10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

PACE Solver Description: LetsJustCHILS

Adil Chhabra &
Heidelberg University, Germany

Marlon Dittes &
Heidelberg University, Germany

Ernestine Groimann &
Heidelberg University, Germany

Kenneth Langedal =
Heidelberg University, Germany

Henrik Reinstadtler &
Heidelberg University, Germany

Christian Schulz &
Heidelberg University, Germany

Darren Strash =
Hamilton College, Clinton, NY, US

Henning Woydt &
Heidelberg University, Germany

—— Abstract

This is a short description of our exact solver and heuristic, which was submitted to the PACE 2025
challenge on DOMINATING SET and HITTING SET. Our solvers reduce the DOMINATING SET to the
HITTING SET problem, making both problems equivalent to our solvers. Then, we use known data
reduction rules for the HITTING SET problem to simplify the instances for both the exact solver
and the heuristic. For the exact track, we pass the reduced instance to a MAXSAT solver that tries
to compute an optimal solution. For the heuristic, we further reduce the problem to the VERTEX
COVER problem, where we apply known reductions for that problem. On this reduced instance, we
run the CHILS heuristic to quickly compute a high-quality solution. Since the reduction to VERTEX
COVER can significantly increase the graph size, we also utilize two simple heuristics for the HITTING
SET problem, which we use as a backup for particularly problematic instances.

2012 ACM Subject Classification Theory of computation — Design and analysis of algorithms

Keywords and phrases Hitting Set, Dominating Set, Maximum-Weight Independent Set, Data
Reduction, Local Search, MaxSAT

Supplementary Material Software: https://github.com/KennethLangedal/PACE2025 [8]
archived at swh:1:dir:c834fc32fda6f61d5e845c626395b5ab077a3f4f

1 Introduction

This document presents LETSJUSTCHILS, an exact algorithm and heuristic submitted to all
tracks of the 2025 iteration of the Parameterized Algorithms and Computational Experiments
(PACE) challenge on the DOMINATING SET and HITTING SET problems. Our solvers employ
a combination of effective data reduction techniques, exact solving via a PARTIAL MAXSAT
formulation, and heuristics based on a reduction to the well-studied MAXIMUM WEIGHT
INDEPENDENT SET problem.

In the following, we first define the problems and notation used in Section 2. Then, we
present the data reduction rules used across all tracks in Section 3. Finally, we provide
detailed descriptions of both our exact solver and heuristic in sections 4 and 5.

mailto:adil.chhabra@informatik.uni-heidelberg.de
https://orcid.org/0009-0009-5726-9389
mailto:marlon.dittes@stud.uni-heidelberg.de
mailto:e.grossmann@informatik.uni-heidelberg.de
https://orcid.org/0000-0002-9678-0253
mailto:kenneth.langedal@informatik.uni-heidelberg.de
https://orcid.org/0009-0001-6838-4640
mailto:henrik.reinstaedtler@informatik.uni-heidelberg.de
https://orcid.org/0009-0003-4245-0966
mailto:christian.schulz@informatik.uni-heidelberg.de
https://orcid.org/0000-0002-2823-3506
mailto:dstrash@hamilton.edu
https://orcid.org/0000-0001-7095-8749
mailto:henning.woydt@informatik.uni-heidelberg.de
https://orcid.org/0009-0004-2234-2869
https://github.com/KennethLangedal/PACE2025
https://archive.softwareheritage.org/swh:1:dir:c834fc32fda6f61d5e845c626395b5ab077a3f4f

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

v

78

79

80

81

82

83

84

PACE Solver Description: LetsJustCHILS

2 Preliminaries

Let G = (V, E) be an undirected graph with vertex set V and edge set E C V x V. A
dominating set is a subset D C V such that every vertex u € V is either in D or adjacent
to a vertex in D. The DOMINATING SET problem is that of finding a dominating set with
the smallest cardinality. A hypergraph is defined as G = (V,S) where V is a set of vertices
and § is a collection of sets, where each S € § is a subset of the vertices in the graph, later
referred to as a hyperedge. For a vertex u in a hypergraph, let S(u) = {S € S | u € S} be the
hyperedges containing u as an endpoint. A hitting set for a hypergraph is a subset H C V
such that every set S € S contains at least one element from H. The HITTING SET problem
asks for a hitting set with the smallest cardinality.

3 Reductions

Our algorithm makes use of reductions between problems, as well as data reductions. We
detail each reduction here.

From Dominating Set to Hitting Set. It is well known that the DOMINATING SET problem
can be reduced to the HITTING SET problem by considering every induced neighborhood as
a hyperedge. Specifically, for a given graph GG, we construct a hypergraph H with the same
vertex set V' and for each vertex v € V, we add a hyperedge corresponding to the closed
neighborhood of v, defined as N[v] = {v}U{u € V | {u,v} € E}. A dominating set in G then
corresponds to a hitting set in H that intersects every such hyperedge. As a first step in our
exact and heuristic DOMINATING SET solvers, we perform this reduction to HITTING SET.

Hitting Set Data Reductions. We exhaustively apply the following data reductions as
described by Blésius et al. [1] to the hitting set instance. The domination rules were first
introduced by Weihe [11].

» Reduction 1 (Degree one hyperedge). Let S € S such that |S| =1 and u € S be its single
element. Then, u can be included in the hitting set, and all hyperedges containing u can be
removed.

» Reduction 2 (Domination vertex). Let u,v € V such that S(u) C S(v). Then, we can
remove u from the hypergraph since any optimal solution either includes v, or can substitute
u with v without loss of optimality.

» Reduction 3 (Domination hyperedge). Let S1,S2 € S such that S; C So. Then, we can
safely delete So from S since any hitting set that hits S1 will always hit Sy as well.

From Hitting Set to Vertex Cover. After the HITTING SET reductions, our heuristics
continue by reducing the HITTING SET problem to the VERTEX COVER problem. This
reduction works by encoding each hyperedge as a clique [6]. The general idea is to add
one vertex v, for every vertex u € V, and for each hyperedge S € S, add |S| new vertices
corresponding to the elements in S. That is, for each u € S, add a new vertex v,g. We then
connect all the vertices originating from the same set S € S to form a clique. Finally, for every
vertex originating from a set, we add the edge {vys,v,}. The intuition for this reduction is
that each added clique ensures that at least one vertex from the corresponding hyperedge
must be included in the VERTEX COVER instance. That is because each clique needs at least
|S] — 1 vertices in the vertex cover. For the one v,g that we do not include, we must include

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

A. Chhabra et al.

v, instead. An optimal solution could include all the vertices in a clique. However, in that
case, we can greedily swap any vertex v,g in that clique for the corresponding v, and still
have an optimal solution. Lifting the solution back to the HITTING SET problem is done by
simply reading off the configuration of the vertices corresponding to the hitting set vertices.

The motivation for using the VERTEX COVER problem instead of HITTING SET is the
ample amount of experimental work already done for this problem. Considering the MIN-
IMUM VERTEX COVER problem and its complementary problems, MAXIMUM INDEPENDENT
SET and MAXIMUM CLIQUE, as well as their weighted generalizations, more than thirty
experimental publications have been made in the last twenty years [4]. There is also an
increasing focus on data reduction in this area. The MINIMUM VERTEX COVER problem
was also the focus for the 2019 iteration of the PACE challenge [2].

Vertex Cover Data Reductions. Once we have an equivalent VERTEX COVER instance, we
use a wide range of known reductions for that problem. We actually use a library designed
for reducing the MAXIMUM WEIGHT INDEPENDENT SET problem. However, we can set all
the weights to one and read off the complement of the resulting independent set to get our
vertex cover. For an overview of these reductions, see the survey by Grofimann et al. [4] that
also comes with a reference implementation'. One especially important reduction for our
heuristic is the weighted struction by Gellner et al. [3].

4 Exact

For the exact track, our approach first reduces the size of the HITTING SET instance using
reduction rules and solving connected components individually. Then, it solves it exactly
using a PARTIAL MAXSAT formulation.

A boolean satisfiability formula consists of boolean variables {x1, x2, ..., x,}, and a set of
clauses where a clause could look like ¢ = —x1 V xo V —z3 V... V 1. Notice that each variable
can appear negated. The MAXSAT problem is to find an assignment that maximizes the
number of satisfied clauses. PARTIAL MAXSAT is a generalization of MAXSAT that divides
clauses into hard clauses that must be satisfied in every feasible assignment and soft clauses
that can be unsatisfied. A solution to the PARTIAL MAXSAT problem is an assignment that
satisfies all hard clauses and maximizes the number of soft clauses satisfied.

Our exact solver first checks the input hypergraph for connectivity. If it contains multiple
connected components, each component is solved independently. Solving a component
involves applying a series of standard HITTING SET reduction rules, as described in Section 3.
If the instance becomes disconnected after reduction, we split it into connected components
again and solve each one separately. Finally, each reduced and connected component is
transformed into a PARTIAL MAXSAT instance. For each vertex v in the hypergraph, we
have a soft clause —x,, and for each hyperedge S € S we add one hard clause V,cgx, that
ensures S is satisfied. This PARTIAL MAXSAT instance is then solved using UWrMaxSat [10]
to compute an optimal solution.

Correctness follows from the fact that each reduction rule preserves optimality and that
connected components can be solved independently since there are no hyperedges between
them. The PARTIAL MAXSAT encoding guarantees optimality by enforcing all hitting con-
straints as hard clauses while minimizing the number of selected vertices through soft clauses.

! https://github.com/KarlsruheMIS/DataReductions

https://github.com/KarlsruheMIS/DataReductions

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

PACE Solver Description: LetsJustCHILS

Yes
Reduce to MWIS —>| Reduce MWIS —> CHILS @ % Build HS Solution
N,
Reduce HS —> =

t

Reduce to HS

Figure 1 Illustration of our heuristic approach for the DOMINATING SET (DS) and HITTING SET
(HS) problem. Dark green are reductions to another problem, while light green is applying data
reductions to reduce the problem instance. Our checks involve the remaining time ¢ and number
of edges m. The MAXIMUM WEIGHTED INDEPENDENT SET (MWIS) check consists of checking the
number of vertices (n > 5000), whether the largest hyperedge size is small (|Smaz| < 32), and if we
have enough memory for the reduction to MWIS.

5 Heuristic

For the heuristic track, we again apply the same HITTING SET reductions as the exact solver.
Then, we reduce the HITTING SET instance to an equivalent instance of VERTEX COVER,
where we again apply known data reductions. The whole reduction procedure is described in
Section 3.

After preprocessing using data reductions, we use the Concurrent Hybrid Iterated Local
Search (CHILS) heuristic for the MAXIMUM WEIGHTED INDEPENDENT SET problem by
GroBmann et al. [5]. An illustration of the heuristic is shown in Figure 1.

In practice, the reduction from HITTING SET to VERTEX COVER is effective only when
the hyperedges are relatively small in size. If not, the resulting VERTEX COVER instance
becomes too large to process effectively. Therefore, we also developed two simple HITTING
SET heuristics to deal with problematic instances.

Simulated Annealing. Simulated annealing is a well-known probabilistic metaheuristic that
is inspired by crystallization in physics [7]. Our implementation works by iteratively making
changes to a feasible hitting set H. At every step, we pick a random vertex u € V from the
hypergraph. Then, we compute a cost ¢ based on the change in the solution size resulting
from removing or including w in the hitting set. If u ¢ H, then ¢ = 1 since the solution
size would increase by one. If u € H, we approximate the cost by counting the number of
hyperedges that the vertex covers alone, that is, c= |{S € S| SN H = {u}}| — 1. Finally,
we change the configuration of the vertex with probability e=¢/7
temperature. In the case where a vertex is removed, we greedily make the solution feasible
again by random additions. The temperature starts at 0.25 and is gradually decreased to
0.08 over the course of 200 million iterations. We repeat multiple cooling cycles as long as
time allows, keeping track of the best solution discovered.

, where T is the current

Iterated Local Search. Iterated local search is another popular metaheuristic that has
been successfully used in previous iterations of the PACE challenge [9]. Unlike simulated
annealing, iterated local search only accepts changes that do not increase the size of the
current hitting set. The general idea is to randomize the solution in a small area, greedily

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

A. Chhabra et al.

search for local improvements where the solution changes, and then check if the new solution
is equal to or better than the old one. If the solution worsens, the changes are undone and
the process is repeated.

6 Conclusion

In summary, LETSJUSTCHILS reduces DOMINATING SET instances to HITTING SET in-
stances, allowing for the same efficient reduction rules to be applied across all tracks. Our
exact solver utilizes a PARTIAL MAXSAT formulation to compute an optimal solution. The
heuristic further reduces the problem to VERTEX COVER and MAXIMUM WEIGHT INDE-
PENDENT SET, leveraging existing work on these problems. Additionally, two lightweight
HITTING SET heuristics ensure that we can still handle instances that are not easily reduced.

—— References

1 Thomas Blasius, Tobias Friedrich, David Stangl, and Christopher Weyand. An efficient branch-
and-bound solver for hitting set. In Proceedings of the Symposium on Algorithm Engineering
and Ezperiments (ALENEX), pages 209-220. STAM, 2022. doi:10.1137/1.9781611977042.17.

2 M. Ayaz Dzulfikar, Johannes K. Fichte, and Markus Hecher. The PACE 2019 parameterized
algorithms and computational experiments challenge: the fourth iteration. In Proceedings of

the 14th International Symposium on Parameterized and Ezact Computation (IPEC 2019),
pages 25—1. Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2019. doi:10.4230/LIPICS.
IPEC.2019.25.

3 Alexander Gellner, Sebastian Lamm, Christian Schulz, Darren Strash, and Bogdéin Zavalnij.
Boosting data reduction for the maximum weight independent set problem using increas-
ing transformations. In 2021 Proceedings of the Workshop on Algorithm Engineering and
Ezperiments (ALENEX), pages 128-142. STAM, 2021. doi:10.1137/1.9781611976472.10.

4 Ernestine Grofmann, Kenneth Langedal, and Christian Schulz. A comprehensive survey
of data reduction rules for the maximum weighted independent set problem. 2024. URL:
https://arxiv.org/abs/2412.09303, arXiv:2412.09303.

5 Ernestine Grofmann, Kenneth Langedal, and Christian Schulz. Accelerating reductions using
graph neural networks and a new concurrent local search for the maximum weight independent
set problem, 2025. URL: https://arxiv.org/abs/2412.14198, arXiv:2412.14198.

6 Ashwin Jacob, Fahad Panolan, Venkatesh Raman, and Vibha Sahlot. Structural paramet-
erizations with modulator oblivion. Algorithmica, 84(8):2335-2357, 2022. doi:10.1007/
S00453-022-00971-7.

7 Scott Kirkpatrick, C. Daniel Gelatt Jr, and Mario P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671-680, 1983. doi:10.1126/science.220.4598.671.

8 Kenneth Langedal, Marlon Dittes, Henning Woydt, and Ernestine Gromann. Kenneth-
Langedal/PACE2025: PACE-2025, June 2025. doi:10.5281/zenodo.15767385.

9 Helena R. Lourenco, Olivier C. Martin, and Thomas Stiitzle. Iterated local search. In Handbook
of metaheuristics, pages 320-353. Springer, 2003. doi:10.1007/0-306-48056-5_11.

10 Marek Piotréw. UWrMaxSat: Efficient solver for MaxSAT and pseudo-boolean problems.
In Proceedings of the 2020 IEEE 32nd International Conference on Tools with Artificial
Intelligence (ICTAI), pages 132-136, 2020. doi:10.1109/ICTAI50040.2020.00031.

11 Karsten Weihe. Covering trains by stations or the power of data reduction. Proceedings of
Algorithms and Experiments, ALEX, pages 1-8, 1998.

https://doi.org/10.1137/1.9781611977042.17
https://doi.org/10.4230/LIPICS.IPEC.2019.25
https://doi.org/10.4230/LIPICS.IPEC.2019.25
https://doi.org/10.4230/LIPICS.IPEC.2019.25
https://doi.org/10.1137/1.9781611976472.10
https://arxiv.org/abs/2412.09303
https://arxiv.org/abs/2412.09303
https://arxiv.org/abs/2412.14198
https://arxiv.org/abs/2412.14198
https://doi.org/10.1007/S00453-022-00971-7
https://doi.org/10.1007/S00453-022-00971-7
https://doi.org/10.1007/S00453-022-00971-7
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.5281/zenodo.15767385
https://doi.org/10.1007/0-306-48056-5_11
https://doi.org/10.1109/ICTAI50040.2020.00031

	1 Introduction
	2 Preliminaries
	3 Reductions
	4 Exact
	5 Heuristic
	6 Conclusion

