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Abstract18

This is a short description of our exact solver and heuristic, which was submitted to the PACE 202519

challenge on Dominating Set and Hitting Set. Our solvers reduce the Dominating Set to the20

Hitting Set problem, making both problems equivalent to our solvers. Then, we use known data21

reduction rules for the Hitting Set problem to simplify the instances for both the exact solver22

and the heuristic. For the exact track, we pass the reduced instance to a MaxSAT solver that tries23

to compute an optimal solution. For the heuristic, we further reduce the problem to the Vertex24

Cover problem, where we apply known reductions for that problem. On this reduced instance, we25

run the CHILS heuristic to quickly compute a high-quality solution. Since the reduction to Vertex26

Cover can significantly increase the graph size, we also utilize two simple heuristics for the Hitting27

Set problem, which we use as a backup for particularly problematic instances.28
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1 Introduction34

This document presents LetsJustCHILS, an exact algorithm and heuristic submitted to all35

tracks of the 2025 iteration of the Parameterized Algorithms and Computational Experiments36

(PACE) challenge on the Dominating Set and Hitting Set problems. Our solvers employ37

a combination of effective data reduction techniques, exact solving via a Partial MaxSAT38

formulation, and heuristics based on a reduction to the well-studied Maximum Weight39

Independent Set problem.40

In the following, we first define the problems and notation used in Section 2. Then, we41

present the data reduction rules used across all tracks in Section 3. Finally, we provide42

detailed descriptions of both our exact solver and heuristic in sections 4 and 5.43
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2 Preliminaries44

Let G = (V, E) be an undirected graph with vertex set V and edge set E ⊆ V × V . A45

dominating set is a subset D ⊆ V such that every vertex u ∈ V is either in D or adjacent46

to a vertex in D. The Dominating Set problem is that of finding a dominating set with47

the smallest cardinality. A hypergraph is defined as G = (V, S) where V is a set of vertices48

and S is a collection of sets, where each S ∈ S is a subset of the vertices in the graph, later49

referred to as a hyperedge. For a vertex u in a hypergraph, let S(u) = {S ∈ S | u ∈ S} be the50

hyperedges containing u as an endpoint. A hitting set for a hypergraph is a subset H ⊆ V51

such that every set S ∈ S contains at least one element from H. The Hitting Set problem52

asks for a hitting set with the smallest cardinality.53

3 Reductions54

Our algorithm makes use of reductions between problems, as well as data reductions. We55

detail each reduction here.56

From Dominating Set to Hitting Set. It is well known that the Dominating Set problem57

can be reduced to the Hitting Set problem by considering every induced neighborhood as58

a hyperedge. Specifically, for a given graph G, we construct a hypergraph H with the same59

vertex set V and for each vertex v ∈ V , we add a hyperedge corresponding to the closed60

neighborhood of v, defined as N [v] = {v} ∪ {u ∈ V | {u, v} ∈ E}. A dominating set in G then61

corresponds to a hitting set in H that intersects every such hyperedge. As a first step in our62

exact and heuristic Dominating Set solvers, we perform this reduction to Hitting Set.63

Hitting Set Data Reductions. We exhaustively apply the following data reductions as64

described by Bläsius et al. [1] to the hitting set instance. The domination rules were first65

introduced by Weihe [11].66

▶ Reduction 1 (Degree one hyperedge). Let S ∈ S such that |S| = 1 and u ∈ S be its single67

element. Then, u can be included in the hitting set, and all hyperedges containing u can be68

removed.69

▶ Reduction 2 (Domination vertex). Let u, v ∈ V such that S(u) ⊆ S(v). Then, we can70

remove u from the hypergraph since any optimal solution either includes v, or can substitute71

u with v without loss of optimality.72

▶ Reduction 3 (Domination hyperedge). Let S1, S2 ∈ S such that S1 ⊆ S2. Then, we can73

safely delete S2 from S since any hitting set that hits S1 will always hit S2 as well.74

From Hitting Set to Vertex Cover. After the Hitting Set reductions, our heuristics75

continue by reducing the Hitting Set problem to the Vertex Cover problem. This76

reduction works by encoding each hyperedge as a clique [6]. The general idea is to add77

one vertex vu for every vertex u ∈ V , and for each hyperedge S ∈ S, add |S| new vertices78

corresponding to the elements in S. That is, for each u ∈ S, add a new vertex vuS . We then79

connect all the vertices originating from the same set S ∈ S to form a clique. Finally, for every80

vertex originating from a set, we add the edge {vuS , vu}. The intuition for this reduction is81

that each added clique ensures that at least one vertex from the corresponding hyperedge82

must be included in the Vertex Cover instance. That is because each clique needs at least83

|S| − 1 vertices in the vertex cover. For the one vuS that we do not include, we must include84
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vu instead. An optimal solution could include all the vertices in a clique. However, in that85

case, we can greedily swap any vertex vuS in that clique for the corresponding vu and still86

have an optimal solution. Lifting the solution back to the Hitting Set problem is done by87

simply reading off the configuration of the vertices corresponding to the hitting set vertices.88

The motivation for using the Vertex Cover problem instead of Hitting Set is the89

ample amount of experimental work already done for this problem. Considering the Min-90

imum Vertex Cover problem and its complementary problems, Maximum Independent91

Set and Maximum Clique, as well as their weighted generalizations, more than thirty92

experimental publications have been made in the last twenty years [4]. There is also an93

increasing focus on data reduction in this area. The Minimum Vertex Cover problem94

was also the focus for the 2019 iteration of the PACE challenge [2].95

Vertex Cover Data Reductions. Once we have an equivalent Vertex Cover instance, we96

use a wide range of known reductions for that problem. We actually use a library designed97

for reducing the Maximum Weight Independent Set problem. However, we can set all98

the weights to one and read off the complement of the resulting independent set to get our99

vertex cover. For an overview of these reductions, see the survey by Großmann et al. [4] that100

also comes with a reference implementation1. One especially important reduction for our101

heuristic is the weighted struction by Gellner et al. [3].102

4 Exact103

For the exact track, our approach first reduces the size of the Hitting Set instance using104

reduction rules and solving connected components individually. Then, it solves it exactly105

using a Partial MaxSAT formulation.106

A boolean satisfiability formula consists of boolean variables {x1, x2, ..., xn}, and a set of107

clauses where a clause could look like c = ¬x1 ∨ x2 ∨ ¬x3 ∨ ... ∨ xk. Notice that each variable108

can appear negated. The MaxSAT problem is to find an assignment that maximizes the109

number of satisfied clauses. Partial MaxSAT is a generalization of MaxSAT that divides110

clauses into hard clauses that must be satisfied in every feasible assignment and soft clauses111

that can be unsatisfied. A solution to the Partial MaxSAT problem is an assignment that112

satisfies all hard clauses and maximizes the number of soft clauses satisfied.113

Our exact solver first checks the input hypergraph for connectivity. If it contains multiple114

connected components, each component is solved independently. Solving a component115

involves applying a series of standard Hitting Set reduction rules, as described in Section 3.116

If the instance becomes disconnected after reduction, we split it into connected components117

again and solve each one separately. Finally, each reduced and connected component is118

transformed into a Partial MaxSAT instance. For each vertex v in the hypergraph, we119

have a soft clause ¬xv, and for each hyperedge S ∈ S we add one hard clause ∨v∈Sxv that120

ensures S is satisfied. This Partial MaxSAT instance is then solved using UWrMaxSat [10]121

to compute an optimal solution.122

Correctness follows from the fact that each reduction rule preserves optimality and that123

connected components can be solved independently since there are no hyperedges between124

them. The Partial MaxSAT encoding guarantees optimality by enforcing all hitting con-125

straints as hard clauses while minimizing the number of selected vertices through soft clauses.126

1 https://github.com/KarlsruheMIS/DataReductions

https://github.com/KarlsruheMIS/DataReductions
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Figure 1 Illustration of our heuristic approach for the Dominating Set (DS) and Hitting Set
(HS) problem. Dark green are reductions to another problem, while light green is applying data
reductions to reduce the problem instance. Our checks involve the remaining time t and number
of edges m. The Maximum Weighted Independent Set (MWIS) check consists of checking the
number of vertices (n > 5 000), whether the largest hyperedge size is small (|Smax| ≤ 32), and if we
have enough memory for the reduction to MWIS.

5 Heuristic127

For the heuristic track, we again apply the same Hitting Set reductions as the exact solver.128

Then, we reduce the Hitting Set instance to an equivalent instance of Vertex Cover,129

where we again apply known data reductions. The whole reduction procedure is described in130

Section 3.131

After preprocessing using data reductions, we use the Concurrent Hybrid Iterated Local132

Search (CHILS) heuristic for the Maximum Weighted Independent Set problem by133

Großmann et al. [5]. An illustration of the heuristic is shown in Figure 1.134

In practice, the reduction from Hitting Set to Vertex Cover is effective only when135

the hyperedges are relatively small in size. If not, the resulting Vertex Cover instance136

becomes too large to process effectively. Therefore, we also developed two simple Hitting137

Set heuristics to deal with problematic instances.138

Simulated Annealing. Simulated annealing is a well-known probabilistic metaheuristic that139

is inspired by crystallization in physics [7]. Our implementation works by iteratively making140

changes to a feasible hitting set H. At every step, we pick a random vertex u ∈ V from the141

hypergraph. Then, we compute a cost c based on the change in the solution size resulting142

from removing or including u in the hitting set. If u /∈ H, then c = 1 since the solution143

size would increase by one. If u ∈ H, we approximate the cost by counting the number of144

hyperedges that the vertex covers alone, that is, c = |{S ∈ S | S ∩ H = {u}}| − 1. Finally,145

we change the configuration of the vertex with probability e−c/T , where T is the current146

temperature. In the case where a vertex is removed, we greedily make the solution feasible147

again by random additions. The temperature starts at 0.25 and is gradually decreased to148

0.08 over the course of 200 million iterations. We repeat multiple cooling cycles as long as149

time allows, keeping track of the best solution discovered.150

Iterated Local Search. Iterated local search is another popular metaheuristic that has151

been successfully used in previous iterations of the PACE challenge [9]. Unlike simulated152

annealing, iterated local search only accepts changes that do not increase the size of the153

current hitting set. The general idea is to randomize the solution in a small area, greedily154
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search for local improvements where the solution changes, and then check if the new solution155

is equal to or better than the old one. If the solution worsens, the changes are undone and156

the process is repeated.157

6 Conclusion158

In summary, LetsJustCHILS reduces Dominating Set instances to Hitting Set in-159

stances, allowing for the same efficient reduction rules to be applied across all tracks. Our160

exact solver utilizes a Partial MaxSAT formulation to compute an optimal solution. The161

heuristic further reduces the problem to Vertex Cover and Maximum Weight Inde-162

pendent Set, leveraging existing work on these problems. Additionally, two lightweight163

Hitting Set heuristics ensure that we can still handle instances that are not easily reduced.164
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