
Graph Homomorphism Features:

Why Not Sample?
Paul Beaujean 1 Florian Sikora 1 Florian Yger 1

1LAMSADE, Université Paris-Dauphine

What is a graph morphism?

Graph morphisms are functions that map the set of nodes from a pattern graph F to the set
of nodes of a target graph G. Graph morphisms that preserve adjacency are called homomor-
phisms.

A

B
C

D

E

F

1

2

3

4

Figure: Example of an homomorphism f : C4 → G

Graph homomorphisms that also preserve non-adjacency are called isomorphisms. We say
that G1

∼= G2 if and only if there exists an isomorphism between G1 and G2. This is a natural
way to express that two graphs are identical up to a permutation.

Computational Complexity

• Finding a graph homomorphism is NP-hard because of its relation to finding cliques
• Counting graph homomorphisms is #P-hard however
• Díaz et al. (2002) give a slice-wise polynomial algorithm depending on the treewidth of F
• Allowing some multiplicative approximation does not make the problem easier

Homomorphism statistics: a canonical vector representation of graphs

Combining homomorphism statistics from several pattern graphs reveals deep information
which characterizes graphs and can be used as a permutation-invariant vector representation.

• Homomorphism numbers: absolute counts (between 0 and nk)
• Homomorphism densities: ratio of homomorphisms to morphisms (between 0 and 1)

Lovász on homomorphism densities

Theorem

Given two undirected graphs G1 and G2 with the same number of nodes n, and Gn the set of
all simple graphs with at most n nodes, we have:

G1
∼= G2 ⇐⇒ tGn(G1) = tGn(G2).

• t(F,G) = number of homomorphisms from F to G / number of morphisms from F to G
• tGn(G) = (t(F,G))Gn where Gn is the set of graphs on at most n nodes
• permutation-invariant vector representation of graphs
• can be extended to distance between t-vectors = cut-distance between graphs

sGHD: sample graph homomorphism density

It is possible to obtain a fast ε-additive approximation of the graph homomorphism density
from F to G with no condition on the treewidth of F . By sampling homomorphisms uniformly
at random this can be done in O

(
(k logn + l) · ε−2 log δ−1

)
time.

Algorithm: sGHD
Input: G: undirected graph on n nodes
Input: F : pattern graph on k nodes and l edges
Input: ε > 0: requested additive precision
Input: 1− δ ∈ (0, 1): desired confidence
Output: t̄ such that P(|t(F,G)− t̄| > ε) ≤ δ
N ← O(ε−2 log δ−1)
for i = 1 to N do

fi ∼ (U(0, n− 1))[k]
end
t̄← 1

N

∑N
i=1

∏
uv∈E(F) 1E(G)(fi(u)fi(v))

return t̄

Optimizing set membership uv ∈ E(G)

When implementing sGHD the main bottleneck comes from handling the large number of ran-
dom set membership queries. Bloom filters are efficient data structures which offer fast ap-
proximate set membership queries without the need to store the corresponding data structure.
Bloomfilters have a false positive ratewhich can be compensated by a largermemory footprint.

• False positive rate of Bloom filters partially compensates undersampling in practice
• Allows a highly scalable parallel implementation of sGHD
• No noticeable penalty on machine learning tasks compared to exact set membership

Approximate homomorphism densities for large-scale graph learning

To handle large datasets containing large graphs we propose to use approximate homomor-
phism densities as permutation-invariant feature descriptors parameterized by a given family
of pattern graphs.

1
0.
39

0.
19

5.
6
·1
0−

2

8.
9
·1
0−

2

8.
8
·1
0−

2

2.
8
·1
0−

2

6.
9
·1
0−

2

1.
2
·1
0−

2

0

Figure: G and its approximate homomorphism densities from 10 small pattern graphs

For performance and simplicity we focus only on families of small pattern graphs. This ap-
proach is justified by results by Lovász on graph algebras involving products of homomorphism
densities.

Experimental results

We compare two implementations of the sGHD algorithm with the standard implementation
of the graph homomorphism numbers-based GHC algorithm of NT & Maehara (2020). Exper-
iments are conducted on Erdős-Rényi random graphs with an edge density that guarantees
the presence of several subgraph patterns. We obtain a quasi-constant runtime for sGHD with
Bloom filter.

102 103 104 105

102

103

104

105

106

n

Running time (ms)

GHC with homlib impl. of Díaz et al., 2002
sGHD (ε = 5× 10−3) with adjacency list
sGHD (ε = 5× 10−3) with Bloom filter
sGHD (ε = 1× 10−2) with Bloom filter

Figure: Running time of homomorphism density algorithms w.r.t. K3 → G(n, log2 n/n)

Additional insights

• Low runtime increase from computing homomorphism statistics from larger cliques K5, K6

• Actual precision obtained is 2 orders of magnitude above requested precision ε

• Graph sparsity short-circuits edge membership queries leading to good performance

Future work

1 Additional experiments on currently available large datasets such as OGB (small graphs),
MalNet (large graphs), and new social network datasets currently being extracted

2 Representation learning via selection of the family of pattern graphs
3 Investigation into polynomial models and their relationship with graph algebras

References

[1] Burton H Bloom.
Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 1970.

[2] Josep Díaz, Maria Serna, and Dimitrios M Thilikos.
Counting H-colorings of partial k-trees.
Theor. Comput. Sci., 2002.

[3] László Lovász.
Large networks and graph limits.
American Mathematical Soc., 2012.

[4] Hoang NT and Takanori Maehara.
Graph homomorphism convolution.
In ICML, 2020.

