : vkx = vkxk} is a supporting hyperplane of

P containing xk. Let γ ∈ R be such that wk + γ vk

‖vk‖
∈ H. Note that γ is

well-defined since vk is normal to H, and moreover γ ≥ 0, as wk ∈ P . Since
vk

‖vk‖
is a unit vector normal to H, one has

γ = d(wk,H) ≤ d(wk, xk) ≤ δ, (1)

where the first inequality comes from the fact that xk ∈ H.
Let now φ be the angle between vk and v, and k ∈ I be large enough, so

that 0 ≤ φ ≤ π
3 . Let σ ∈ R be such that wk +σv ∈ H (recall that ‖v‖ = 1). By

simple trigonometric arguments and by (1), we obtain σ = γ
cosφ ≤ 2δ. Hence,

points wk + λv with λ > 2δ do not belong to P . In particular, zk /∈ P , since
zk = wk + βv with β > 2δ from Claim 1.

We now show that zk ∈ Qk for k ∈ I large enough. Let ε be such that
0 < ε < d(w,bd(P ∗)). Note that ε < d(wk,bd(P )) for all k ∈ N. For each
k ∈ N, let Hk be the hyperplane with normal v containing point wk, i.e.,
Hk = {x : vx = vwk}. Define Bk to be the (n− 1)-ball of radius ε lying on Hk

9



P

wk

zk xk

yk

zk + C

xk +D

Figure 4: Illustration from the proof of Claim 2. Both C and D are cones of
revolution defined by direction v, with angles respectively 2θ and θ.

and centered at wk. Note that Bk ⊆ P and zk−Bk is the (n− 1)-ball of radius
ε centered at βv and lying on the hyperplane {x : vx = β}. Hence the cone C
generated by {zk − x : x ∈ Bk} does not depend on k, and it is indeed a cone
of revolution defined by direction v and some angle 0 < 2θ < π/2 (see Figure
4), i.e. C is the set of vectors of Rn that form an angle of at most 2θ with v.
Note that

zk ∈ conv(x,Bk) for every x ∈ zk +C. (2)

Now let D be the cone of revolution of direction v and angle θ. Note that D is
strictly contained in cone C. Since d(xk, wk) ≤ δ for all k, there exists a positive
number τ such that {x ∈ xk +D : d(x, xk) ≥ τ} ⊆ zk + C for all k ∈ N. Since
limk→+∞ d(yk, P ) = +∞, for k ∈ N large enough d(yk, xk) = d(yk, P ) ≥ τ . If
moreover we take k ∈ I large enough so that the angle between vk and v is at
most θ, one has yk ∈ xk +D and consequently yk ∈ zk + C. Because yk ∈ Qk

and (2), we conclude that zk ∈ Qk, as required. ⋄

(c) v can be assumed wlog to be integral. In [3, Theorem 2] (see also [20])
it is proved that a maximal lattice-free convex set is either an irrational affine
hyperplane of Rn, or a polyhedron Q + L, where Q is a polytope and L is a
rational linear space. P + 〈v〉 is lattice-free, thus it is contained in a maximal
lattice-free convex set. Since it is full-dimensional, it is not contained in an
irrational hyperplane. It follows that P ⊆ Q+L, with Q,L as above. Moreover,
L has dimension at least 1, since it contains v. Pick a set S ⊆ Zn of generators
of L such that v belongs to the cone generated by S. Since v /∈ rec(P ), then
s /∈ rec(P ) for at least one s ∈ S. Moreover, P + 〈s〉 ⊆ Q + L and it is full-
dimensional, hence it is lattice-free. We can then replace v by s. This concludes
the proof of Proposition 10 and Theorem 1. ✷
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4 On some polyhedra with finite reverse CG rank

In this section we investigate the behavior of the reverse CG rank for two classes
of polyhedra. Namely, let A be the family of integral polyhedra P such that (i)
no facet of P is relatively lattice-free and (ii) either P is not relatively lattice-
free or P is full-dimensional; also, let B be the family of integral polyhedra that
are not relatively lattice-free. We show the following.

Theorem 11 (i) For each n ∈ N, sup{r∗(P ) : P ⊆ Rn, P ∈ A} ≤ λ(n),
where λ is a function depending on n only.

(ii) For each n, k ∈ N, sup{r∗(P ) : P ⊆ Rn, P ∈ B, | relint(P ) ∩ Zn| ≤ k} ≤
µ(n, k), where µ is a function depending on n and k only.

We build on the following result [1, Theorem 12].

Theorem 12 There exists a function φ : N → R+\{0} such that every integral
non-lattice-free polyhedron P ⊆ Rn contains a centrally symmetric polytope of
volume φ(n), whose only integer point is its center.

The proof of the following lemma uses Minkowski’s Convex Body Theorem
in a way similar to the proof of [1, Theorem 1].

Lemma 13 Let P ⊆ Rn be an integral polyhedron. Let cx ≤ δ be a valid
inequality for P inducing a facet of P that is not relatively lattice-free. Then,
for every relaxation Q of P contained in aff(P ), cx ≤ δ is valid for Q(p), where
p depends on n only.

Proof. Let P be d-dimensional and F be the facet of P induced by inequality
cx ≤ δ. If d = 0, then there is nothing to prove, as P has no facet. If d = 1,
then Q(1) = P since Q is a relaxation of P contained in aff(P ). Hence we
assume d ≥ 2. Modulo a unimodular transformation, we can assume that
aff(P ) = {x ∈ Rn : xd+1 = · · · = xn = 0} and cx ≤ δ is the inequality
xd ≤ 0. By Theorem 12, F contains a (d− 1)-dimensional centrally symmetric
polytope E of volume φ(d − 1), whose only integer point is its center. We
assume wlog that this point is the origin. We now argue that the inequality
xd ≤ δ̄ = max{ i·2i−1

φ(i−1) : 2 ≤ i ≤ n} is valid for each relaxation Q of P contained

in aff(P ). Note that δ̄ only depends on n. Assume by contradiction that there

exists a point x̄ ∈ Q with x̄d > δ̄ ≥ d·2d−1

φ(d−1) . Define C = conv(E, x̄) ⊆ Q. Since
Q is a relaxation of P , C is a d-dimensional convex body whose only integer
point is the origin, which lies on its boundary. Moreover,

vol(C) = x̄d ·
vol(E)

d
>

d · 2d−1

φ(d− 1)
·
φ(d− 1)

d
= 2d−1.

Let C ′ be the symmetrization of C w.r.t. the origin, i.e. C ′ = C ∪ −C. Note
that C ′ is a d-dimensional centrally symmetric polytope in the space of the
first d variables whose only integer point is the origin. Furthermore, vol(C ′) =
2vol(C) > 2d. However, by Minkowski’s Convex Body Theorem (see, e.g., [2]),
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every centrally symmetric convex body in Rd whose only integer point is the
origin has volume at most 2d. This is a contradiction. Therefore the inequality
xd ≤ δ̄ is valid for each relaxation Q of P contained in aff(P ). Lemma 3 then
implies that cx ≤ δ is valid for Q(p), where p depends only on n. ✷

Proof of Theorem 11. (i). Let P ∈ A. Then no facet of P is relatively
lattice-free. Suppose first that P is full-dimensional. By Lemma 13, for each
facet-defining inequality cx ≤ δ of P , cx ≤ δ is valid for Q(p), with p depending
on n only. This implies that Q(p) = P , concluding the proof. Now, assume that
P is of dimension d < n. By definition of A, P is not relatively lattice-free.
Theorem 9 implies that there exists a number p depending only on n such that,
for each relaxation Q of P , Q(p) ⊆ aff(P ). Thus in a number of iterations of
the CG closure depending on n only we are back to the full-dimensional case.
This proves (i).

(ii). Now fix n, k ∈ N, k ≥ 1, and consider the family of polyhedra P ⊆ Rn,
P ∈ B, with | relint(P ) ∩ Zn| = k. Actually, this family is only composed of
polytopes, as every unbounded integral polyhedron with an integer point in its
relative interior contains infinitely many of those. By Theorem 1, r∗(P ) is finite
for each polytope from this family. Lagarias and Ziegler [18] showed that, up to
unimodular transformations, for each d and k ≥ 1 there is only a finite number
of d-dimensional polytopes with k integer points in their relative interior. Hence
there exists a number tn,k such that r∗(P ) ≤ tn,k for all polytopes P ⊆ Rn with
P ∈ B and | relint(P ) ∩ Zn| = k, concluding the proof of (ii). �

Theorem 11 shows that full-dimensional lattice-free integral polyhedra with
an integer point in the relative interior of each facet have finite reverse CG rank.
For these polyhedra, the non-existence of a direction v as in the statement of
Theorem 1 is due to the fact that by applying any direction v /∈ rec(P ), one
of the integer points of the polyhedron (more precisely, one of those lying in
the relative interior of the facets) will fall in the interior of P + 〈v〉. How-
ever, this is not a necessary condition for an integral polytope to have finite
reverse CG rank. As an example, consider the polytope P = conv{(0, 0, 0),
(3, 1, 0), (2, 3, 0), (3, 2, 2)} ⊆ R3. If we take, e.g., v = (1, 0, 0), then P + 〈v〉 does
not contain any integer point of P in its interior, but P + 〈v〉 is not lattice-free,
as (3, 2, 1) is in its interior.

As a counterpart to Theorem 11, we now provide examples of families of
polytopes from A (resp. B) where r∗ grows with the dimension of the ambient
space (resp. with the number of integer points in the relative interior of the
polytopes). Indeed, let P ⊆ Rn be an integral d-dimensional polytope, with
d ≤ n−1. Up to a unimodular transformation, P is contained in the hyperplane
defined by the equation xn = 0. Bockmayr et al. [5] showed that, for each k ∈ N,
there exists a polyhedron Qk ⊆ [0, 1]k such that r(Qk) = k and (Qk)I = ∅. Let
Q̄ = {(x, 1) : x ∈ Qn−1} ⊆ Rn, and set Q = conv(P, Q̄). Note that Q is a
relaxation of P . Since Q̄(t) ⊆ Q(t), one has r(Q) ≥ r(Q̄) = n− 1. Moreover, as
QI = P , one has that for each polyhedron in Rn that is not full-dimensional,
r∗(P ) ≥ n − 1. Hence, any bound on r∗(P ) must grow with the dimension of
the space P lives in. (Incidentally, this also implies that it makes no sense to
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study the parameter r∗(P ) when P is viewed as an integral d-polyhedron that
can be embedded in any real space of dimension n ≥ d, since this value is equal
to +∞ for each integral polytope P ).

For k ∈ N, consider the integral polytope Pk ⊆ R2 defined by the following
system of inequalities:

x1 ≥ 0
x2 ≥ 0
x2 ≤ k

x1 − 1
kx2 ≤ 1

Note that Pk has k − 1 integer points in its interior. Let Qk = conv(Pk, x̄),
where x̄ = (1/2,−k/2). Clearly Qk is a relaxation of P . Using Lemma 5,
we obtain r(Qk) ≥ k/2. This implies that any upper bound on r∗(P ) for
P ∈ B must grow with the number of integer points in the interior of P .
One immediately extends these results to unbounded polyhedra and higher
dimensions.

5 Algorithmic issues

Unfortunately, Theorem 1 does not seem to immediately imply an algorithm for
detecting if an integral polyhedron has finite reverse CG rank. In this section,
we shed some light on this problem. We employ some standard definitions
and notation from complexity theory, see e.g. [15], and from polyhedral theory,
see e.g. [25]. All reductions that we give between decision problems are Karp
reductions, and the classes of NP-complete, NP-hard, etc. problems are those
defined accordingly. All results that are assumed as known in this section are
also standard and can be found in (at least one of) [17, 25]. Detecting if an
input H-polyhedron has infinite reverse CG rank can be stated as the following
decision problem.

(RCGR)

Given: an integral polyhedron P = {x ∈ Rn : Ax ≤ b},
where A ∈ Zm×n and b ∈ Zm;

Decide: if there exists v ∈ Zn \ rec(P ) such that P +
〈v〉 is relatively lattice-free.

We call vRLF the generalization of RCGR where we do not ask for the input
polyhedron to be integral. We show the following.

Theorem 14 RCGR is decidable. Moreover, it can be decided in polynomial
time if the dimension n is fixed.

Theorem 15 vRLF is coNP-hard.
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Let us discuss some consequences of Theorems 14 and 15. First, recall that
an H-polyhedron can be transformed into a V-polyhedron in polynomial time
in fixed dimension, and vice-versa. So, Theorem 14 also holds if the input is
a V-polyhedron. Also, recall that a (widely believed) conjecture states that
no coNP-hard problem lies in NP. This however does not completely settle the
complexity of RCGR, as vRLF is a more general problem than RCGR. It is not
clear however how knowing that the input polyhedron is integral could help:
recall that, for instance, it is unlikely that there exists a compact certificate for
the integrality of a polyhedron.

In the rest of the section, we prove Theorems 14 and 15.

5.1 Proof of Theorem 15

Consider the following problem.

(IPRI)

Given: a polyhedron P = {x ∈ Rn : Ax ≤ b}, where A ∈
Zm×n and b ∈ Zm;

Decide: if P has an integer point in its relative

interior.

Let IF be the problem of deciding if a polyhedron (given as a finite list
of rational inequalities) contains an integer feasible point. Recall that IF is
NP-complete, and can be solved in polynomial time in fixed dimension.

Lemma 16 IPRI is NP-complete, and can be solved in polynomial time in fixed
dimension.

Proof. One immediately reduces IF to IPRI. Let in fact P = {x ∈ Rn : Ax ≤ b},
with A ∈ Zm×n and b ∈ Zm, and b ∈ Rm be obtained from b by adding 1/2
to all its components. Note that P = {x ∈ Rn : Ax ≤ b} contains exactly the
same integer points as P and no integer points on its boundary. On the other
hand, IPRI can be decided in polynomial time in fixed dimension as follows:
from the input system, detect a minimum defining system C for P ; for each
inequality ax ≤ β from C defining a facet F of P , check if F contains an integer
point. If yes, then replace ax ≤ β with ax ≤ β − ε, with ε > 0 small enough.
Call P the new polyhedron. Then P is a yes-instance for IPRI if and only if P
is a yes-instance for IF. ✷

Given Lemma 16, the proof of Theorem 15 is now immediate, as a polyhe-
dron P ⊆ Rn is a yes-instance to IPRI if and only if the polyhedron P × {0} ⊆
Rn+1 is a no-instance to vRLF.
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5.2 Proof of Theorem 14

In order to devise a fine procedure for RCGR, we delve into the geometric char-
acterization from Theorem 1. Our first observation is that we can reduce to the
bounded case when P is relatively lattice-free.

Lemma 17 Let P ⊆ Rn be an integral relatively lattice-free polyhedron with
lineality space S.

(a) If rec(P ) 6= S, then r∗(P ) = +∞.

(b) Otherwise, let P = P ′ + S, where P ′ is an integral relatively lattice-free
polytope such that dim(P ′) + dim(S) = dim(P ). Then r∗(P ) = +∞ if
and only if r∗(P ′) = +∞, where the latter is computed in the affine hull
of P ′.

Proof. Suppose there exists v ∈ rec(P ) \ S. Then P + 〈v〉 is relatively lattice-
free, proving (a). Suppose now S = rec(P ) 6= {0}, else (b) is trivial. Up to
a unimodular transformation, we can assume that S is generated by a subset
of vectors ek, . . . , en for some integer k ≤ n, and that aff(P ′) is generated
by e1, . . . , ek−1. In order to investigate if r∗(P ) = +∞, we can restrict to
investigate P + 〈v〉 for integral vectors v lying in the affine hull of P ′. So let

v ∈ aff(P ′). Let x′ ∈ Zk−1 and x′′ ∈ Zn−k+1. As
(

x′

x′′

)

∈ P + 〈v〉 if and only if
(x′

0

)

∈ P ′ + 〈v〉, (b) follows. ✷

Combining Theorem 1 with Observation 8, one immediately deduces the fol-
lowing.

Remark 2 Let P be an integral polyhedron that is not-full dimensional. Then
r∗(P ) = +∞ if and only if P is not relatively lattice-free.

For full-dimensional polyhedra, the situation is different. Clearly integral
non-lattice-free polytopes have finite reverse CG rank. The following state-
ment shows that lattice-free integral polytopes with finite reverse CG rank are
somehow under control.

Lemma 18 For each n ∈ N, there are, up to unimodular transformations, only
a finite number of n-dimensional lattice-free integral polytopes with r∗ < +∞.
Each of these polytopes has volume at most c4

n

, for some constant c > 1.

Proof. [21, Theorem 2.1] implies the following: for each n ∈ N, up to unimodular
transformations, there exists only a finite number of n-dimensional lattice-free
integral polytopes of Rn such that P+〈v〉 is not lattice-free for every v ∈ Zn\{0}.
The volume of each of those exceptions is at most c4

n

, for some constant c > 1.
By applying Theorem 1, the claimed result immediately follows. ✷

We now prove Theorem 14. Let P be an input of RCGR. Note that we can
check if we are in case (a) or (b) of Lemma 17 and, in case (b), obtain P ′ in
time polynomial in n. So we assume wlog that P is a polytope. Also, we can
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check if P is relatively lattice-free in polynomial time in fixed dimension using
Lemma 16. If it is not, then we output “no” because of Observation 2 and
the subsequent discussion. If conversely it is relatively lattice-free and not full-
dimensional, then we output “yes” (see again Observation 2). Hence we can
also assume P full-dimensional and lattice-free.

We first show that RCGR is decidable. By Proposition 10, we just need to
give the following two finite procedures, which are then executed in turns (i.e.
we alternate one step of the first and one step of the other) until one of the two
halts.

INF If r∗(P ) = +∞, this procedure finds a vector v ∈ Zn such that P + 〈v〉 is
lattice-free.

FIN If r∗(P ) is finite, this procedure finds k ∈ N such that all relaxations of
P are contained in Pk.

The procedure INF enumerates all the possible vectors v ∈ Zn by increasing
norm. For each candidate v, INF constructs an integer matrix C and an integer
vector d such that P + 〈v〉 = {x ∈ Rn : Cx ≤ d}, and checks if P + 〈v〉 is lattice-
free using Lemma 16.

The procedure FIN checks if all relaxations of P are contained in Pk, for
a fixed k ∈ N. If so it stops, and if not, it checks Pk+1, and so on. We now
explain how FIN checks if all relaxations of P are contained in Pk in finite time.

Let F be a facet of Pk defined by inequality cx ≤ δ, and let HF = {x : cx =
δ}. For every integer point xi ∈ Pk \P (they are a finite number), there exists a
polytope RF

i ⊆ HF such that, for every point r ∈ HF , we have xi ∈ conv(r, P )
if and only if r ∈ RF

i . The polytope RF
i can be obtained by intersecting the

hyperplane HF with the translated cone CF
i = xi − cone(W ), where W is the

set of vectors w such that xi + w is a vertex of P . It is clearly rational.
It can be checked that all relaxations of P are contained in Pk if and only if,

for every facet F of Pk, we have ∪i∈IR
F
i ⊇ F , where I = {i : xi ∈ Zn ∩Pk \P}.

Hence to conclude the procedure FIN, it is sufficient to show a finite algorithm
solving the following problem: given rational polyhedra F, {Ri}i∈I ⊆ Rn, with
|I| ∈ N, decide if ∪i∈IRi ⊇ F . It can be tested in finite time by induction on
|I| + dim(F ). We can assume that F is full-dimensional, as otherwise we can
work in the affine space aff(F ) by intersecting all polyhedra Ri with aff(F ). As
polyhedra are closed sets, we can also assume that all polyhedra Ri are full-
dimensional, because we can always ignore those with dimension strictly smaller
than the dimension of F . The base cases are when either dim(F ) = 0, or when
|I| = 1. The first case is trivially solvable, while the second can be solved by
linear programming. For the inductive step, let ı̄ ∈ I. Clearly ∪i∈IRi ⊇ F if
and only if for every facet ax ≤ β of Rı̄, we have

∪i∈I Ri ⊇ F, (3)

where F = {x ∈ F : ax ≥ β}. If the polyhedron F is not full-dimensional, then
the problem can be solved by induction. Otherwise, if F is full-dimensional, (3)
happens if and only if ∪i∈I\{ı̄}Ri ⊇ F̄ , which can also be solved by induction.
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We now prove that RCGR can be solved in polynomial time in fixed dimension.
Let C be the class of equivalence (under unimodular transformations) of lattice-
free integral full-dimensional polytopes of Rn with finite reverse CG rank. From
Lemma 18 we know that C is finite and that all polytopes belonging to some
class from C have volume at most c4

n

. It is proved in [18, Theorem 2] that
an integer n-dimensional polytope of volume at most V can be mapped via
a unimodular transformation to an integral polytope contained in the cube of
side at most V · n · n!. Hence, each class from C has a representative that is
contained in the cube Kn ⊆ Rn of side c4

n

· n · n!. Because of the first part of
the proof, we can construct this family R of representatives (with repetitions
allowed) in fixed time for fixed dimension. To conclude, we only need to check
if P can be mapped via a unimodular transformation to some P ∈ R. This
can be done in polynomial time as follows. Fix P ∈ R. Observe that, if
P and P are equivalent up to a unimodular transformation, they satisfy the
following conditions: they have the same number of vertices, say v1, . . . , vt for
P and w1, . . . , wt for P . Moreover, vol(P ) = vol(P ) must hold, so all affine
transformations A(·) + u mapping P to P are such that |det(A)| = 1. There
exists a unimodular transformation mapping P to P if and only if any solution
(A∗, u∗) to the following instance of IF with variables (A, u):

Avj + u = wj for j = 1, . . . , t
A ∈ Zn×n

u ∈ Zn,

is such that |det(A∗)| = 1. The statement then follows from the fact that the
determinant of A∗ and the vertices of P can be computed, and IF solved, in
polynomial time in fixed dimension.

6 Extensions

6.1 On the definition of relaxation

Recall that we defined a relaxation of an integral polyhedron to be a rational
polyhedron. We remark that the rationality assumption is crucial in the state-
ment of Theorem 1. As an example, consider the polytope P ⊆ R2 consisting
only of the origin. Any line Q ⊆ R2 passing through the origin and having
irrational slope is an (irrational) polyhedron whose integer hull is P . One read-
ily verifies that the CG closure of Q is Q itself, showing that in this case the
CG closures of Q do not converge to the integer hull P . However, no vector v
satisfying the conditions of Theorem 1 exists.

Assume now that P is a polytope. As a referee pointed out, Theorem 1 still
holds if we define a relaxation of P to be a convex body whose integer hull is
P . This immediately follows from the fact that, for each convex body, one can
construct a rational polytope that contains it and has the same integer hull (see
e.g. [25, Proof of Corollary 23.4a]). The example above shows that a further
extension of the definition of relaxation as to include all unbounded convex sets
will make Theorem 1 false. In particular, it is not clear if we can substantially
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extend the concept of relaxation for unbounded integral polyhedra P and keep
Theorem 1 true.

6.2 On relaxations with bounded facet complexity

An interesting question is whether bounding the facet complexity of relaxations
leads to stronger bounds on the CG rank of polyhedra (we refer the reader
to [25] for the concept of facet complexity, as well as for the one of vertex
complexity). As the example from Figure 1 shows, the CG rank of a polyhedron
can be exponential in the facet complexity of the polyhedron itself. But what
happens to the reverse CG rank of an integral polyhedron P , if we require all
relaxations to be of facet complexity ν(c) for some fixed function ν, where c
is the facet complexity of P? Recall the following two results (see respectively
e.g. [25, Theorem 10.2] and [25, Theorem 16.1]): (i) there exists a polynomial
φ : N × N → N such that, if P ⊆ Rn has facet complexity at most c, then
P has vertex complexity at most φ(n, c); (ii) for each integral polyhedron P
and each relaxation Q of P , rec(P ) = rec(Q). From (ii), it follows that each
relaxation Q of a (non-empty, integral) polyhedron P ⊆ Rn can be written
as conv(V ∪ S) + rec(P ), where V is composed of a point from each minimal
non-empty face of P and S is a finite set of points. Then from (i) we have that
bounding the complexity of the inequalities defining Q implies bounding the
complexity of each point in S, and hence its ℓ∞ norm. Using the notation from
the proof of Theorem 1, we deduce that V ∪S ⊆ Pk, for some k big enough that
does not depend on Q but only on P and ν, and consequently that Q ⊆ Pk,
since rec(Q) = rec(P ) = rec(Pk). Repeating the arguments from the proof of
the implication (1) ⇒ (2) in Proposition 10, we deduce that the CG rank of Q
is bounded by a function depending only on P , ν(c), and k. Hence, the reverse
CG rank in this case would be always bounded.

Let us remark that this is in sharp contrast with what happens in the mixed-
integer case, where a relaxation of small complexity may have unbounded CG
(or even split) rank: see [9, Example 2].

6.3 Reverse split rank

Another interesting problem is the extension of the concept of reverse CG rank
to the case of split inequalities. It can be proved that in dimension 2 the split
rank of every rational polyhedron is at most 2. That is, the reverse split rank
(defined in the obvious way) is bounded by a constant in dimension 2, while
recall that this is not true for the reverse CG rank, see Section 1. However,
one can prove that already in dimension 3 a constant bound does not exists, as
implied by Lemma 19. We remark that a characterization of integral polyhedra
with finite reverse split rank is given in [7]. However, [7] postdated the current
paper, and in fact builds on it.

Lemma 19 Let T ⊆ R3 be the triangle conv{(0, 0, 0), (0, 2, 0), (2, 0, 0)}. The
reverse split rank of T is +∞.
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Proof. For h ∈ Q+, let xh= (12 ,
1
2 , h) ∈ R3 and T h = conv(T ;xh). Note that,

for each h ∈ Q+, (T
h)I = T . We assume that the reader is familiar with basic

definitions on split cuts, which can be found e.g. in [9].
For a polyhedron P , we denote by SC(P ) its split closure and by SCk(P )

its k−th split closure. For an inequality αx ≤ β, we let SC≤
α,β(P ) be the set

of points in P that satisfy αx ≤ β, and SC≥
α,β(P ) the set of points in P that

satisfy αx ≥ β + 1. Also, we let SCα,β(P ) = conv{SC≤
α,β(P ), SC≥

α,β(P )}. We
say that a split S = {x : β < αx < β + 1} cuts off a point x̄ if x̄ /∈ SCα,β(P ).
Note that if S cuts off a point x̄, necessarily β < αx̄ < β + 1.

We prove that, for h ≥ 4/3, there exists no split {x : β < αx < β + 1} that
cuts off both xh and xh/4 from T h, i.e. such that {xh, xh/4} ∩ SCα,β(T

h) = ∅.
This implies that for h ≥ 4

3 , xh/4 ∈ SC(T h). Thus, SC(T h) ⊇ T h/4 and

consequently, SCk(T ) ⊇ T h/4k . Hence, Ω(log(h)) rounds of the split closure are
needed to obtain the integer hull starting from T h, and the statement follows.

Fix a rational h ≥ 4/3, and a split S = {x : β < αx < β + 1}, with
α = (α1, α2, α3) ∈ Z3, β ∈ Z. We first deal with splits where α3 = 0. Note that
x̄ = (1, 12 ,

h
2 ) ∈ T h (resp. x̃ = (12 , 1,

h
2 ) ∈ T h), since this point is in the segment

between (32 ,
1
2 , 0) and xh (resp. between (12 ,

3
2 , 0) and xh). If S cuts off xh/4,

then x̄, x̃ ∈ S, since xh/4 is in the segment between x̄ and (0, 12 , 0) (resp. x̃ and
(12 , 0, 0)) and the latter belongs to T (hence also to SC(T h)). Moreover, the

split also needs to cut off xh/4, hence xh/4 ∈ S. Thus, α1, α2, β satisfy

β < α1 +
1

2
α2,

1

2
α1 + α2,

1

2
α1 +

1

2
α2 < β + 1,

which, since α1, α2, and β can be assumed to be integer, imply

2α1 + α2 = α1 + 2α2 = α1 + α2 = 2β + 1.

The unique solution to the system above is α1 = 0, α2 = 0, β = −1
2 , which is

not an integral vector.
Thus, we can assume α3 6= 0. As the split needs to cut off both xh and xh/4,

we have

β <
1

2
α1 +

1

2
α2 + h · α3,

1

2
α1 +

1

2
α2 +

h

4
· α3 < β + 1.

Setting β = β − 1
2α1 −

1
2α2, it follows β < h · α3,

h
4 · α3 < β + 1. Hence, using

the fact that |α3| ≥ 1, we obtain 1 > |hα3 − h
4α3| = 3

4h|α3| ≥ 3
4h ≥ 1, a

contradiction. ✷
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