
PaceYourself: Heuristic and Exact Solvers for the
Minimum Dominating Set Problem
Lukas Geis #

Goethe University Frankfurt, Germany

Alexander Leonhardt #

Goethe University Frankfurt, Germany

Johannes Meintrup #

THM, University of Applied Sciences Mittelhessen, Gießen, Germany

Ulrich Meyer #

Goethe University Frankfurt, Germany

Manuel Penschuck #

Goethe University Frankfurt, Germany

Abstract1

Minimum-Dominating Set is a classical NP-complete problem. Given graph G, it asks to compute2

a smallest subset of nodes D ⊆ V (G) such that each node of G has at least one neighbor in D or is3

in D itself.4

We submit two solvers to the PACE 2025 challenge, one to the exact track and one to the5

heuristic track. Both algorithms rely on heavy preprocessing with —to the best of our knowledge—6

novel reduction rules for the Dominating Set problem. The exact solver utilizes a reduction to7

the MaxSat problem to correctly identify a dominating set of minimum cardinality. The heuristic8

solver uses a randomized greedy local search to iteratively improve upon an initial dominating set as9

fast as possible.10

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms →
Graph algorithms analysis

Keywords and phrases Dominating Set, Reduction Rule, Data Reduction, Practical Algorithm

Acknowledgements We would like to sincerely thank M. Grobler, S.Siebertz, and everyone else
involved for their efforts in organizing PACE2025.

1 Introduction11

In this document we describe an exact and a heuristic solver for the Minimum-Dominating12

Set. Both share the preprocessing phase outline in Section 3. It uses only safe data reduction13

rules to shrink the input instances, i.e., rules that allow us to recover the cardinality of an14

optimal solution. To the best of our knowledge, most of these data reduction rules were not15

described before — at least not in the context of Minimum-Dominating Set.16

After preprocessing, our exact solver translates the instance into a MaxSat formulation17

that is handed over to external solvers (see Section 4). As discussed in Section 5, our heuristic18

uses repeated runs of a greedy search (using two different scoring functions) with randomized19

tie-braking for bootstrapping. It then relies on a carefully engineered local search scheme to20

optimize these initial solutions.21

2 Preliminaries and Notation22

Let G = (V, E) be an undirected graph with n := |V | nodes and m := |E| (unweighted) edges.23

We denote the open neighborhood of a node u ∈ V with N(u) := {v ∈ V | {u, v} ∈ E, u ̸= v}24

and the closed neighborhood of u with N [u] = N(u) ∪ {u}. We define the degree deg(u) =25

© Jane Open Access and Joan R. Public;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:8

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lukas.geis@ae.cs.uni-frankfurt.de
mailto:alexander.leonhardt@ae.cs.uni-frankfurt.de
mailto:johannes.meintrup@mni.th.de
https://orcid.org/0000-0003-4001-1153
mailto:umeyer@ae.cs.uni-frankfurt.de
mailto:mpenschuck@ae.cs.uni-frankfurt.de
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 PaceYourself: Solvers for the Minimum Dominating Set Problem

|N(u)| of a node u ∈ V as the number of (open) neighbors. For some X ⊆ V , we use26

G[X] = (X, EX) to denote the vertex-induced subgraph of G = (V, E) where EX =27

{{u, v} ∈ E | u, v ∈ X}.28

The Minimum-Dominating Set asks to find a subset D ⊆ V that is as small as possible,29

such that for every node u ∈ V , we have N [u] ∩D ̸= ∅. Furthermore, let V = U ∪M be a30

partition into the set of nodes U that have exactly one neighboring node in D in their closed31

neighborhood, and all remaining nodes M. We define NU [u] = N [u] ∩ U , as the uniquely32

covered neighbors of u. If u ∈ D we say the nodes NU [u] are uniquely covered by u.33

3 Internal representation and preprocessing34

Before running the main algorithms, we first attempt to reduce the size of the input graph G.35

To this end, we apply a multitude of reduction rules that may (i) modify the instance itself36

(delete nodes or edges) and (ii) assign nodes to the following (possibly overlapping) classes:37

Selected nodes D will become part of the solution set (i.e., there is an optimal dominating38

set including these nodes)39

Covered nodes C have at least one node in their closed neighborhood in D (this implies40

that D ⊆ C). Roughly speaking, nodes in C do not impose constraints, but may be useful41

to cover their neighbors.42

Redundant1 nodes R are conceptually the opposite of covered nodes: a node u ∈ R44

may not be added into the solution D, and thus requires at least one of its open neighbors45

to be selected. Observe that this class introduces additional constraints to reduce the46

search space by identifying “superfluous” nodes: To add a node u into R, we have to47

proof that there exists a Minimum-Dominating Set D′ that does not contain R∪ {u}.48

As shortcuts, we define the complements D = V \D, as well as C = V \ C, and R = V \R.49

Thus, we can fully describe some intermediate state by (G′,D, C,R), where G′ is the52

modified graph.2 All our rules operate on this tuple. Before the first application, we initialize53

it as (G,D0,D0, ∅), where G is the input graph and D0 = {u ∈ V | deg(u) = 0} the set of54

isolated vertices. After this point, all isolated nodes can be ignored.55

Identifying redundant nodes R often boils down to a simple exchange-argument in which56

a neighbor is always at least as good as the redundant node itself. For example, consider57

two nodes u, v ∈ V , u ≠ v with N [u] ⊆ N [v]. Then, the only ‘benefit’ of adding u into the58

dominating set D is to cover nodes in N [u]. But because N [v] is a superset of N [u], adding59

v instead of u never yields a worse solution. Hence, we say that u is subset-dominated by v60

and can thus be marked as redundant (if v is not already marked as redundant).61

We maintain the invariant that a classification cannot be undone, i.e., we may only add62

new nodes into the aforementioned sets D, C, and R, but never delete existing ones. Since63

our rules are often applied iteratively, some care must be taken to uphold this invariant. For64

example, we need appropriate tie-breaking in the aforementioned subset-domination case to65

ensure that u and v do not change roles — even if they become twins (i.e., N [u] = N [v]) in66

later stages of the reductions.67

This monotonic invariant is a quite important design decision in our solver, as it prevents68

“destructive interference” between rules. For instance, it generally is not possible to gleam69

1 The solver implementation refers to redundant nodes as NeverSelect.43
2 The LongPaths rule introduces a gadget, which requires additional post-processing. It is the only

exception to this claim.
50

51

J. Open Access and J. R. Public 23:3

from (G′,D, C,R), why some previous decision was correct. Yet if we uphold the monotonicity70

and show that each rule is safe on it own, the overall safety follows inductively.71

Trivial pruning based on node classes72

The node classifications are often sufficient to shrink the graph. The key idea is that only73

non-covered nodes u ∈ C can act as ‘witnesses’ to put a neighbor v ∈ N [u] into D. Similarly,74

only non-redundant nodes v ∈ R are eligible to be put in D in the first place. Then consider75

a node u ∈ V :76

If u ∈ C ∧ u ∈ R: Since the node is redundant, it must never be added to D. As it is77

already covered, it will also never act as a witness to select one its neighbors. Thus, we78

can safely remove u and all its incident edges from G.79

If u ∈ C ∧ u ∈ R, the node is covered. But as it is not classified as redundant, it might80

still be put u into D to cover a subset of neighbors in N(u). However, if a neighbor81

v ∈ N(u) is already covered, it will not act as a witness for u and the edge {u, v} can82

thus be safely deleted from G.83

If u ∈ C ∧ u ∈ R, the redundant node u can still act as witness for one of it neighbors84

N(u) — but only for non-redundant neighbors N(u) \ R. Hence, if v ∈ N(u) is also85

marked as redundant, the edge {u, v} can be safely deleted.86

We run this deletion-scheme after every application of every rule. Thus, we always assume87

that the input provided to a rule contains no edges between a pair of redundant nodes, no88

edges between a pair of covered nodes, and that all nodes that are covered and redundant89

have degree 0. At the same time, most reduction rules are phrased (and implemented) only90

in terms of adding nodes to classes; while implying the deletions.91

We applied the following reduction rules exhaustively:92

CoveredLeaf. If a node u is covered and has at most 1 non-covered neighbor v ∈ N(u),93

mark u as redundant (R ← R∪ {u}) — this implicitly deletes u and {u, v} from G. This94

rule is safe, since the only benefit of taking u into D is to cover v which can also be achieved95

by v (or any other neighbor of v). It is also the only rule that is part of the deletion-scheme96

itself and is thus run after every application of every other rule. In the special case that97

v ∈ R and N(v) = {u}, add u to D instead and mark v as covered — also deleting {u, v}98

from G.99

SubsetRule. This rule classifies nodes as redundant by the aforementioned subset-domination100

property. If N [u] ⊆ N [v], then mark u as redundant. In case of a tie, break in favor of the101

node with higher index. We extend this notion by observing that only neighbors that are102

not already marked as covered are relevant for this property. Let NC [u] = N [u] \ C denote103

the subset of the closed neighborhood of u that is not covered yet. If NC [u] ⊆ NC [v], mark u104

as redundant since the subset of potential witnesses for v is a superset of the set of potential105

witnesses for u.106

RuleOne. For a node u, partition its neighborhood N(u) into three distinct sets:107

N1(u) := {v ∈ N(u) | N(v) \N [u] ̸= ∅},108

N2(u) := {v ∈ N(u) \N1(u) | N(v) ∩N1(u) ̸= ∅},109

N3(u) := N(u) \N1(u) \N2(u).110

Alber et al. show in [1] that if |N3(u)| > 0, it is optimal to put u into D and delete111

N2(u) ∪ N3(u) from the graph — replacing it with a single gadget leaf node. In our112

framework, we instead set C ← C ∪ N [u] and D ← D ∪ {u}. We use a novel linear-time113

implementation of this rule that we describe and engineer in detail in [3].114

CVIT 2016

23:4 PaceYourself: Solvers for the Minimum Dominating Set Problem

Using ideas of SubsetRule, we further alter the original definition by putting every115

v ∈ N1(u) with N(v) \N [u] ⊆ C into N2(u) instead. This is correct as u subset-dominates v116

which is the criterion for nodes in N2(u).117

SubsetRuleTwo. Alber et al. extend RuleOne to pairs of nodes in a rule they dub RuleTwo [1].118

For u, v ∈ V, u ̸= v, we define N(u, v) = N(u) ∪N(v) and N [u, v] = N [u] ∪N [v]:119

N1(u, v) := {x ∈ N(u, v) | N(x) \N [u, v] ̸= ∅},120

N2(u, v) := {x ∈ N(u, v) \N1(u, v) | N(x) ∩N1(u, v) ̸= ∅},121

N3(u, v) := N(u, v) \N1(u, v) \N2(u, v).122

If |N3(u, v)| > 1 and no node in N2(u, v)∪N3(u, v) is incident to every node in N3(u, v), one123

can either add u and/or v to D and/or mark every node in N2(u, v)∪N3(u, v) as redundant. As124

the original rule is — even with optimizations of [3] — prohibitively slow on bigger instances,125

we restrict ourselves to a subset of RuleTwo in which every node x ∈ N2(u, v) ∪ N3(u, v)126

is either subset-dominated by u or v, or connected to both u and v. We also apply similar127

changes as in RuleOne for classification of nodes in N2(u, v).128

RedundantTwins. SubsetRule and SubsetRuleTwo lead to many redundant nodes R. After129

deleting all edges between redundant endpoints, redundant nodes can become twins (this130

happens quite often in the PACE dataset). Since a single witness suffices, all but one node131

of each set of twins can be removed.132

Isolated. If every neighbor N(u) of some node u ∈ C is marked as redundant, we add u to133

the solution D. Thereby we also cover all neighbors, which implies their deletion.134

RedundantCover. Consider a “redundant triangle” on pairwise different nodes r, u, v ∈ V135

where node r ∈ R; as we remove all edges between redundant nodes, we know that u, v ∈ R.136

Since node r must not be added to the solution, we further know that at least u or v will137

become part of the solution and then cover the other two. Thus, u and v do not benefit from138

neighbors w ∈ N(u) ∪N(v) that may provide coverage for them. This allows us to delete all139

edges {u, w} to covered neighbors w ∈ N(u) ∩ C (and analogously for v).140

VertexCover. Consider a “redundant triangle” on pairwise different nodes r, u, v ∈ V where141

node r ∈ R (see rule RedundantCover). Since either u or v need to be added to the solution,142

we can interpret it as a (trivial) vertex cover problem on the baseline edge {u, v}. Based143

on this observation, we conceptually compute a “vertex cover graph” GV C consisting of all144

baseline edges of redundant triangles.145

Now we solve vertex cover on special structures in GV C ; more specifically, the only146

structure which we identified sufficiently frequent are cliques. Observe that the vertex cover147

of any complete graph Kn consists of n− 1 nodes. Thus, we search for a (maximal) clique C148

in GV C which has at least one “internal” node u ∈ C, s.t. all neighbors are either in the149

clique or part of redundant triangles that formed the clique. Then, we assign C \ {u} to the150

solution covering all neighbors N [C \ {u}]. This implicitly deletes C and all its redundant151

triangles.152

SmallExact. We may compute a Minimum-Dominating Set as the union of optimal153

solutions for each connected component. Even if the input is connected, previous reduction154

rules may delete sufficiently many edges and nodes to disconnect parts of the graph. At the155

same time, small connected components can be dealt with generic solvers for mixed integer156

linear programs (MILP). Thus, after all other rules have been exhausted, we search for small157

connected components. For each small component, we construct an ILP formulation and158

attempt to solve it using HiGHS [5] with a very short timeout. To reduce overheads, we159

combine sufficiently small components into a single ILP problem.160

J. Open Access and J. R. Public 23:5

The ILP is constructed in the straight-forward manner (for simplicity we formulate it161

for the whole graph; restriction to subgraphs is trivial): Each non-redundant node u ∈ R162

corresponds to a binary variable xu and we want to minimize their sum
∑

u xu. Each163

uncovered node u ∈ C adds the constraint
∑

v∈(N [u]\R) xv ≥ 1. As an optimization, we can164

drop the following constraints: Consider an induced triangle on the three different nodes165

r, u, v ∈ V where r ∈ R. Thus, node r forces at least u or v into the solution; the edge166

{u, v} ensures that either will cover the other. Hence, we can omit the constraints of u and167

v (which may have high degree!) in favor of the simple constraint xu + xv ≥ 1.168

ArticulationPoint. An articulation point u ∈ V is a cut-vertex, whose removal disconnects169

a component. The set A ⊆ V of all articulation points in a graph can be computed in linear170

time. [4] For each node a ∈ A, we test whether its removal results in at least one small171

connected components C ⊆ V . Then, we attempt to solve the subproblem G[C ′] induced by172

C ′ = C ∪ {a} using the ILP formulation discussed for rule SmallExact.173

There is one complication: by restricting to C ′, the ILP does not encode the full context174

anymore. Without this, we cannot properly decide whether in a globally optimal solution (i)175

node a covers itself, and/or whether a node (ii) in C, or (iii) in V \ C ′ takes over this role.176

Suppose that all optimal global solutions cover a only from the outside (i.e., case iii).177

Then, requiring the G[C ′] to cover a “from within” leads to suboptimal solutions. To prevent178

this case, we treat a as already being covered while solving the ILP.179

This of course leads to issues, if globally optimal solutions do, in fact, require a to180

be covered from within C ′. Then there are two cases: either there exists a minimum-181

Dominating Set on G[C ′] that includes node a. Otherwise, adding a will increase the182

solution size by one. Thus, we setup a weighted variant of the ILP that is biased towards183

nodes near a; formally, the cost function to minimize becomes
∑

u αuxu, where184

αu =


1− 2ε if u = a

1− ε if u ∈ N(a)
1 otherwise

. (1)185

For 0 < ε < 1/(2|C ′|), this will select a Minimum-Dominating Set on C ′ and favor186

those that include a, or (with smaller priority) a neighbor of a. It will, however, never187

increase the solution size on G[C ′].188

LongPaths. The long path rule searches for induced paths P = (s, u1, u2, . . . , uk, t) in G189

where deg(ui) = 2, ∀i : 1 ≤ i ≤ k. We implement various special cases if s = t (i.e., P is a190

cycle) or either one or both endpoints ei are leafs. These are already implied by RuleOne,191

SmallExact, or ArticulationPoint but can be more efficiently addressed here. However,192

since correctness follows from these rules, we omit a detailed discussion here.193

The remaining case is s ̸= t ∧ deg(s) > 2 ∧ deg(t) > 2. As soon as any of the nodes194

in P is covered or redundant, we can optimally solve the path in a single scan. Otherwise195

if all nodes are unclassified and k ≥ 5, we can shorten the path. In this case, we delete196

the nodes u2, . . . , u1+3ℓ (where ℓ ∈ N) and instead add the edge {u1, u3ℓ+2}. We record the197

removed edges. After the solver computed a solution on the reduced graph, a post-processing198

reintroduces the removed edges and solves them in a single scan based on the solved context.199

4 Exact Solver200

Our exact solver is explicitly designed to test the effectiveness of our reduction rules when201

preprocessing inputs for unmodified off-the-shelve solvers. We consider this an interesting line202

CVIT 2016

23:6 PaceYourself: Solvers for the Minimum Dominating Set Problem

of inquiry, since general-purpose solvers integrate extensive advancements in solving broad203

optimization problems, whereas problem-specific preprocessing can significantly leverage204

domain-specific knowledge to enhance performance.205

To this end, we conducted experiments with several ILP solvers (including HiGHS, gurobi,211

coin-cbc, scip) and MaxSat solvers (most submissions of the MaxSAT 20243 competition).212

Ultimately, two different MaxSat solvers were selected since their performance characteristics213

complement quite nicely: after preprocessing, we first run UWrMaxSat4 by M. Piotrów with214

a timeout of 600s; if no solution was found within the time budget, we start EvalMaxSAT5
215

by F. Avellaneda.216

Both solvers support the concept of soft and hard constraints, where all hard constraints217

have to be satisfied while minimizing the number of violated soft constraints. Similarly218

to the ILP formulation discussed earlier, each non-redundant nodes is assigned a binary219

predicate xu; where node u ∈ V is part of the solution D iff xu = 1. Each non-covered220

neighbor then emits a hard constraint that at least one node in its closed neighbors must be221

included. In order to minimize the number of selected nodes, we produce a soft constraint222

¬xu for each predicate xu.223

5 Heuristic Solver224

The strategy of our heuristic solver is based on a local search heuristic, which has been225

shown to work well for finding minimum dominating sets [8], and a wide variety of other226

NP-complete problems [2, 6]. Before running the search however, we remap and relabel227

(G,D, C,R) to the induced subgraph (G′,D′, C′,R′) that does not contain isolated vertices.228

As each node in D is isolated after our deletion scheme, the induced subgraph has no nodes in229

D′ at the start. After running the local search, we map the resulting D′ back to the original230

graph concatenating it with the preprocessed D to obtain a valid dominating set for G.231

In each iteration of the local search process the heuristic solver chooses between one of232

two possible actions:233

Eviction (rarely). Evict a single node v from the dominating set D′ to form D′
t = D′ \ {v}.234

In the following we greedily add nodes to D′
t, while avoiding v, until D′

t is a valid dominating235

set again.236

Swap (frequently). Pick a vertex v ∈ D′ for which there exists a (x, 1)-swap for x ≥ 1.237

A (x, 1)-swap creates a new valid dominating set D′
t = (D′ \ {v1, v2, . . . , vx}) ∪ {v} by the238

addition of a single new vertex and the removal of x former constituents of D′.239

As opposed to the local search by Zhu et al. [8], we maintain the invariant that at the240

end of each round the ensuing dominating set D′ is valid. This is an important design choice,241

as it confers some algorithmic benefits while having mixed effects on the traversal of the242

solution space by the local search procedure. On one hand it constrains the new solutions243

that can be possibly reached by one of the aforementioned actions. On the other hand it244

implies that while searching for a better solution we always stay close to an actual solution245

instead of (possibly) straying arbitrarily far from any valid solution. But most importantly,246

as stated before, the swap action is the most prevalent one in our solver, and maintaining247

3 https://maxsat-evaluations.github.io/2024/.206
4 https://maxsat-evaluations.github.io/2024/mse24-solver-src/exact/unweighted/

UWrMaxSat-SCIP-MaxPre.zip based on [7]
207

208
5 https://maxsat-evaluations.github.io/2024/mse24-solver-src/exact/unweighted/EvalMaxSAT_

2024.zip
209

210

https://maxsat-evaluations.github.io/2024/
https://maxsat-evaluations.github.io/2024/mse24-solver-src/exact/unweighted/UWrMaxSat-SCIP-MaxPre.zip
https://maxsat-evaluations.github.io/2024/mse24-solver-src/exact/unweighted/UWrMaxSat-SCIP-MaxPre.zip
https://maxsat-evaluations.github.io/2024/mse24-solver-src/exact/unweighted/EvalMaxSAT_2024.zip
https://maxsat-evaluations.github.io/2024/mse24-solver-src/exact/unweighted/EvalMaxSAT_2024.zip

J. Open Access and J. R. Public 23:7

the previously mentioned invariant allows for an efficient datastructure to maintain a set of248

eligible canidates for it.249

Throughout the local search procedure, we dynamically maintain a tree Tv for each node250

v ∈ D that keeps track of the intersection of the closed neighborhoods of all nodes in NU [v].251

Recall that NU [v] are the neighbors of v that are adjacent to exactly one node in D′. Since252

v ∈ D this implies v is the one and only node in the dominating set adjacent to these253

neighbors. Clearly, there exists an (x, 1)-swap if there is a set S = {v1, . . . , vk} ⊆ D′ and a254

vertex u ∈ D′ such that255 ⋃
1≤i≤k

NU [vi] ⊆ N [u] (2)256

where 1 ≤ x ≤ k. Observe, that the previous condition is necessary but not sufficient to260

establish x = k due to overlapping neighborhoods.6 Therefore, if we dynamically maintain the261

tree Tv with vertex set NU [v] where each inner node u ∈ NU [v] of the tree is the intersection262

of the closed neighborhoods of all nodes in the subtree rooted in u, we can make several263

observations:264

1. The root of Tv contains all nodes that are eligible for a (1, 1)-swap where v is swapped265

out of the dominating set.266

2. We can maintain this datastructure in O(m)7 space and O(∆ log ∆) time per update of268

Tv where ∆ is the maximum degree of the input graph.269

3. If we maintain for all nodes u ∈ D′ a counter how often they appear in the root of some270

tree Tv we recover k for the condition mentioned in Equation (2).271

By virtue of the previous observations we are able to use a random weighted sampling273

procedure where the weight of u ∈ D′ is given by wu = 2k where k is the number of nodes274

in D′ for which u is within the root of their respective trees.8 Upon executing a swap we275

dynamically remove and add the former and newly uniquely covered neighbors to and from276

the trees of their respective unique coverer. To support this efficiently, it is essential for277

us to know the unique covering node when (i) a node that was covered by two nodes in278

D′ is now uniquely covered, (ii) a node loses the property of being uniquely covered since279

another neighboring node entered D′. We compactly represent the previously mentioned280

requirements by storing the covering nodes of any node u ∈ V as the XOR’ed signature281 ⊕
v∈N [u]∩D v of the set of u covering nodes. Clearly, addition and removal are the same282

operation depending on the stored XOR’ed signature due to the commutativity of ⊕. If a283

node is uniquely covered the XOR’ed signature is exactly the covering node. This allows to284

store a large set of covering nodes cache-efficiently, while being able to retrieve the unique285

covering node at the aforementioned critical points in time.286

Working set. After any swap we keep track of all nodes within the roots of all dominating287

set nodes whose uniquely covered neighbor sets were shrinked by the most recent swap. We288

preferentially sample multiple times from this working set and tie-break by considering the289

aforementioned score to enhance the locality of our heuristic.290

Clearly, the swap action makes the solver prone to enter local minima, without any means291

to leave them again. Therefore, we evict a single vertex from D′ either if there has been no292

6 Consider for example w, a node neighbored by only two nodes within D′, say v1 and v2 and assume
w /∈ N [u]. Since w ∈ M, the stated condition does not assert that u covers w as well, therefore u cannot
replace both v1 and v2, but it can always replace at least one of them.

257

258

259
7 For this it suffices to see that

⋃
v∈D

NU [v] is always a partition of U .267

8 For practical reasons we clamp k to 5.272

CVIT 2016

23:8 PaceYourself: Solvers for the Minimum Dominating Set Problem

improvement to the current solution for some time, or if the weighted sampling structure is293

empty. We rely on three different procedures each with equal probability when evicting a294

vertex (i) we randomly choose a vertex from D′, (ii) we randomly choose a vertex v ∈ D′
295

where the root of Tv only contains v and tie-break by frequency and age, (iii) we randomly296

choose a vertex v ∈ D′ where root of Tv only contains v and tie-break by the cardinality of297

|NU [u]| and age. Here, the frequency is defined as the number of times a vertex has left D′
298

during the local search and the age is defined as the last iteration that a node has either299

entered of left D′.300

References301

1 Jochen Alber, Michael R. Fellows, and Rolf Niedermeier. Polynomial-time data reduction for302

dominating set. J. ACM, 51(3):363–384, 2004.303

2 Shaowei Cai, Kaile Su, Chuan Luo, and Abdul Sattar. Numvc: An efficient local search304

algorithm for minimum vertex cover. J. Artif. Intell. Res., 46:687–716, 2013.305

3 Lukas Geis, Alexander Leonhardt, Johannes Meintrup, Ulrich Meyer, and Manuel Penschuck.306

Simpler, better, faster, stronger: Revisiting a successfull reduction rule for dominating set.307

2025.308

4 John E. Hopcroft and Robert Endre Tarjan. Efficient algorithms for graph manipulation [H]309

(algorithm 447). Commun. ACM, 16(6):372–378, 1973.310

5 Qi Huangfu and JA Julian Hall. Parallelizing the dual revised simplex method. Mathematical311

Programming Computation, 10(1):119–142, 2018.312

6 Nabil H. Mustafa and Saurabh Ray. PTAS for geometric hitting set problems via local search.313

In SCG, pages 17–22. ACM, 2009.314

7 Marek Piotrów. Uwrmaxsat: Efficient solver for maxsat and pseudo-boolean problems. In315

ICTAI, pages 132–136. IEEE, 2020.316

8 Enqiang Zhu, Yu Zhang, Shengzhi Wang, Darren Strash, and Chanjuan Liu. A dual-mode317

local search algorithm for solving the minimum dominating set problem. Knowl. Based Syst.,318

298:111950, 2024.319

	1 Introduction
	2 Preliminaries and Notation
	3 Internal representation and preprocessing
	4 Exact Solver
	5 Heuristic Solver

