10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

PACE Solver Description

Aslam Ameen
National Institute of Technology Calicut, Kozhikode, India

Ashwin Jacob
National Institute of Technology Calicut, Kozhikode, India

Sahil Muhammed

National Institute of Technology Calicut, Kozhikode, India
Nithin R

National Institute of Technology Calicut, Kozhikode, India

Pankaj Kumar R
National Institute of Technology Calicut, Kozhikode, India

Edwin Thomas
National Institute of Technology Calicut, Kozhikode, India

—— Abstract

This is a short description of our exact and heuristic solver submitted to the PACE 2025 challenge
on the DOMINATING SET problem [4]. Our approach applies data reduction rules such as isolated
vertex and degree-one pruning, followed by exact solving on small components using a combination
of brute-force enumeration and ILP formulation.

For larger components, we employ a greedy heuristic that prioritizes vertices based on the number
of undominated neighbors in their closed neighborhood. After constructing an initial dominating
set, we apply a redundancy removal phase that attempts to eliminate non-critical vertices while
preserving coverage. This two-stage approach enables us to produce high-quality dominating sets
while maintaining efficiency across a variety of graph instances.

2012 ACM Subject Classification Theory of computation — Design and analysis of algorithms

Keywords and phrases Dominating Set, Data Reduction, Greedy Algorithms, Integer Linear Program-
ming, Exact Algorithms, Heuristics, Graph Decomposition, Brute-force Enumeration, Redundancy
Elimination

Supplementary Material Software: https://github.com/nithinraj04/pace2025_heuristic

1 Introduction

This document presents our solver submitted to the heuristic track of the 2025 Parameterized
Algorithms and Computational Experiments (PACE) challenge on the DOMINATING SET
problem [4]. Our solver combines effective data reduction techniques, exact methods for small
components via brute-force and INTEGER LINEAR PROGRAMMING (ILP), and a customization
of the standard GREEDY HEURISTIC tailored for larger instances.

In the following, we first define the problem and notation used in Section 2. Then,
we describe the reduction rules and the exact strategies used to simplify and solve small
components in Section 3. Finally, we detail our heuristic approach in Section 4 and conclude
in Section 5.

2 Preliminaries

We use standard graph theoretic terminologies from Diestel’s book [1]. We address the
classical DOMINATING SET problem on undirected, unweighted graphs. Given a graph
G = (V, E) with vertex set V and edge set E C V x V' asubset D C V is called a dominating

https://github.com/nithinraj04/pace2025_heuristic

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

PACE Solver Description

set if every vertex u € V is either in D or has at least one neighbor in D. The objective is to
compute a dominating set of minimum cardinality.

Our solver assumes that input graphs are provided in the standard DiMACS format [2]
and parses them accordingly. The graph is stored using adjacency lists.

Terminology.
DOMINATED VERTEX: A vertex is said to be dominated if it is either included in the
dominating set or has a neighbor in the dominating set.
COMPONENT: A component refers to a maximal connected subgraph of the input graph.
COVERED NEIGHBORS: For a given vertex u, the covered neighbors are the subset of its
adjacent vertices that are already dominated.

3 Reduction Rules

We apply a series of graph reductions and exact strategies on each connected component
of the input graph before applying our main heuristic. The goal is to simplify the instance,
reduce the search space, and extract exact solutions for small subgraphs when feasible.

REDUCTION 1 (ISOLATED VERTEX). Let v € V be a vertex such that N(v) = @), where N(v)
denotes the neighborhood of v. We add v to the solution and remove it from the graph.

The correctness follows since no other vertex can dominate v, it must be included in any
valid DOMINATING SET.

REDUCTION 2 (DEGREE-1 LEAF RULE). Let u € V be a vertex of degree one with neighbor
v, i.e., N(u) = {v}. We include v, mark its closed neighborhood as dominated, and remove
it and all its edges from the graph.

In this case, the correctness follows as any dominating set containing u can be replaced
by another dominating set of the same size by removing u and (potentially) adding v. The
vertex u dominates only u and v while v also dominates u, v and potentially other neighbours
of v.

Exact Solving on Small Components. After applying the reduction rules, we look at
each connected component of the graph. Each “small-sized" component is solved exactly
using different strategies, depending on its size.

EXACT STRATEGY 1 (BRUTE-FORCE ENUMERATION). Let C' C V be a connected component
of size at most 30. We enumerate all subsets Do C C' such that for every u € C, either
u € De or N(u) N Do # 0. Among all such valid DOMINATING SETS, we choose one of
minimum size. If some vertices in C' were previously fixed to be in the solution, these are
included in every candidate.

EXACT STRATECY 2 (INTEGER LINEAR PROGRAMMING). Let C' C V be a connected
component with 30 < |C] < 256. We define a binary variable z, € {0,1} for each v € C,
where x, = 1 indicates inclusion in the DOMINATING SET. For each vertex u € C, we add
the constraint:

Ty + Z Ty 21,

vEN (u)

ensuring that wu is either selected or dominated by a neighbor. The objective is to minimize
> vec Tv- This ILP formulation is solved using the GLPK solver [3]. Vertices already forced
into the solution are fixed via constraints x, = 1.

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

1

N}
@

A. Ameen, A. Jacob, S. Muhammed, N. R, P. Kumar R, and E. Thomas

The size thresholds (30 for brute-force and 256 for ILP) were determined empirically to strike
a balance between runtime efficiency and exactness of solutions.

4 Heuristic

Following reductions and exact solving for small components, the remaining parts of the
graph are handled using a greedy heuristic designed to construct a high-quality dominating
set quickly. The heuristic proceeds in two main phases: vertex selection via a dynamic
coverage-based priority scheme, and a postprocessing phase to eliminate redundant vertices
from the solution.

Greedy Vertex Selection. We iteratively build the dominating set by selecting vertices
that offer the most coverage of undominated vertices. To this end, we associate with each
vertex u € V' a dynamic score reflecting the number of currently undominated vertices in its
closed neighborhood N[u]. Specifically, the score of u is defined as:

score(u) = linot dominated(u)} + [{v € N(u) | not_dominated(v)}|,
where 1.} denotes the indicator function, and
not_dominated(v) = =(v € DV N(v) N D # 0).

All vertices with non-zero scores are maintained in a max-priority queue. In each iteration,
we extract the vertex with the highest score. If the score is stale due to recent updates in
domination status, it is recomputed and reinserted. A vertex w is selected in the dominating
set if either:

score(u) > 2 or w is still undominated.

Upon selection, all vertices in N[u] are marked as dominated. This process continues until
the queue is exhausted or all vertices are covered.

This dynamic and coverage-aware selection strategy prioritizes impactful vertices and
naturally adapts as the graph becomes progressively dominated.

Redundancy Removal. Once a dominating set has been constructed by the greedy
procedure, we perform a redundancy elimination pass to further reduce its size without
compromising coverage.

First, for every vertex v € V, we compute the coverage count, i.e., the number of vertices
in the current dominating set that dominate v. Formally,

coverage count(v) = |[{u € D | v € N[u]},

where D C V is the current dominating set, and N|[u] denotes the closed neighborhood of u,
ie., {u} UN(u).

Then, we assess the necessity of each vertex v € D based on how critical it is to maintain
the coverage of its neighbors.

For each vertex u € D, we calculate an importance score, which heuristically reflects how
easily its coverage can be compensated by others. Vertices that do not uniquely dominate
any other vertex are considered candidates for removal. Among these, we prioritize those
whose neighbors are highly redundant (e.g., already covered by many other dominating set
members), using the following scoring heuristic:

0 ifk=1
importance(u) = Z ¢(coverage count(v)), where ¢(k)=4¢05 ifk=2
vEN (u) L itk >2

k

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

141

142

143

144

145

146

147

148

PACE Solver Description

Vertices with the lowest importance scores are considered first for removal. A vertex wu is
removed from the dominating set only if its removal does not leave any vertex v € N|[u] with
coverage count < 1, ensuring that all vertices remain dominated. The coverage counts are
then updated accordingly.

This postprocessing step effectively eliminates redundancies and fine-tunes the solution
toward minimality.

5 Conclusion

In summary, our solver combines effective reduction rules with exact and heuristic methods to
tackle the Dominating Set problem efficiently. By applying local degree-based reductions and
solving small connected components exactly via brute-force or integer linear programming,
we are able to significantly simplify the input before applying our main heuristic.

The heuristic employs a dynamic, coverage-based vertex selection strategy, followed by
a redundancy elimination phase to refine the solution. This combination of reductions,
exact subroutines, and scalable heuristics allows the solver to maintain a strong balance
between solution quality and computational efficiency across a wide range of instance sizes
and structures.

—— References

1 Reinhard Diestel. Graph theory, volume 173 of. Graduate texts in mathematics, 593, 2012.

2 DIMACS. DIMACS graph format specification. http://dimacs.rutgers.edu/archive/
Challenges/, 1993. Accessed: 2025-06-21.

3 GNU Project. GLPK (gnu linear programming kit). https://www.gnu.org/software/glpk/,
2023. Accessed: 2025-06-21.

4 PACE Steering Committee. The PACE 2025 parameterized algorithms and computational
experiments challenge: Dominating set. https://pacechallenge.org/2025/, 2025. Accessed:
2025-06-21.

http://dimacs.rutgers.edu/archive/Challenges/
http://dimacs.rutgers.edu/archive/Challenges/
http://dimacs.rutgers.edu/archive/Challenges/
https://www.gnu.org/software/glpk/
https://pacechallenge.org/2025/

	1 Introduction
	2 Preliminaries
	3 Reduction Rules
	4 Heuristic
	5 Conclusion

