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Story

I September 2020, we could attend WABI online
I We were independently interested by one open problem during

a talk [Schrinner et al.] :

Is Longest Run Subsequence FPT w.r.t. the “compressed” size of
the solution?
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Motivations - reconstruct a genome
I Assembly from a set of reads to contigs
I Need to order them (scaffolding)
I Some matches are known (according to similarities)
I Some inconsistencies (errors in sequencing, mutations..)
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Definitions [Schrinner et al.]

I Given a string S over an alphabet Σ

I Find the longest subsequence R s.t. each symbol occurs only
consecutively (or none)

I An a-run : substring repeating symbol a
I Could have no maximal run in the solution
I Some symbol may not be in the solution
I Interesting parameters:

I k : size of the solution
I |Σ|: size of the alphabet
I r : number of runs in the optimal solution
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Known results [Schrinner et al.]

I NP-hard
I FPT w.r.t. |Σ| (implemented)
I ILP

Open :
I FPT w.r.t. r ?
I Approximability ?
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Parameterized Complexity

Problem: Vertex Cover Independent Set
Input: Graph G , integer k Graph G , integer k

Question: Cover edges with k ver-
tices

Find k independent ver-
tices

Compl.:

Complexity: NP-complete NP-complete
Brute-force: O(nk) possibilities O(nk) possibilities
Smarter?:

O(2kn2) algorithm No f (k)nO(1) algorithm
exists

Example from D. Marx.
7/26
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Fixed-Parameter Tractability
I Problem in FPT: any instance (I , k) solved in f (k) · |I |c .

I Examples:
I Solution of size k in a n-vertices graph.
I n voters for k candidates.
I Requests of size k in a n-sized database.
I ...

I Many way to parameterize.
I Solution size.

I Structure of the input.
I ...
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How to obtain FPT algorithm?

Illustration D. Marx.
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Kernelization

n X

k

X ′

k ′

f (k)

g(k)

poly(|X |, k)-time

Squirrel from [CFKLMPPS’15]
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Parameterized Complexity or LRS

Parameters of decreasing size :

FPT Poly Kernel
k Yes Yes
|Σ| Yes [Schrinner et al.] No
r Yes & Poly Space No

S = abacaabbab

|Σ| 6 k : R = abc
r 6 |Σ| : R = aaaabbb
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LRS and polynomials

I Color-Coding could probably work for parameter r
I We use a key result of [Koutis and Williams 2008,2009]:

Randomized algorithm to decide in time O∗(2k) and polynomial
space, if a polynomial represented by an arithmetic circuit contains
a multilinear monomial of degree k .
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Polynomials

I A monomial is multilinear if each variable of the monomial
occurs at most once.

I By definition, the degree of a multilinear monomial is the
number of its variables.

I Example: P(X ) = (x21x3x5 + x1x2x4x6):
I x1x2x4x6 is a multilinear monomial of degree 4.
I x2

1 x3x5 is not a multilinear monomial.
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Compressed Polynomials

I An arithmetic circuit over a set of variables X is a DAG s.t.:
I internal nodes are the operations × or +,
I leafs are the elements of X .

I Example for P(X ) = (x1 + x2 + x3)(x3 + x4 + x5).

+

×

+

x1
x2

x3
x4

x5
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Polynomials

I Framework successfully applied for different problems:
I k-Path.
I k-Tree.
I k-Leaf Spanning Tree.
I t-Dominating Set.
I Graph Motif.
I Exemplar Breakpoint Distance.
I ...
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To solve LRS w.r.t. r

I A variable for each symbol of the alphabet representing a
potential run in the solution

I Circuit built via DP more or less representing subsequences
I A multilinear monomial of degree r in the circuit iff there is a

solution with r runs
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Size of the Kernel

I In FPT for k ⇐⇒ there is a kernel for k
I But f (k) could be anything !
I Better if f is poly

FPT Poly Kernel
k Yes Yes
|Σ| Yes [Schrinner et al.] No
r Yes & Poly Space No

19/26



Introduction FPT Algorithm Kernelization Conclusion

Size of the Kernel

I In FPT for k ⇐⇒ there is a kernel for k
I But f (k) could be anything !
I Better if f is poly

FPT Poly Kernel
k Yes Yes
|Σ| Yes [Schrinner et al.] No
r Yes & Poly Space No

19/26



Introduction FPT Algorithm Kernelization Conclusion

Trivial poly-kernel for parameter k

I If there is one a-run of size at least k , done

I If alphabet is larger than k , done
I Alphabet is at most k , no a-run is larger than k : at most k2

characters

k = 3, S = aabca,R = aaa
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Hardness

I Informally, one way to prove no poly kernel :
Given t instances of our problem, build a “join” instance I ′ s.t. I ′ is
true iff at least one of the t instance is true (OR-cross-composition)
[Bodlaender et al.]

I With technical details, we assume that the t instances:
I have same size
I have same k
I are built over the same alphabet
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Hardness

Add substrings of 2n new symbols around each instance

Look for a solution of size (t + 1)× 2n + k

If there is a solution of size k in some Si , take it and add all the $
before and all the # after

Parameter |Σ| is the same plus 2
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Complexity

I Better understanding of the parameterized complexity status
of the problem

I Also, LRS is APX-hard, even with at most 2 occurrences for
each symbol.

I (L-)Reduction from Independent Set in cubic graphs
“No talk is complete without a picture of reduction that nobody
understands” Daniel Marx
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Conclusion

I Practical issues of the FPT algorithm
I Close the gap of approximation (trivial

√
|S |-approx, far from

the APX-hardness)
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