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—— Abstract
We present a unified heuristic solver for the PACE 2025 challenge, addressing both the dominating
set and hitting set problems by reducing them to the unicost set covering problem. Our solver
applies standard reduction rules, a multi-round frequency-based greedy initializer, and a local search
guided by adaptive element weights. Additional techniques, such as component-level exact solving
and swap restriction, further enhance performance. In the final official evaluation, our proposed
solver achieved second place in the heuristic track for the dominating set problem of the PACE 2025
challenge, while securing first place in the heuristic track for the hitting set problem.
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1 Challenge Problem and Transformation

The PACE 2025 challenge involves two fundamental NP-hard problems: the dominating set
problem and the hitting set problem. The dominating set problem seeks to select as few
vertices as possible in a given graph such that every other vertex is adjacent to at least one
selected vertex. The hitting set problem requires selecting as few elements as possible from a
set system such that each set contains at least one selected element. In fact, the former can
be regarded as a special case of the latter. We unify these two problems by transforming
them into a unicost set covering problem, as follows:

In the dominating set problem, each vertex v; is represented as both a set s; and an
element e;. Each set s; covers all elements corresponding to its neighboring vertices.

In the hitting set problem, each original set s{ is mapped to an element e;, and each
original element €7 € s7 is mapped to a set s; covering e;.

Subsequently, the optimization objectives of the two original problems are unified as
minimizing the number of selected sets that cover all elements, although such a transformation
inevitably loses certain characteristic information of the original problems.
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2 2 Solver Methodology

ss In this section, we present our heuristic solver for the set covering problem. It integrates
« instance reduction, initialization, element-weighted local search, and two simple but effective
s optimization strategies that further enhance the search process.

« 2.1 Preprocessing via Reduction Rules

« Considering that the datasets in the PACE 2025 Challenge may contain millions of sets and
s elements, applying possible reductions to them is highly beneficial for the subsequent search.
«  We employ three classical reductions without sacrificing optimality [2]:

50 Element Dominance: If all sets that cover element e; also cover element e; (where
51 il = j), then e; can be safely removed.

5 Set Dominance: If all elements covered by set s; are also covered by set s; (where
53 1! = j), then s; can be safely removed.

54 Mandatory Coverage: If an element e; is uniquely covered by one set s;, then s; must
55 be selected, and all elements covered by s; can be removed.

56 These reduction rules preserve the existence and structure of optimal solutions. By

st iteratively applying them, the problem size can typically be reduced significantly. We solve
ss  the reduced instance and merge the optimized result with the sets fixed during the reduction
s process to form the final solution.

o 2.2 Frequency-Guided Initialization

o We define the importance score 1S(e;) = j of an element as the reciprocal of its

1

e frequency (i.e., the number of sets that carflreg(()e\;er it). Then, the score of a set IS(s;) =
DY e, €uncovered(s;) IS(e;) is the sum of the scores of all currently uncovered elements it covers.
6 The greedy algorithm iteratively selects the set with the highest score, thereby prioritizing
e the coverage of hard-to-cover elements. After each selection, scores of related sets are updated
6 to reflect the new uncovered element set.

67 Since the number of sets that can cover an element differs from the number of sets that
6s actually cover it in a solution, the original importance score may be biased. To correct this,
e after obtaining a feasible solution, we refine the score of each element e; by multiplying it
n  with a scaling factor, i.e., I'(e;) = IS(e;) - “maxwhere ¢; is the number of times element
n e; is actually covered in the solution, and cpax is the maximum coverage count among all
7 elements. Through multiple rounds of score refinement and reconstruction, higher-quality

73 initial solutions can typically be obtained, albeit with increased construction time.

» 2.3 Element-Weighted Local Search

s Starting from a feasible initial cover, we iteratively remove a randomly selected set and
7 attempt to reconstruct a feasible cover without increasing the number of sets used. Once
77 such a reconstruction is successful, we obtain an improved solution. Thus, our optimization
7 focuses on how to achieve full coverage using a fixed number of sets.

» 2.3.1 Weighting Technique

s Weighting techniques have demonstrated strong effectiveness in various set covering-related
s problems [2, 3, 4]. Our solver adopts a similar strategy: we assign weights to currently
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uncovered elements, and seek to minimize the total weight of uncovered elements during
local search. Compared to minimizing just the count of uncovered elements, the weighted
objective yields a smoother search landscape and better optimization performance.

2.3.2 Neighborhood Search

The neighborhood is defined by a pairwise swap operation: removing one set from the current
solution and adding another. In each iteration:

Randomly select an uncovered element e such that the subsequent swap operation ensures
it will be covered. This random selection strategy enhances the diversification of the
search while simultaneously reducing the evaluation time complexity.

For each element e, we consider adding a set that covers it and simultaneously removing
one set from the current solution. We evaluate all swap pairs and select the one that
minimizes the total weight of uncovered elements after the move.

When the search reaches a local optimum, we increase the weight of a random uncovered
element, encouraging its coverage in future iterations. Tabu search is a well-known me-
taheuristic for combinatorial optimization [1]. We integrate a one-iteration recency-based
tabu mechanism that temporarily forbids recently involved sets from participating in swaps,
thus encouraging search diversification and preventing cycling. Upon finding a new feasible
solution (i.e., all elements are covered), we proactively remove a random set, and the optim-
ization moves to the new bottleneck of one fewer set. The search procedure is repeated until
the time limit is reached and the best solution found so far is returned.

2.4 Additional Enhancements

For instances that contain multiple connected components after reduction, we introduce two
dedicated optimization strategies:

Reducing the number of connected components: We apply a simple branch-and-bound
algorithm to exactly solve connected components that involve fewer than k sets (with
k = 23 in our implementation).

Restricting active components: Initially, the removal of a set introduces uncovered
elements in only one connected component. In subsequent swap iterations, if the added
set fails to restore full coverage within this component while the removed set belongs to a
different component, we revert the current component to its last feasible state.
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