
PACE Solver Description1

Aslam Ameen2

National Institute of Technology Calicut, Kozhikode, India3

Ashwin Jacob4

National Institute of Technology Calicut, Kozhikode, India5

Sahil Muhammed6

National Institute of Technology Calicut, Kozhikode, India7

Nithin R8

National Institute of Technology Calicut, Kozhikode, India9

Pankaj Kumar R10

National Institute of Technology Calicut, Kozhikode, India11

Edwin Thomas12

National Institute of Technology Calicut, Kozhikode, India13

Abstract14

This is a short description of our exact and heuristic solver submitted to the PACE 2025 challenge15

on the Dominating Set problem [4]. Our approach applies data reduction rules such as isolated16

vertex and degree-one pruning, followed by exact solving on small components using a combination17

of brute-force enumeration and ILP formulation.18

For larger components, we employ a greedy heuristic that prioritizes vertices based on the number19

of undominated neighbors in their closed neighborhood. After constructing an initial dominating20

set, we apply a redundancy removal phase that attempts to eliminate non-critical vertices while21

preserving coverage. This two-stage approach enables us to produce high-quality dominating sets22

while maintaining efficiency across a variety of graph instances.23

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms24

Keywords and phrases Dominating Set, Data Reduction, Greedy Algorithms, Integer Linear Program-25

ming, Exact Algorithms, Heuristics, Graph Decomposition, Brute-force Enumeration, Redundancy26

Elimination27

Supplementary Material Software: https://github.com/nithinraj04/pace2025_heuristic28

1 Introduction29

This document presents our solver submitted to the heuristic track of the 2025 Parameterized30

Algorithms and Computational Experiments (PACE) challenge on the Dominating Set31

problem [4]. Our solver combines effective data reduction techniques, exact methods for small32

components via brute-force and Integer Linear Programming (ILP), and a customization33

of the standard Greedy Heuristic tailored for larger instances.34

In the following, we first define the problem and notation used in Section 2. Then,35

we describe the reduction rules and the exact strategies used to simplify and solve small36

components in Section 3. Finally, we detail our heuristic approach in Section 4 and conclude37

in Section 5.38

2 Preliminaries39

We use standard graph theoretic terminologies from Diestel’s book [1]. We address the40

classical Dominating Set problem on undirected, unweighted graphs. Given a graph41

G = (V, E) with vertex set V and edge set E ⊆ V ×V , a subset D ⊆ V is called a dominating42

https://github.com/nithinraj04/pace2025_heuristic

2 PACE Solver Description

set if every vertex u ∈ V is either in D or has at least one neighbor in D. The objective is to43

compute a dominating set of minimum cardinality.44

Our solver assumes that input graphs are provided in the standard Dimacs format [2]45

and parses them accordingly. The graph is stored using adjacency lists.46

Terminology.47

Dominated vertex: A vertex is said to be dominated if it is either included in the48

dominating set or has a neighbor in the dominating set.49

Component: A component refers to a maximal connected subgraph of the input graph.50

Covered neighbors: For a given vertex u, the covered neighbors are the subset of its51

adjacent vertices that are already dominated.52

3 Reduction Rules53

We apply a series of graph reductions and exact strategies on each connected component54

of the input graph before applying our main heuristic. The goal is to simplify the instance,55

reduce the search space, and extract exact solutions for small subgraphs when feasible.56

Reduction 1 (Isolated Vertex). Let v ∈ V be a vertex such that N(v) = ∅, where N(v)57

denotes the neighborhood of v. We add v to the solution and remove it from the graph.58

The correctness follows since no other vertex can dominate v, it must be included in any59

valid Dominating Set.60

Reduction 2 (Degree-1 Leaf Rule). Let u ∈ V be a vertex of degree one with neighbor61

v, i.e., N(u) = {v}. We include v, mark its closed neighborhood as dominated, and remove62

it and all its edges from the graph.63

In this case, the correctness follows as any dominating set containing u can be replaced64

by another dominating set of the same size by removing u and (potentially) adding v. The65

vertex u dominates only u and v while v also dominates u, v and potentially other neighbours66

of v.67

Exact Solving on Small Components. After applying the reduction rules, we look at68

each connected component of the graph. Each “small-sized" component is solved exactly69

using different strategies, depending on its size.70

Exact Strategy 1 (Brute-Force Enumeration). Let C ⊆ V be a connected component71

of size at most 30. We enumerate all subsets DC ⊆ C such that for every u ∈ C, either72

u ∈ DC or N(u) ∩ DC ̸= ∅. Among all such valid Dominating Sets, we choose one of73

minimum size. If some vertices in C were previously fixed to be in the solution, these are74

included in every candidate.75

Exact Strategy 2 (Integer Linear Programming). Let C ⊆ V be a connected76

component with 30 < |C| ≤ 256. We define a binary variable xv ∈ {0, 1} for each v ∈ C,77

where xv = 1 indicates inclusion in the Dominating Set. For each vertex u ∈ C, we add78

the constraint:79

xu +
∑

v∈N(u)

xv ≥ 1,80

ensuring that u is either selected or dominated by a neighbor. The objective is to minimize81 ∑
v∈C xv. This ILP formulation is solved using the GLPK solver [3]. Vertices already forced82

into the solution are fixed via constraints xv = 1.83

A. Ameen, A. Jacob, S. Muhammed, N. R, P. Kumar R, and E. Thomas 3

The size thresholds (30 for brute-force and 256 for ILP) were determined empirically to strike84

a balance between runtime efficiency and exactness of solutions.85

4 Heuristic86

Following reductions and exact solving for small components, the remaining parts of the87

graph are handled using a greedy heuristic designed to construct a high-quality dominating88

set quickly. The heuristic proceeds in two main phases: vertex selection via a dynamic89

coverage-based priority scheme, and a postprocessing phase to eliminate redundant vertices90

from the solution.91

Greedy Vertex Selection. We iteratively build the dominating set by selecting vertices92

that offer the most coverage of undominated vertices. To this end, we associate with each93

vertex u ∈ V a dynamic score reflecting the number of currently undominated vertices in its94

closed neighborhood N [u]. Specifically, the score of u is defined as:95

score(u) = 1{not_dominated(u)} + |{v ∈ N(u) | not_dominated(v)}|,96

where 1{·} denotes the indicator function, and97

not_dominated(v) = ¬(v ∈ D ∨ N(v) ∩ D ̸= ∅).98

All vertices with non-zero scores are maintained in a max-priority queue. In each iteration,99

we extract the vertex with the highest score. If the score is stale due to recent updates in100

domination status, it is recomputed and reinserted. A vertex u is selected in the dominating101

set if either:102

score(u) ≥ 2 or u is still undominated.103

Upon selection, all vertices in N [u] are marked as dominated. This process continues until104

the queue is exhausted or all vertices are covered.105

This dynamic and coverage-aware selection strategy prioritizes impactful vertices and106

naturally adapts as the graph becomes progressively dominated.107

Redundancy Removal. Once a dominating set has been constructed by the greedy108

procedure, we perform a redundancy elimination pass to further reduce its size without109

compromising coverage.110

First, for every vertex v ∈ V , we compute the coverage count, i.e., the number of vertices111

in the current dominating set that dominate v. Formally,112

coverage_count(v) = |{u ∈ D | v ∈ N [u]}|,113

where D ⊆ V is the current dominating set, and N [u] denotes the closed neighborhood of u,114

i.e., {u} ∪ N(u).115

Then, we assess the necessity of each vertex u ∈ D based on how critical it is to maintain116

the coverage of its neighbors.117

For each vertex u ∈ D, we calculate an importance score, which heuristically reflects how118

easily its coverage can be compensated by others. Vertices that do not uniquely dominate119

any other vertex are considered candidates for removal. Among these, we prioritize those120

whose neighbors are highly redundant (e.g., already covered by many other dominating set121

members), using the following scoring heuristic:122

importance(u) =
∑

v∈N(u)

ϕ(coverage_count(v)), where ϕ(k) =


0 if k = 1
0.5 if k = 2
1
k if k > 2

123

4 PACE Solver Description

Vertices with the lowest importance scores are considered first for removal. A vertex u is124

removed from the dominating set only if its removal does not leave any vertex v ∈ N [u] with125

coverage count ≤ 1, ensuring that all vertices remain dominated. The coverage counts are126

then updated accordingly.127

This postprocessing step effectively eliminates redundancies and fine-tunes the solution128

toward minimality.129

5 Conclusion130

In summary, our solver combines effective reduction rules with exact and heuristic methods to131

tackle the Dominating Set problem efficiently. By applying local degree-based reductions and132

solving small connected components exactly via brute-force or integer linear programming,133

we are able to significantly simplify the input before applying our main heuristic.134

The heuristic employs a dynamic, coverage-based vertex selection strategy, followed by135

a redundancy elimination phase to refine the solution. This combination of reductions,136

exact subroutines, and scalable heuristics allows the solver to maintain a strong balance137

between solution quality and computational efficiency across a wide range of instance sizes138

and structures.139

References140

1 Reinhard Diestel. Graph theory, volume 173 of. Graduate texts in mathematics, 593, 2012.141

2 DIMACS. DIMACS graph format specification. http://dimacs.rutgers.edu/archive/142

Challenges/, 1993. Accessed: 2025-06-21.143

3 GNU Project. GLPK (gnu linear programming kit). https://www.gnu.org/software/glpk/,144

2023. Accessed: 2025-06-21.145

4 PACE Steering Committee. The PACE 2025 parameterized algorithms and computational146

experiments challenge: Dominating set. https://pacechallenge.org/2025/, 2025. Accessed:147

2025-06-21.148

http://dimacs.rutgers.edu/archive/Challenges/
http://dimacs.rutgers.edu/archive/Challenges/
http://dimacs.rutgers.edu/archive/Challenges/
https://www.gnu.org/software/glpk/
https://pacechallenge.org/2025/

	1 Introduction
	2 Preliminaries
	3 Reduction Rules
	4 Heuristic
	5 Conclusion

