The Longest Run Subsequence Problem:
Further Complexity Results

Riccardo Dondi, Florian Sikora

Universita degli Studi di Bergamo, Bergamo, Italy,
LAMSADE, Université Paris Dauphine, CNRS — France

CPM - 07/21

The Longest Run Subsequence Problem:
Further Complexity Results

Riccardo Dondi, Florian Sikora

Universita degli Studi di Bergamo, Bergamo, Italy,
LAMSADE, Université Paris Dauphine, CNRS — France

Outline

Introduction

2/26

Story

» September 2020, we could attend WABI online

» We were independently interested by one open problem during
a talk [Schrinner et al] :

Is Longest Run Subsequence FPT w.r.t. the “compressed” size of
the solution?

3/26

Introduction

Motivations - reconstruct a genome
» Assembly from a set of reads to contigs
» Need to order them (scaffolding)
» Some matches are known (according to similarities)
» Some inconsistencies (errors in sequencing, mutations..)

Contig X (binned)

| |«
Y, Y, Y; Y,

Unordered contigs of Y

S~ Y4l WHMMEM
=g il sl

4/26

Introduction

Definitions [Schrinner et al.]

» Given a string S over an alphabet ¥

» Find the longest subsequence R s.t. each symbol occurs only
consecutively (or none)

5/26

Introduction

Definitions [Schrinner et al.]

» Given a string S over an alphabet ¥

» Find the longest subsequence R s.t. each symbol occurs only
consecutively (or none)

Sl &\Okc MLUOC{,B
Kl @ a Mbg lo

5/26

Introduction

Definitions [Schrinner et al.]

» Given a string S over an alphabet ¥

» Find the longest subsequence R s.t. each symbol occurs only
consecutively (or none)

Sl (L\OOLC, MLUOCL&)
K 0 a A(LblO lo

» An a-run : substring repeating symbol a

» Could have no maximal run in the solution
» Some symbol may not be in the solution

5/26

Introduction

Definitions [Schrinner et al.]

» Given a string S over an alphabet ¥

» Find the longest subsequence R s.t. each symbol occurs only
consecutively (or none)

Sl &\O&C 6\&&‘0@&)
Kl @ a Q(Lbb lo

» An a-run : substring repeating symbol a

» Could have no maximal run in the solution
» Some symbol may not be in the solution

P Interesting parameters:
> k : size of the solution
> |X|: size of the alphabet
» r: number of runs in the optimal solution
5/26

Introduction

Known results [Schrinner et al.]

» NP-hard
» FPT w.r.t. |Z| (implemented)
> ILP

6/26

Introduction

Known results [Schrinner et al.]

» NP-hard
» FPT w.r.t. |Z| (implemented)
> |LP
Open :
» FPT w.rt. r?
> Approximability ?

6/26

Introduction

Parameterized Complexity

Problem: Vertex Cover Independent Set
Input: Graph G, integer k Graph G, integer k
Question: Cover edges with k ver- Find k independent ver-
tices tices

Example from D. Marx.
7/26

Introduction

Parameterized Complexity

Problem: Vertex Cover Independent Set
Input: Graph G, integer k Graph G, integer k
Question: Cover edges with k ver- Find k independent ver-
tices tices
Compl.:
Complexity: NP-complete NP-complete

Example from D. Marx.

7/26

Introduction

Parameterized Complexity

Problem:
Input:
Question:

Compl.:
Complexity:
Brute-force:

Example from D. Marx.

Vertex Cover

Graph G, integer k
Cover edges with k ver-
tices

NP-complete
O(n¥) possibilities

Independent Set

Graph G, integer k

Find k independent ver-
tices

NP-complete
O(n*) possibilities

7/26

Introduction

Parameterized Complexity

Problem:
Input:
Question:

Compl.:
Complexity:
Brute-force:

Smarter?:

Example from D. Marx.

Vertex Cover

Graph G, integer k
Cover edges with k ver-
tices

NP-complete
O(n¥) possibilities

O(2%n?) algorithm

3

Independent Set

Graph G, integer k

Find k independent ver-
tices

NP-complete
O(n*) possibilities

No f(k)n°®) algorithm
exists

&)

7/26

Introduction

Fixed-Parameter Tractability
» Problem in FPT: any instance (/, k) solved in f(k) - |/|°.

» Examples:
» Solution of size k in a n-vertices graph.
» n voters for k candidates.

» Requests of size k in a n-sized database.
> .

8/26

Introduction

Fixed-Parameter Tractability
» Problem in FPT: any instance (/, k) solved in f(k) - |/|°.

» Examples:

» Solution of size k in a n-vertices graph.
» n voters for k candidates.

» Requests of size k in a n-sized database.
> ..

> Many way to parameterize.
» Solution size.

8/26

Introduction

Fixed-Parameter Tractability
» Problem in FPT: any instance (/, k) solved in f(k) - |/|°.

> Examples:
» Solution of size k in a n-vertices graph.
» n voters for k candidates.

» Requests of size k in a n-sized database.
> .

» Many way to parameterize.

» Solution size.
» Structure of the input.
|

8/26

Introduction

How to obtain FPT algorithm?

Bounded-depth search trees

Treewidth B Iterative compression

lllustration D. Marx.

9/26

Introduction

Kernelization

— poly(|X], k)-time

’ X X! f(k)
: e

%

.=

P

e o

Squirrel from [CFKLM PPSY15]

10/26

Introduction

Parameterized Complexity or LRS

Parameters of decreasing size :

‘ FPT ‘ Poly Kernel
k Yes Yes
‘Z’ Yes [Schrinner et al.] No
r | Yes & Poly Space No

S = abacaabbab

|X| < k: R=abc
r < |X| : R = aaaabbb

11/26

Outline

FPT Algorithm

12/26

LRS and polynomials

» Color-Coding could probably work for parameter r

> We use a key result of [Koutis and Williams 2008,2009]:

Randomized algorithm to decide in time O*(2X) and polynomial
space, if a polynomial represented by an arithmetic circuit contains
a multilinear monomial of degree k.

13/26

FPT Algorithm

Polynomials

» A monomial is multilinear if each variable of the monomial
occurs at most once.

» By definition, the degree of a multilinear monomial is the
number of its variables.
» Example: P(X) = (xZx3xs + x1x0x4%6):

P> x1x2x3Xg is @ multilinear monomial of degree 4.
> xZx3xs is not a multilinear monomial.

14/26

FPT Algorithm

Compressed Polynomials

» An arithmetic circuit over a set of variables X is a DAG s.t.:

» internal nodes are the operations x or +,
» leafs are the elements of X.

15/26

FPT Algorithm

Compressed Polynomials

» An arithmetic circuit over a set of variables X is a DAG s.t.:

» internal nodes are the operations x or +,
» leafs are the elements of X.

» Example for P(X) = (x1 + x2 + x3)(x3 + xa + Xs5).

15/26

FPT Algorithm

Polynomials

» Framework successfully applied for different problems:

k-Path.

k-Tree.

k-Leaf Spanning Tree.
t-Dominating Set.

Graph Motif.

Exemplar Breakpoint Distance.

VVVVYYVYYVYY

16/26

To solve LRS w.r.t. r

» A variable for each symbol of the alphabet representing a
potential run in the solution

» Circuit built via DP more or less representing subsequences

» A multilinear monomial of degree r in the circuit iff there is a
solution with r runs

17/26

Outline

Kernelization

18/26

Kernelization

Size of the Kernel

» In FPT for k <= there is a kernel for k
» But f(k) could be anything !
» Better if f is poly

19/26

Kernelization

Size of the Kernel

» In FPT for k <= there is a kernel for k
» But f(k) could be anything !
» Better if f is poly

‘ FPT ‘ Poly Kernel
k Yes Yes
‘Z’ Yes [Schrinner et al.] No
r | Yes & Poly Space No

19/26

Kernelization

Trivial poly-kernel for parameter k

» If there is one a-run of size at least k, done

k =3,5 = aabca, R = aaa

20/26

Kernelization

Trivial poly-kernel for parameter k

» If there is one a-run of size at least k, done

> If alphabet is larger than k, done

k =3,5 = aabca, R = abc

20/26

Kernelization

Trivial poly-kernel for parameter k

» If there is one a-run of size at least k, done
> If alphabet is larger than k, done

» Alphabet is at most k, no a-run is larger than k : at most k2
characters

20/26

Kernelization

Hardness

» Informally, one way to prove no poly kernel :

Given t instances of our problem, build a “join” instance I’ s.t. I" is
true iff at least one of the t instance is true (OR-cross-composition)
[Bodlaender et al.]

21/26

Kernelization

Hardness

» Informally, one way to prove no poly kernel :

Given t instances of our problem, build a “join” instance I’ s.t. I" is
true iff at least one of the t instance is true (OR-cross-composition)
[Bodlaender et al.]

» With technical details, we assume that the t instances:

» have same size
» have same k
» are built over the same alphabet

21/26

Kernelization

Hardness

Add substrings of 2n new symbols around each instance

S'= 88§ S, H-#-$ S e w95 St
2

~ PN

Look for a solution of size (t + 1) x 2n+ k

22/26

Kernelization

Hardness

Add substrings of 2n new symbols around each instance

S's 88§ S, WS S, b 9§ S
2m 2

Look for a solution of size (t + 1) x 2n+ k

If there is a solution of size k in some S;, take it and add all the $
before and all the # after

S'o g S, -t Sy 45§ S g
2m 2~

22/26

Kernelization

Hardness

Add substrings of 2n new symbols around each instance

S'= 88§ S, H-#-$ S e w95 St
2

Al Z,M
Look for a solution of size (t + 1) x 2n+ k

If there is a solution of size k in some S;, take it and add all the $
before and all the # after

S'o g S, -t Sy 45§ S g
2m 2
Parameter |X| is the same plus 2

22/26

Outline

Conclusion

23/26

Complexity

» Better understanding of the parameterized complexity status
of the problem

24/26

Conclusion

Complexity

» Better understanding of the parameterized complexity status
of the problem

» Also, LRS is APX-hard, even with at most 2 occurrences for
each symbol.

» (L-)Reduction from Independent Set in cubic graphs

24/26

Complexity

» Better understanding of the parameterized complexity status
of the problem

» Also, LRS is APX-hard, even with at most 2 occurrences for
each symbol.
» (L-)Reduction from Independent Set in cubic graphs
“No talk is complete without a picture of reduction that nobody
understands” Daniel Marx

[B P G S
3 atata i atas

war sk 513 wata o afas

A o4 4
Wiy 4 %5 423 g wala 283
o 2 o2 -
271,261,261 277 2€1 285,185,285,
ol of
B v 1t 4t el 4t gl atrabr o
1

W2y a3 3

24/26

Conclusion

Conclusion

» Practical issues of the FPT algorithm

» Close the gap of approximation (trivial \/|S|-approx, far from
the APX-hardness)

25/26

Dziekujel

	Introduction
	FPT Algorithm
	Kernelization
	Conclusion

