
Finding Hard Instances is Hard

Your task is to make it easy

Most combinatorial optimization problems are NP-hard, meaning that there exists a family
of instances which requires exponential-time to solve them exactly (unless P = NP). However,
in practice, a large part of the instances can be solved efficiently. It is also known that random
instances of a problem are often easy to solve (see also the Transition Phase phenomenon).

The goal of this project is to generate a family of hard (feasible) instances, without specific
knowledge of the underlying problem (without expert rules or specific reductions), and under-
stand why these instances are hard.

Hard instances are of importance to compare different algorithms solving the same problem
or to improve the performances of an algorithm solving a specific problem (and understand where
it struggles) or to disprove some graph conjectures.

Our approach will be to move these discrete problems to the continuous space and try dif-
ferent approaches like classical supervised Machine Learning techniques (to predict how to con-
struct instances) or Reinforcement Learning (Deep Q-learning, curiosity-driven learning…). We
can also think of starting from already known hard instances and try to improve its hardness
by incremental changes (hill climbing) or Monte Carlo Search. We will have to test different
”measure of hardness”. This could be the time taken by an algorithm (but it is very dependent
to a given solver and could not give an important information on the intrinsic difficulty of an
instance), or the depth of a search tree in a solver, or the number of backtracks needed by a solver.
A challenging issue will be to get enough data while the instances should be hard to solve (and
therefore require time to compute).

Required skills

• Advanced knowledge in Machine Learning and Reinforcement Learning (M2 level)

• Basic knowledge in Combinatorial Optimization Problems (Knapsack, TSP, SAT…)

• Good knowledge in some programming language

Practical information

The internship will be in LAMSADE, inside Paris Dauphine University. It will be supervised by
Florian Sikora, Benjamin Negrevergne and Florian Yger, firstname.lastname@dauphine.fr. Sub-
mit your application with your relevent grades. Salary will be according to the french internship
rules.

The student will have access to the LAMSADE computing ressources.

1

https://www.lamsade.dauphine.fr/wp/miles/computational-resources/
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