11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

PaceYourself: Heuristic and Exact Solvers for the
Minimum Dominating Set Problem

Lukas Geis &
Goethe University Frankfurt, Germany

Alexander Leonhardt &
Goethe University Frankfurt, Germany

Johannes Meintrup &
THM, University of Applied Sciences Mittelhessen, Gieflen, Germany

Ulrich Meyer &
Goethe University Frankfurt, Germany

Manuel Penschuck &
Goethe University Frankfurt, Germany

—— Abstract

Minimum-DOMINATING SET is a classical NP-complete problem. Given graph G, it asks to compute
a smallest subset of nodes D C V(G) such that each node of G has at least one neighbor in D or is
in D itself.

We submit two solvers to the PACE 2025 challenge, one to the exact track and one to the
heuristic track. Both algorithms rely on heavy preprocessing with —to the best of our knowledge—
novel reduction rules for the DOMINATING SET problem. The exact solver utilizes a reduction to
the MAXSAT problem to correctly identify a dominating set of minimum cardinality. The heuristic

solver uses a randomized greedy local search to iteratively improve upon an initial dominating set as
fast as possible.

2012 ACM Subject Classification Theory of computation — Design and analysis of algorithms —
Graph algorithms analysis

Keywords and phrases Dominating Set, Reduction Rule, Data Reduction, Practical Algorithm

Acknowledgements We would like to sincerely thank M. Grobler, S.Siebertz, and everyone else
involved for their efforts in organizing PACE2025.

1 Introduction

In this document we describe an exact and a heuristic solver for the Minimum-DOMINATING
SET. Both share the preprocessing phase outline in Section 3. It uses only safe data reduction
rules to shrink the input instances, i.e., rules that allow us to recover the cardinality of an
optimal solution. To the best of our knowledge, most of these data reduction rules were not
described before — at least not in the context of Minimum-DOMINATING SET.

After preprocessing, our exact solver translates the instance into a MAXSAT formulation
that is handed over to external solvers (see Section 4). As discussed in Section 5, our heuristic
uses repeated runs of a greedy search (using two different scoring functions) with randomized
tie-braking for bootstrapping. It then relies on a carefully engineered local search scheme to
optimize these initial solutions.

2 Preliminaries and Notation

Let G = (V, E) be an undirected graph with n := |V| nodes and m := |E| (unweighted) edges.
We denote the open neighborhood of a node u € V' with N(u) = {v € V | {u,v} € E,u # v}
and the closed neighborhood of u with N[u] = N(u) U {u}. We define the degree deg(u) =
© Jane Open Access and Joan R. Public;

oY licensed under Creative Commons License CC-BY 4.0
42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1-23:8

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:lukas.geis@ae.cs.uni-frankfurt.de
mailto:alexander.leonhardt@ae.cs.uni-frankfurt.de
mailto:johannes.meintrup@mni.th.de
https://orcid.org/0000-0003-4001-1153
mailto:umeyer@ae.cs.uni-frankfurt.de
mailto:mpenschuck@ae.cs.uni-frankfurt.de
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

44

45

46

47

48

49

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

PaceYourself: Solvers for the Minimum Dominating Set Problem

|N(u)| of a node u € V as the number of (open) neighbors. For some X C V, we use
G[X] = (X, Ex) to denote the vertex-induced subgraph of G = (V| E) where Ex =
{{u,v} € E|u,v e X}.

The Minimum-DOMINATING SET asks to find a subset D C V that is as small as possible,
such that for every node u € V', we have N[u]| N D # (). Furthermore, let V =4 UM be a
partition into the set of nodes U that have exactly one neighboring node in D in their closed
neighborhood, and all remaining nodes M. We define Ny [u] = N[u] NU, as the uniquely
covered neighbors of u. If u € D we say the nodes Ny [u] are uniquely covered by w.

3 Internal representation and preprocessing

Before running the main algorithms, we first attempt to reduce the size of the input graph G.

To this end, we apply a multitude of reduction rules that may (i) modify the instance itself

(delete nodes or edges) and (ii) assign nodes to the following (possibly overlapping) classes:
Selected nodes D will become part of the solution set (i.e., there is an optimal dominating
set including these nodes)
Covered nodes C have at least one node in their closed neighborhood in D (this implies
that D C C). Roughly speaking, nodes in C do not impose constraints, but may be useful
to cover their neighbors.
Redundant! nodes R are conceptually the opposite of covered nodes: a node u € R
may not be added into the solution D, and thus requires at least one of its open neighbors
to be selected. Observe that this class introduces additional constraints to reduce the
search space by identifying “superfluous” nodes: To add a node u into R, we have to
proof that there exists a Minimum-DOMINATING SET D’ that does not contain R U {u}.
As shortcuts, we define the complements D = V \ D, as wellasC = V\C,and R = V \ R.

Thus, we can fully describe some intermediate state by (G',D,C,R), where G’ is the
modified graph.?2 All our rules operate on this tuple. Before the first application, we initialize
it as (G, Dy, Dy, 0), where G is the input graph and Dy = {u € V | deg(u) = 0} the set of
isolated vertices. After this point, all isolated nodes can be ignored.

Identifying redundant nodes R often boils down to a simple exchange-argument in which
a neighbor is always at least as good as the redundant node itself. For example, consider
two nodes u,v € V, u # v with N[u] C N[v]. Then, the only ‘benefit’ of adding v into the
dominating set D is to cover nodes in N[u]. But because N[v] is a superset of Nu], adding
v instead of u never yields a worse solution. Hence, we say that u is subset-dominated by v
and can thus be marked as redundant (if v is not already marked as redundant).

We maintain the invariant that a classification cannot be undone, i.e., we may only add
new nodes into the aforementioned sets D, C, and R, but never delete existing ones. Since
our rules are often applied iteratively, some care must be taken to uphold this invariant. For
example, we need appropriate tie-breaking in the aforementioned subset-domination case to
ensure that u and v do not change roles — even if they become twins (i.e., N[u] = N[v]) in
later stages of the reductions.

This monotonic invariant is a quite important design decision in our solver, as it prevents
“destructive interference” between rules. For instance, it generally is not possible to gleam

I The solver implementation refers to redundant nodes as NeverSelect.

2 The LongPaths rule introduces a gadget, which requires additional post-processing. It is the only
exception to this claim.

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

J. Open Access and J. R. Public

from (G, D,C,R), why some previous decision was correct. Yet if we uphold the monotonicity
and show that each rule is safe on it own, the overall safety follows inductively.

Trivial pruning based on node classes

The node classifications are often sufficient to shrink the graph. The key idea is that only
non-covered nodes u € C can act as ‘witnesses’ to put a neighbor v € N|u] into D. Similarly,
only non-redundant nodes v € R are eligible to be put in D in the first place. Then consider
anode u e V:
If w € C Au € R: Since the node is redundant, it must never be added to D. As it is
already covered, it will also never act as a witness to select one its neighbors. Thus, we
can safely remove u and all its incident edges from G.
If u € C Au € R, the node is covered. But as it is not classified as redundant, it might
still be put u into D to cover a subset of neighbors in N(u). However, if a neighbor
v € N(u) is already covered, it will not act as a witness for v and the edge {u,v} can
thus be safely deleted from G.
If u € C Au € R, the redundant node u can still act as witness for one of it neighbors
N(u) — but only for non-redundant neighbors N(u) \ R. Hence, if v € N(u) is also
marked as redundant, the edge {u,v} can be safely deleted.

We run this deletion-scheme after every application of every rule. Thus, we always assume
that the input provided to a rule contains no edges between a pair of redundant nodes, no
edges between a pair of covered nodes, and that all nodes that are covered and redundant
have degree 0. At the same time, most reduction rules are phrased (and implemented) only
in terms of adding nodes to classes; while implying the deletions.

We applied the following reduction rules exhaustively:

CoveredLeaf. If a node u is covered and has at most 1 non-covered neighbor v € N(u),
mark u as redundant (R <— R U {u}) — this implicitly deletes u and {u,v} from G. This
rule is safe, since the only benefit of taking u into D is to cover v which can also be achieved
by v (or any other neighbor of v). It is also the only rule that is part of the deletion-scheme
itself and is thus run after every application of every other rule. In the special case that
v € R and N(v) = {u}, add u to D instead and mark v as covered — also deleting {u, v}
from G.

SubsetRule. This rule classifies nodes as redundant by the aforementioned subset-domination
property. If N[u] C N[v], then mark u as redundant. In case of a tie, break in favor of the
node with higher index. We extend this notion by observing that only neighbors that are
not already marked as covered are relevant for this property. Let Ne[u] = N[u] \ C denote
the subset of the closed neighborhood of u that is not covered yet. If N¢[u] C Ne[v], mark u
as redundant since the subset of potential witnesses for v is a superset of the set of potential
witnesses for u.

RuleOne. For a node u, partition its neighborhood N(u) into three distinct sets:

Ni(u) :=={v € N(u) | N(v) \ N[u] # 0},

Na(u) = {v € N(u) \ Ni(u) [N(v) 0 Ni(u) # 0},

Ns(u) == N(u) \ Ni(u) \ Na(u).
Alber et al. show in [1] that if |[N5(u)| > 0, it is optimal to put u into D and delete
Ny(u) U N3(u) from the graph — replacing it with a single gadget leaf node. In our
framework, we instead set C < C U N[u] and D < D U {u}. We use a novel linear-time
implementation of this rule that we describe and engineer in detail in [3].

23:3

CVIT 2016

23:4

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

PaceYourself: Solvers for the Minimum Dominating Set Problem

Using ideas of SubsetRule, we further alter the original definition by putting every
v € N1(u) with N(v) \ N[u] C C into N(u) instead. This is correct as u subset-dominates v
which is the criterion for nodes in Na(u).

SubsetRuleTwo. Alber et al. extend RuleOne to pairs of nodes in a rule they dub RuleTwo [1].
For u,v € V,u # v, we define N(u,v) = N(u) UN(v) and Nu,v] = N[u] U N[v]:

Ni(u,v) = A{z € N(u,v) | N(z) \ Nfu, 0] # 0},

Na(u,v) i= {2 € N(u,0)\ Ny(w,0) | N(z) 0 Ny (u,0) £ 0},

Ns(u,v) := N(u,v) \ N1(u,v)\ Na(u,v).
If | N5(u,v)| > 1 and no node in Na(u, v)U N3(u,v) is incident to every node in N3(u,v), one

can either add v and/or v to D and/or mark every node in Na(u, v)UN3(u,v) as redundant. As
the original rule is — even with optimizations of [3] — prohibitively slow on bigger instances,
we restrict ourselves to a subset of RuleTwo in which every node x € Ny(u,v) U N3(u,v)
is either subset-dominated by u or v, or connected to both u and v. We also apply similar
changes as in RuleOne for classification of nodes in Na(u,v).

RedundantTwins. SubsetRule and SubsetRuleTwo lead to many redundant nodes R. After

deleting all edges between redundant endpoints, redundant nodes can become twins (this
happens quite often in the PACE dataset). Since a single witness suffices, all but one node
of each set of twins can be removed.

Isolated. If every neighbor N(u) of some node u € C is marked as redundant, we add u to
the solution D. Thereby we also cover all neighbors, which implies their deletion.

RedundantCover. Consider a “redundant triangle” on pairwise different nodes r,u,v € V

where node r € R; as we remove all edges between redundant nodes, we know that u,v € R.
Since node r must not be added to the solution, we further know that at least v or v will
become part of the solution and then cover the other two. Thus, v and v do not benefit from
neighbors w € N(u) U N(v) that may provide coverage for them. This allows us to delete all
edges {u,w} to covered neighbors w € N(u) NC (and analogously for v).

VertexCover. Consider a “redundant triangle” on pairwise different nodes r,u,v € V' where
node r € R (see rule RedundantCover). Since either u or v need to be added to the solution,
we can interpret it as a (trivial) vertex cover problem on the baseline edge {u,v}. Based
on this observation, we conceptually compute a “vertex cover graph” Gy ¢ consisting of all
baseline edges of redundant triangles.

Now we solve vertex cover on special structures in Gy ¢; more specifically, the only
structure which we identified sufficiently frequent are cliques. Observe that the vertex cover
of any complete graph K, consists of n — 1 nodes. Thus, we search for a (maximal) clique C
in Gy¢ which has at least one “internal” node u € C, s.t. all neighbors are either in the
clique or part of redundant triangles that formed the clique. Then, we assign C'\ {u} to the
solution covering all neighbors N[C'\ {u}]. This implicitly deletes C' and all its redundant
triangles.

SmallExact. We may compute a Minimum-DOMINATING SET as the union of optimal
solutions for each connected component. Even if the input is connected, previous reduction
rules may delete sufficiently many edges and nodes to disconnect parts of the graph. At the
same time, small connected components can be dealt with generic solvers for mixed integer
linear programs (MILP). Thus, after all other rules have been exhausted, we search for small
connected components. For each small component, we construct an ILP formulation and
attempt to solve it using HiGHS [5] with a very short timeout. To reduce overheads, we
combine sufficiently small components into a single ILP problem.

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

J. Open Access and J. R. Public

The ILP is constructed in the straight-forward manner (for simplicity we formulate it
for the whole graph; restriction to subgraphs is trivial): Each non-redundant node u € R
corresponds to a binary variable z, and we want to minimize their sum) x,. Each
uncovered node u € C adds the constraint Zve(N[u\R) Lo > 1. As an optimization, we can
drop the following constraints: Consider an induced triangle on the three different nodes
r,u,v € V where r € R. Thus, node r forces at least u or v into the solution; the edge
{u,v} ensures that either will cover the other. Hence, we can omit the constraints of u and
v (which may have high degree!) in favor of the simple constraint z,, + z, > 1.

ArticulationPoint. An articulation point v € V is a cut-vertex, whose removal disconnects
a component. The set A C V of all articulation points in a graph can be computed in linear
time. [4] For each node a € A, we test whether its removal results in at least one small
connected components C' C V. Then, we attempt to solve the subproblem G[C’] induced by
C’ = C' U {a} using the ILP formulation discussed for rule SmallExact.

There is one complication: by restricting to C’, the ILP does not encode the full context
anymore. Without this, we cannot properly decide whether in a globally optimal solution (i)
node a covers itself, and/or whether a node (ii) in C, or (iii) in V' \ C” takes over this role.

Suppose that all optimal global solutions cover a only from the outside (i.e., case iii).
Then, requiring the G[C’] to cover a “from within” leads to suboptimal solutions. To prevent
this case, we treat a as already being covered while solving the ILP.

This of course leads to issues, if globally optimal solutions do, in fact, require a to
be covered from within C’. Then there are two cases: either there exists a minimum-
DOMINATING SET on G[C’] that includes node a. Otherwise, adding a will increase the
solution size by one. Thus, we setup a weighted variant of the ILP that is biased towards
nodes near a; formally, the cost function to minimize becomes), ay,x,, where

1-2 ifu=a
ay=491—¢ ifueN(a). (1)

1 otherwise

For 0 < e < 1/(2|C"|), this will select a Minimum-DOMINATING SET on C’ and favor
those that include a, or (with smaller priority) a neighbor of a. It will, however, never
increase the solution size on G[C’].

LongPaths. The long path rule searches for induced paths P = (s,uq,us,...,ug,t) in G
where deg(u;) = 2,Vi: 1 <4 < k. We implement various special cases if s =t (i.e., P is a
cycle) or either one or both endpoints e; are leafs. These are already implied by RuleOne,
SmallExact, or ArticulationPoint but can be more efficiently addressed here. However,
since correctness follows from these rules, we omit a detailed discussion here.

The remaining case is s #t A deg(s) > 2 A deg(t) > 2. As soon as any of the nodes
in P is covered or redundant, we can optimally solve the path in a single scan. Otherwise
if all nodes are unclassified and k > 5, we can shorten the path. In this case, we delete
the nodes g, ..., u14+3¢ (where £ € N) and instead add the edge {u1,uz¢12}. We record the
removed edges. After the solver computed a solution on the reduced graph, a post-processing
reintroduces the removed edges and solves them in a single scan based on the solved context.

4 Exact Solver

Our exact solver is explicitly designed to test the effectiveness of our reduction rules when
preprocessing inputs for unmodified off-the-shelve solvers. We consider this an interesting line

23:5

CVIT 2016

23:6

203

204

205

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

206
207
208
209
210

PaceYourself: Solvers for the Minimum Dominating Set Problem

of inquiry, since general-purpose solvers integrate extensive advancements in solving broad
optimization problems, whereas problem-specific preprocessing can significantly leverage
domain-specific knowledge to enhance performance.

To this end, we conducted experiments with several ILP solvers (including HiGHS, gurobi,
coin-cbe, scip) and MAXSAT solvers (most submissions of the MaxSAT 20243 competition).
Ultimately, two different MAXSAT solvers were selected since their performance characteristics
complement quite nicely: after preprocessing, we first run UWrMaxSat* by M. Piotréw with
a timeout of 600s; if no solution was found within the time budget, we start EvalMaxSAT?
by F. Avellaneda.

Both solvers support the concept of soft and hard constraints, where all hard constraints
have to be satisfied while minimizing the number of violated soft constraints. Similarly
to the ILP formulation discussed earlier, each non-redundant nodes is assigned a binary
predicate x,; where node u € V is part of the solution D iff z, = 1. Each non-covered
neighbor then emits a hard constraint that at least one node in its closed neighbors must be
included. In order to minimize the number of selected nodes, we produce a soft constraint
-z, for each predicate x,,.

5 Heuristic Solver

The strategy of our heuristic solver is based on a local search heuristic, which has been
shown to work well for finding minimum dominating sets [8], and a wide variety of other
NP-complete problems [2,6]. Before running the search however, we remap and relabel
(G,D,C,R) to the induced subgraph (G’,D’,C’,R’) that does not contain isolated vertices.
As each node in D is isolated after our deletion scheme, the induced subgraph has no nodes in
D’ at the start. After running the local search, we map the resulting D’ back to the original
graph concatenating it with the preprocessed D to obtain a valid dominating set for G.

In each iteration of the local search process the heuristic solver chooses between one of
two possible actions:

Eviction (rarely). Evict a single node v from the dominating set D’ to form D; = D’ \ {v}.
In the following we greedily add nodes to D;, while avoiding v, until D; is a valid dominating
set again.

Swap (frequently). Pick a vertex v € D’ for which there exists a (z,1)-swap for z > 1.
A (z,1)-swap creates a new valid dominating set D; = (D’ \ {v1,v2,...,v:}) U {v} by the
addition of a single new vertex and the removal of x former constituents of D’.

As opposed to the local search by Zhu et al. [8], we maintain the invariant that at the
end of each round the ensuing dominating set D’ is valid. This is an important design choice,
as it confers some algorithmic benefits while having mixed effects on the traversal of the
solution space by the local search procedure. On one hand it constrains the new solutions
that can be possibly reached by one of the aforementioned actions. On the other hand it
implies that while searching for a better solution we always stay close to an actual solution
instead of (possibly) straying arbitrarily far from any valid solution. But most importantly,
as stated before, the swap action is the most prevalent one in our solver, and maintaining

3 https://maxsat-evaluations.github.io/2024/.

4 https://maxsat-evaluations.github.io/2024/mse24-solver-src/exact/unweighted/
UWrMaxSat-SCIP-MaxPre.zip based on [7]

® https://maxsat-evaluations.github.io/2024/mse24-solver-src/exact/unweighted/EvalMaxSAT_
2024 .zip

https://maxsat-evaluations.github.io/2024/
https://maxsat-evaluations.github.io/2024/mse24-solver-src/exact/unweighted/UWrMaxSat-SCIP-MaxPre.zip
https://maxsat-evaluations.github.io/2024/mse24-solver-src/exact/unweighted/UWrMaxSat-SCIP-MaxPre.zip
https://maxsat-evaluations.github.io/2024/mse24-solver-src/exact/unweighted/EvalMaxSAT_2024.zip
https://maxsat-evaluations.github.io/2024/mse24-solver-src/exact/unweighted/EvalMaxSAT_2024.zip

248

249

250

251

252

253

254

255

256

260

261

262

263

264

265

266

268

269

270

271

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

257
258
259
267

272

J. Open Access and J. R. Public

the previously mentioned invariant allows for an efficient datastructure to maintain a set of
eligible canidates for it.
Throughout the local search procedure, we dynamically maintain a tree 7T, for each node

v € D that keeps track of the intersection of the closed neighborhoods of all nodes in Ny[v].

Recall that Ny[v] are the neighbors of v that are adjacent to exactly one node in D’. Since
v € D this implies v is the one and only node in the dominating set adjacent to these
neighbors. Clearly, there exists an (z, 1)-swap if there is a set S = {v,...,v} CD" and a
vertex u € D’ such that

where 1 < x < k. Observe, that the previous condition is necessary but not sufficient to
establish # = k due to overlapping neighborhoods.® Therefore, if we dynamically maintain the
tree T, with vertex set Ny[v] where each inner node u € Ny [v] of the tree is the intersection
of the closed neighborhoods of all nodes in the subtree rooted in u, we can make several
observations:

1. The root of T, contains all nodes that are eligible for a (1,1)-swap where v is swapped

out of the dominating set.

2. We can maintain this datastructure in O(m)” space and O(Alog A) time per update of

T, where A is the maximum degree of the input graph.

3. If we maintain for all nodes v € D’ a counter how often they appear in the root of some

tree T, we recover k for the condition mentioned in Equation (2).

By virtue of the previous observations we are able to use a random weighted sampling
procedure where the weight of u € D’ is given by w, = 2* where k is the number of nodes
in D’ for which u is within the root of their respective trees.® Upon executing a swap we
dynamically remove and add the former and newly uniquely covered neighbors to and from
the trees of their respective unique coverer. To support this efficiently, it is essential for
us to know the unique covering node when (i) a node that was covered by two nodes in
D’ is now uniquely covered, (ii) a node loses the property of being uniquely covered since
another neighboring node entered D’. We compactly represent the previously mentioned
requirements by storing the covering nodes of any node u € V as the XOR’ed signature
D.c N[unD v of the set of u covering nodes. Clearly, addition and removal are the same
operation depending on the stored XOR’ed signature due to the commutativity of @. If a
node is uniquely covered the XOR’ed signature is exactly the covering node. This allows to
store a large set of covering nodes cache-efficiently, while being able to retrieve the unique
covering node at the aforementioned critical points in time.

Working set. After any swap we keep track of all nodes within the roots of all dominating
set nodes whose uniquely covered neighbor sets were shrinked by the most recent swap. We
preferentially sample multiple times from this working set and tie-break by considering the
aforementioned score to enhance the locality of our heuristic.

Clearly, the swap action makes the solver prone to enter local minima, without any means
to leave them again. Therefore, we evict a single vertex from D’ either if there has been no

Consider for example w, a node neighbored by only two nodes within D', say v; and v2 and assume
w ¢ Nu]. Since w € M, the stated condition does not assert that u covers w as well, therefore u cannot
replace both v; and wvg, but it can always replace at least one of them.

For this it suffices to see that UvGD Ny[v] is always a partition of U.

For practical reasons we clamp k to 5.

23:7

CVIT 2016

23:8

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

PaceYourself: Solvers for the Minimum Dominating Set Problem

improvement to the current solution for some time, or if the weighted sampling structure is
empty. We rely on three different procedures each with equal probability when evicting a
vertex (i) we randomly choose a vertex from D', (ii) we randomly choose a vertex v € D’
where the root of T, only contains v and tie-break by frequency and age, (iii) we randomly

choose a vertex v € D’ where root of 7, only contains v and tie-break by the cardinality of

| Ny [u]| and age. Here, the frequency is defined as the number of times a vertex has left D’

during the local search and the age is defined as the last iteration that a node has either
entered of left D’.

—— References

1

Jochen Alber, Michael R. Fellows, and Rolf Niedermeier. Polynomial-time data reduction for
dominating set. J. ACM, 51(3):363-384, 2004.

Shaowei Cai, Kaile Su, Chuan Luo, and Abdul Sattar. Numvc: An efficient local search
algorithm for minimum vertex cover. J. Artif. Intell. Res., 46:687-716, 2013.

Lukas Geis, Alexander Leonhardt, Johannes Meintrup, Ulrich Meyer, and Manuel Penschuck.
Simpler, better, faster, stronger: Revisiting a successfull reduction rule for dominating set.
2025.

John E. Hopcroft and Robert Endre Tarjan. Efficient algorithms for graph manipulation [H]
(algorithm 447). Commun. ACM, 16(6):372-378, 1973.

Qi Huangfu and JA Julian Hall. Parallelizing the dual revised simplex method. Mathematical
Programming Computation, 10(1):119-142, 2018.

Nabil H. Mustafa and Saurabh Ray. PTAS for geometric hitting set problems via local search.
In SCG, pages 17-22. ACM, 2009.

Marek Piotréw. Uwrmaxsat: Efficient solver for maxsat and pseudo-boolean problems. In
ICTAI pages 132-136. IEEE, 2020.

Enqgiang Zhu, Yu Zhang, Shengzhi Wang, Darren Strash, and Chanjuan Liu. A dual-mode
local search algorithm for solving the minimum dominating set problem. Knowl. Based Syst.,
298:111950, 2024.

	1 Introduction
	2 Preliminaries and Notation
	3 Internal representation and preprocessing
	4 Exact Solver
	5 Heuristic Solver

