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—— Abstract

We present RedAlert, a heuristic solver for twin-width, submitted to the Heuristic Track of the 2023
edition of the Parameterized Algorithms and Computational Experiments (PACE) challenge.
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1 Twin-width and contraction sequences

To keep our description short, we refer the reader to the first two sections of [2] for the
definitions and motivations behind contraction sequences and twin-width. A trigraph has
two disjoint edge relations: red edges and black edges. Its total graph consists of the union
of these two relations. The red degree (resp. total degree) is the degree in the graph formed
by the red edges (resp. in the total graph). We aim to find a contraction sequence (that
iteratively identifies two vertices and updates the color of their incident edge, until there is
only one vertex left) with overall maximum red degree as low as possible.

2 Overview of RedAlert

In the search of contraction sequences of low width, a natural subroutine consists of finding
a good pair of vertices, that is, one whose contraction results in a trigraph with maximum
red degree as low as possible. An oracle providing the greedily best pair in 10~°s would have
likely won the competition. However, this is far from what is physically possible. In theory,
getting a best pair within the allowed 300s is already challenging, since the largest instances
had order of 107 vertices, and CLOSEST VECTOR PAIR —more or less the best pair problem
when starting from a graph— (like the task of finding an orthogonal pair of 0,1-vectors) has
no truly subquadratic algorithm unless the Strong Exponential-Time Hypothesis fails [3].

We thus resolve to sampling the pairs of vertices as candidates for the next contraction.
Based on the remaining time and number of vertices, we compute an integer minPairs
indicating the minimum number of pairs to be contracted from the sampled pairs (to finish
in time). We then contract at least minPairs candidate pairs according to a cost function
detailed below. Challenging instances produce denser and denser trigraphs as we contract
them. This results in a progressive increase of the time to sample and select pairs to contract.
In such cases, we may resort to faster (and rougher) subroutines to finish the contraction
sequences: totDegAlert and balancedScheme. We will briefly detail them.

To summarize, the main loop of RedAlert is as follows:
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Estimation of minPairs;

Sampling of the candidate pairs;

Selection of at least minPairs most favorable pairs among the candidate pairs;
Contraction of these pairs;
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. If running out of time, finish with increasingly cruder heuristics.
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Figure 1 Sketch of RedAlert. We exit the main loop when (we have a solution or) the time
budget of 260s is depleted or we would have to contract over 40% of our sampled pairs. We then
call totDegAlert up to second 285. If by then no complete contraction sequence was found, we call
balancedScheme which takes less than a second to terminate.

3 Dense and Small vs. Sparse and Large Inputs

Before we start parsing the input graph, we decide based on its number of vertices and edges
whether we want to work with adjacency matrices or adjacency lists. Typically the former
shall be preferred on graphs with few vertices but high edge density, while it is simply not an
option when the number of vertices becomes too large. Only the first three or four instances
(below 2500 vertices) of the Heuristic Track were such that our treatment with adjacency
matrices performed better. Thus we will mainly describe the part of our algorithm using
adjacency lists. Nevertheless, let us mention one nice feature of using adjacency matrices:
one can test the quality of a pair of vertices by sampling an appropriate number of indices,
and computing the number of disagreements (potential red edges) at these indices.

In the sparse case, we represent our trigraphs with slightly-modified adjacency lists: the
neighbors of a vertex are stored in a set. Each vertex has a set for its black neighbors, and
a set for its red neighbors. While contracting the trigraph, we maintain other useful elements
such as the remaining number of vertices, edges, maximum red degree, overall maximum
red degree, list of pairs vertex/red degree, list of pairs vertex/total degree, and some arrays
to keep the conversion between local labels and global labels. The contraction operation
remains reasonably fast and takes a typical 10~%s on the large instances.

4 Sampling candidates

In the sparse case, our distribution is biased towards pairs of vertices that are close to each
other. We pick a vertex v uniformly at random. Then with probability 1/2, we uniformly
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pick a first neighbor of v (in the total graph) to complete the pair, and with probability 1/2,
we uniformly choose a second neighbor of v (still in the total graph). This performs well
on the sparsest instances. As half of our sampled pairs consist of vertices at distance 2, we
naturally find contractions that are decreasing the red degree of high-degree vertices.

We experimented a bit with favoring vertices v with low red degree or low total degree,
or adding pairs of red neighbors of a vertex with highest red degree. This did not seem to
improve the overall performance of the heuristic, so we opted for this simple distribution.

We adjust the sampling size to the situation by increasing it while minPairs is below 30,
decreasing it if later minPairs gets above 70, and resetting it to its minimum of 10000 when
minPairs reaches 500.

5 Filtering candidates

We evaluate the sampled pairs based on a cost function f, defined as follows. If G is
the current trigraph, u, v two vertices of G, and G’ the resulting trigraph if u and v were
contracted into w, we set f(u,v) = (r,p,e) where

r € {0,1}, and r = 0 iff the maximum red degree of G’ is smaller than that of G;

p is the maximum red degree among vertices of G’ in the closed red neighborhood of w;

e is the total number of red edges in G'.

When comparing two pairs of vertices, we prefer the one whose image by f is lexicograph-
ically smaller. We select a minimum of minPairs pairs, and every pair tying with the worst
such pair is also added (their cost is recomputed in the current trigraph). This way, we can
sometimes contract a lot more pairs than necessary, and spare some time for an uncertain
and more complicated future.

6 When time gets shorter or minPairs gets too large

It can happen that minPairs, which is computed based on the number of remaining time and
vertices (or contractions), and the time spent in the previous loop iteration per performed
contraction, steadily increases. This typically happens when the densification of the current
trigraph accelerates. This may result in a situation when, to meet its deadline, the heuristic
has to contract a large fraction of the sampled pairs, making it close to the random heuristic.

In that case, we break out of the main loop and call a faster subroutine, totDegAlert,
which greedily contracts pairs of smallest total degree. This subroutine still requires to
explicitly perform contractions, which takes some time on the largest instances. It is thus
possible that we run out of time even inside totDegAlert. Therefore, when we have only 15
seconds left, we call balancedScheme. This subroutine is based on the O(y/m)-sequence for
m-edge graphs (see [1] for a more precise bound). It partitions the vertex set into O(y/m)
buckets of roughly equal sum of total degrees, plus an additional bucket with vertices of
total degree 2(y/m) (large degree). The idea is then to contract every bucket into a single
vertex, finishing with the bucket of large-degree vertices, and end the contraction sequence
arbitrarily. What makes balancedScheme particularly fast is that we do not need to make
these contractions explicitly. As a simple but effective optimization, we contract each bucket
in such a way that the contraction tree is a balanced binary tree rather than a caterpillar.

When RedAlert is about to output a solution for which it knows the actual width (i.e.,
without invoking balancedScheme), we first compare it to some small multiple of /m where
m is the number of edges of the input graph. In some cases, indeed, running balancedScheme
from scratch on the original graph gives a better contraction sequence.
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