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Abstract11

We present a unified heuristic solver for the PACE 2025 challenge, addressing both the dominating12

set and hitting set problems by reducing them to the unicost set covering problem. Our solver13

applies standard reduction rules, a multi-round frequency-based greedy initializer, and a local search14

guided by adaptive element weights. Additional techniques, such as component-level exact solving15

and swap restriction, further enhance performance. In the final official evaluation, our proposed16

solver achieved second place in the heuristic track for the dominating set problem of the PACE 202517

challenge, while securing first place in the heuristic track for the hitting set problem.18
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1 Challenge Problem and Transformation27

The PACE 2025 challenge involves two fundamental NP-hard problems: the dominating set28

problem and the hitting set problem. The dominating set problem seeks to select as few29

vertices as possible in a given graph such that every other vertex is adjacent to at least one30

selected vertex. The hitting set problem requires selecting as few elements as possible from a31

set system such that each set contains at least one selected element. In fact, the former can32

be regarded as a special case of the latter. We unify these two problems by transforming33

them into a unicost set covering problem, as follows:34

In the dominating set problem, each vertex vi is represented as both a set si and an35

element ei. Each set si covers all elements corresponding to its neighboring vertices.36

In the hitting set problem, each original set so
i is mapped to an element ei, and each37

original element eo
j ∈ so

i is mapped to a set sj covering ei.38

Subsequently, the optimization objectives of the two original problems are unified as39

minimizing the number of selected sets that cover all elements, although such a transformation40

inevitably loses certain characteristic information of the original problems.41
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2 Solver Methodology42

In this section, we present our heuristic solver for the set covering problem. It integrates43

instance reduction, initialization, element-weighted local search, and two simple but effective44

optimization strategies that further enhance the search process.45

2.1 Preprocessing via Reduction Rules46

Considering that the datasets in the PACE 2025 Challenge may contain millions of sets and47

elements, applying possible reductions to them is highly beneficial for the subsequent search.48

We employ three classical reductions without sacrificing optimality [2]:49

Element Dominance: If all sets that cover element ei also cover element ej (where50

i! = j), then ej can be safely removed.51

Set Dominance: If all elements covered by set si are also covered by set sj (where52

i! = j), then si can be safely removed.53

Mandatory Coverage: If an element ei is uniquely covered by one set si, then si must54

be selected, and all elements covered by si can be removed.55

These reduction rules preserve the existence and structure of optimal solutions. By56

iteratively applying them, the problem size can typically be reduced significantly. We solve57

the reduced instance and merge the optimized result with the sets fixed during the reduction58

process to form the final solution.59

2.2 Frequency-Guided Initialization60

We define the importance score IS(ei) = 1
freq(ei) of an element as the reciprocal of its61

frequency (i.e., the number of sets that can cover it). Then, the score of a set IS(si) =62 ∑
ej∈uncovered(si) IS(ej) is the sum of the scores of all currently uncovered elements it covers.63

The greedy algorithm iteratively selects the set with the highest score, thereby prioritizing64

the coverage of hard-to-cover elements. After each selection, scores of related sets are updated65

to reflect the new uncovered element set.66

Since the number of sets that can cover an element differs from the number of sets that67

actually cover it in a solution, the original importance score may be biased. To correct this,68

after obtaining a feasible solution, we refine the score of each element ei by multiplying it69

with a scaling factor, i.e., IS′(ei) = IS(ei) · cmax
ci

, where ci is the number of times element70

ei is actually covered in the solution, and cmax is the maximum coverage count among all71

elements. Through multiple rounds of score refinement and reconstruction, higher-quality72

initial solutions can typically be obtained, albeit with increased construction time.73

2.3 Element-Weighted Local Search74

Starting from a feasible initial cover, we iteratively remove a randomly selected set and75

attempt to reconstruct a feasible cover without increasing the number of sets used. Once76

such a reconstruction is successful, we obtain an improved solution. Thus, our optimization77

focuses on how to achieve full coverage using a fixed number of sets.78

2.3.1 Weighting Technique79

Weighting techniques have demonstrated strong effectiveness in various set covering–related80

problems [2, 3, 4]. Our solver adopts a similar strategy: we assign weights to currently81
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uncovered elements, and seek to minimize the total weight of uncovered elements during82

local search. Compared to minimizing just the count of uncovered elements, the weighted83

objective yields a smoother search landscape and better optimization performance.84

2.3.2 Neighborhood Search85

The neighborhood is defined by a pairwise swap operation: removing one set from the current86

solution and adding another. In each iteration:87

Randomly select an uncovered element e such that the subsequent swap operation ensures88

it will be covered. This random selection strategy enhances the diversification of the89

search while simultaneously reducing the evaluation time complexity.90

For each element e, we consider adding a set that covers it and simultaneously removing91

one set from the current solution. We evaluate all swap pairs and select the one that92

minimizes the total weight of uncovered elements after the move.93

When the search reaches a local optimum, we increase the weight of a random uncovered94

element, encouraging its coverage in future iterations. Tabu search is a well-known me-95

taheuristic for combinatorial optimization [1]. We integrate a one-iteration recency-based96

tabu mechanism that temporarily forbids recently involved sets from participating in swaps,97

thus encouraging search diversification and preventing cycling. Upon finding a new feasible98

solution (i.e., all elements are covered), we proactively remove a random set, and the optim-99

ization moves to the new bottleneck of one fewer set. The search procedure is repeated until100

the time limit is reached and the best solution found so far is returned.101

2.4 Additional Enhancements102

For instances that contain multiple connected components after reduction, we introduce two103

dedicated optimization strategies:104

Reducing the number of connected components: We apply a simple branch-and-bound105

algorithm to exactly solve connected components that involve fewer than k sets (with106

k = 23 in our implementation).107

Restricting active components: Initially, the removal of a set introduces uncovered108

elements in only one connected component. In subsequent swap iterations, if the added109

set fails to restore full coverage within this component while the removed set belongs to a110

different component, we revert the current component to its last feasible state.111
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