The Longest Run Subsequence Problem: Further Complexity Results

Riccardo Dondi, Florian Sikora

Università degli Studi di Bergamo, Bergamo, Italy, LAMSADE, Université Paris Dauphine, CNRS – France

CPM - 07/21

The Longest Run Subsequence Problem: Further Complexity Results

Riccardo Dondi, Florian Sikora

Università degli Studi di Bergamo, Bergamo, Italy, LAMSADE, Université Paris Dauphine, CNRS – France

Outline

Introduction

FPT Algorithm

Kernelization

Conclusion

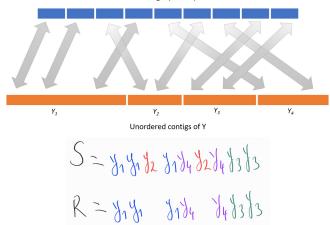
Story

- September 2020, we could attend WABI online
- We were independently interested by one open problem during a talk [Schrinner et al.] :

Is Longest Run Subsequence FPT w.r.t. the "compressed" size of the solution?

Motivations - reconstruct a genome

- Assembly from a set of reads to contigs
- Need to order them (scaffolding)
- Some matches are known (according to similarities)
- Some inconsistencies (errors in sequencing, mutations..)



Contig X (binned)

- Given a string S over an alphabet Σ
- ► Find the longest subsequence *R* s.t. each symbol occurs only consecutively (or none)

- Given a string S over an alphabet Σ
- ► Find the longest subsequence *R* s.t. each symbol occurs only consecutively (or none)

- Given a string S over an alphabet Σ
- Find the longest subsequence R s.t. each symbol occurs only consecutively (or none)

$$S = abac aabbab$$

 $R = a a aabb b$

- An a-run : substring repeating symbol a
- Could have no maximal run in the solution
- Some symbol may not be in the solution

- Given a string S over an alphabet Σ
- Find the longest subsequence R s.t. each symbol occurs only consecutively (or none)

$$S = abac aabbab$$

 $R = a a aabb b$

- An a-run : substring repeating symbol a
- Could have no maximal run in the solution
- Some symbol may not be in the solution
- Interesting parameters:
 - k : size of the solution
 - $|\Sigma|$: size of the alphabet
 - r : number of runs in the optimal solution

Known results [Schrinner et al.]

► FPT w.r.t. $|\Sigma|$ (implemented)

Known results [Schrinner et al.]

NP-hard

- FPT w.r.t. $|\Sigma|$ (implemented)
- ► ILP

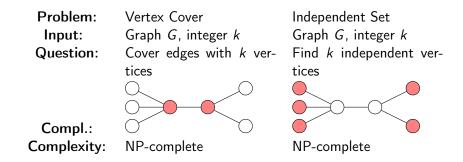
Open :

- ▶ FPT w.r.t. *r* ?
- Approximability ?

Problem: Input: Question: Vertex Cover Graph G, integer k Cover edges with k vertices Independent Set Graph G, integer k Find k independent vertices

Compl.:

Example from D. Marx.



Problem: Input: Question: Vertex Cover Graph *G*, integer *k* Cover edges with *k* vertices

Compl.: Complexity: Brute-force:

NP-complete $O(n^k)$ possibilities

Independent Set Graph *G*, integer *k* Find *k* independent vertices

 $O(n^k)$ possibilities

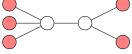
Problem: Input: Question: Vertex Cover Graph *G*, integer *k* Cover edges with *k* vertices

Compl.: Complexity: Brute-force: Smarter?:

NP-complete $O(n^k)$ possibilities

 $O(2^k n^2)$ algorithm

Independent Set Graph G, integer k Find k independent vertices

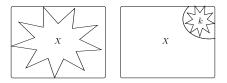


NP-complete $O(n^k)$ possibilities

No $f(k)n^{O(1)}$ algorithm exists

Fixed-Parameter Tractability

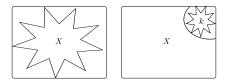
▶ Problem in FPT: any instance (I, k) solved in $f(k) \cdot |I|^c$.



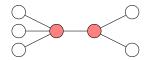
- Examples:
 - Solution of size *k* in a *n*-vertices graph.
 - n voters for k candidates.
 - Requests of size k in a n-sized database.
 - ▶ ...

Fixed-Parameter Tractability

• Problem in FPT: any instance (I, k) solved in $f(k) \cdot |I|^c$.

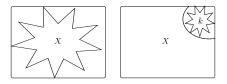


- Examples:
 - Solution of size *k* in a *n*-vertices graph.
 - n voters for k candidates.
 - Requests of size k in a n-sized database.
 - ▶ ...
- Many way to parameterize.
 - Solution size.



Fixed-Parameter Tractability

▶ Problem in FPT: any instance (I, k) solved in $f(k) \cdot |I|^c$.

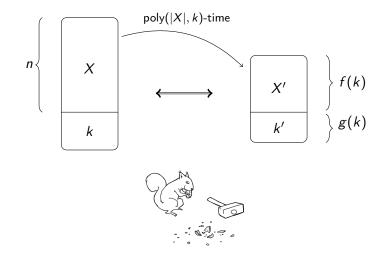


- Examples:
 - Solution of size *k* in a *n*-vertices graph.
 - n voters for k candidates.
 - Requests of size k in a n-sized database.
 - ▶ ...
- Many way to parameterize.
 - Solution size.
 - Structure of the input.

How to obtain FPT algorithm?

Illustration D. Marx.

Kernelization



Squirrel from [CFKLMPPS'15]

Parameterized Complexity or LRS

Parameters of decreasing size :

S = abacaabbab

$$|\Sigma| \leqslant k : R = abc$$

 $r \leqslant |\Sigma| : R = aaaabbb$

Outline

Introduction

FPT Algorithm

Kernelization

Conclusion

LRS and polynomials

- Color-Coding could probably work for parameter r
- ▶ We use a key result of [Koutis and Williams 2008,2009]:

Randomized algorithm to decide in time $O^*(2^k)$ and polynomial space, if a polynomial represented by an arithmetic circuit contains a multilinear monomial of degree k.

Polynomials

- A monomial is multilinear if each variable of the monomial occurs at most once.
- By definition, the degree of a multilinear monomial is the number of its variables.
- Example: $P(X) = (x_1^2 x_3 x_5 + x_1 x_2 x_4 x_6)$:
 - $x_1x_2x_4x_6$ is a multilinear monomial of degree 4.
 - $x_1^2 x_3 x_5$ is not a multilinear monomial.

Compressed Polynomials

An arithmetic circuit over a set of variables X is a DAG s.t.:

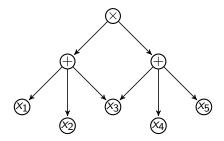
- internal nodes are the operations \times or +,
- leafs are the elements of X.

Compressed Polynomials

An arithmetic circuit over a set of variables X is a DAG s.t.:

- internal nodes are the operations \times or +,
- leafs are the elements of X.

• Example for $P(X) = (x_1 + x_2 + x_3)(x_3 + x_4 + x_5)$.



Polynomials

- ► Framework successfully applied for different problems:
 - ► *k*-Path.
 - ► *k*-Tree.

▶ ...

- ► k-Leaf Spanning Tree.
- t-Dominating Set.
- Graph Motif.
- Exemplar Breakpoint Distance.

To solve LRS w.r.t. r

- A variable for each symbol of the alphabet representing a potential run in the solution
- Circuit built via DP more or less representing subsequences
- A multilinear monomial of degree r in the circuit iff there is a solution with r runs

Outline

Introduction

FPT Algorithm

Kernelization

Conclusion

Size of the Kernel

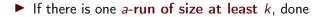
- In FPT for $k \iff$ there is a kernel for k
- But f(k) could be anything !
- Better if f is poly

Size of the Kernel

- In FPT for $k \iff$ there is a kernel for k
- But f(k) could be anything !
- Better if f is poly

	FPT	Poly Kernel
k	Yes	Yes
$ \Sigma $	Yes [Schrinner et al.]	No
r	Yes & Poly Space	No

Trivial poly-kernel for parameter k



$$k = 3, S = aabca, R = aaa$$

Trivial poly-kernel for parameter k

- ► If there is one *a*-run of size at least *k*, done
- ► If alphabet is larger than *k*, done

$$k = 3, S = aabca, R = abc$$

Trivial poly-kernel for parameter k

- ▶ If there is one *a*-run of size at least *k*, done
- ► If alphabet is larger than k, done
- Alphabet is at most k, no a-run is larger than k : at most k² characters

► Informally, one way to prove no poly kernel :

Given t instances of our problem, build a "join" instance l' s.t. l' is true iff at least one of the t instance is true (OR-cross-composition) [Bodlaender et al.]

► Informally, one way to prove no poly kernel :

Given t instances of our problem, build a "join" instance l' s.t. l' is true iff at least one of the t instance is true (OR-cross-composition) [Bodlaender et al.]

- ▶ With technical details, we assume that the *t* instances:
 - have same size
 - have same k
 - are built over the same alphabet

Add substrings of 2n new symbols around each instance

$$S' = \frac{\$! \cdots \$}{2n} S_1 \underbrace{\#! \cdots \#! \$! \cdots \$}_{2n} S_2 \underbrace{\#! \cdots \#! \cdots \$!}_{2n} S_{n} \underbrace{\#! \cdots \#!}_{2n}$$

Look for a solution of size $(t+1) \times 2n + k$

Add substrings of 2n new symbols around each instance

$$S' = \frac{\$! ...\$}{2n} S_1 \underbrace{\#! ... \$! \$! ...\$}_{2n} S_2 \underbrace{\#! ... \$! \$! S_{t} \underbrace{\$! !!}_{2n}$$

Look for a solution of size $(t + 1) \times 2n + k$ If there is a solution of size k in some S_i , take it and add all the before and all the # after

$$S' = \frac{\$!}{2m} S_1 \underbrace{\# \# \# \$!}_{2m} S_2 \underbrace{\# \# \# \# ... \$!}_{2m} S_1 \underbrace{\# \# ... \# \$!}_{2m} S_2 \underbrace{\# \# \# ... \# \$!}_{2m} S_1 \underbrace{\# \# ... \# \$!}_{2m} \underbrace{\# \# ... \# \# ... \# \$!}_{2m} S_1 \underbrace{\# ... \# \$!}_{2m} \underbrace{\# \# ... \# \$!}_{2m} \underbrace{\# \# ... \# !}_{2m} S_1 \underbrace{\# \# ... \# \# ... \# \$!}_{2m} \underbrace{\# \# ... \# !}_{2m} \underbrace{\# ... \# !}_{2m} \underbrace{\# ... \# !}_{2m} \underbrace{\# ... \# !}_{2m} \underbrace{\# !}_{2m} \underbrace{\#$$

Add substrings of 2n new symbols around each instance

$$S' = \frac{\$! ...\$}{2n} S_1 \underbrace{\#! ... \$! \$! ...\$}_{2n} S_2 \underbrace{\#! ... \$! \$! S_{t} \underbrace{\$! !!}_{2n}$$

Look for a solution of size $(t + 1) \times 2n + k$ If there is a solution of size k in some S_i , take it and add all the before and all the # after

$$S' = \frac{\$!}{2m} S_1 \underbrace{\#!}_{2m} \underbrace{\$!}_{2m} S_2 \underbrace{\#!}_{2m} \underbrace{\$!}_{2m} \underbrace{\!!}_{2m} \underbrace{\!!}_{2$$

Parameter $|\Sigma|$ is the same plus 2

Outline

Introduction

FPT Algorithm

Kernelization

Conclusion

Complexity

 Better understanding of the parameterized complexity status of the problem

Complexity

- Better understanding of the parameterized complexity status of the problem
- Also, LRS is APX-hard, even with at most 2 occurrences for each symbol.
- ▶ (L-)Reduction from Independent Set in cubic graphs

Complexity

- Better understanding of the parameterized complexity status of the problem
- Also, LRS is APX-hard, even with at most 2 occurrences for each symbol.
- ► (L-)Reduction from Independent Set in cubic graphs

"No talk is complete without a picture of reduction that nobody understands" Daniel Marx

$$\begin{split} S = & w_1 x_{1,2}^2 x_{1,3}^2 x_{1,4}^2 w_1 x_{1,1} x_{1,2} x_{1,3} \\ & w_2 x_{1,2}^2 x_{2,3}^2 x_{2,4}^2 w_2 x_{1,1} x_{2,2} x_{3,3} \\ & w_3 x_{1,3}^2 x_{2,3}^2 x_{4,4}^2 w_{3,1} x_{3,2} x_{3,3} \\ & w_4 x_{1,4}^2 x_{2,4}^2 x_{3,4}^2 w_4 x_{1,5} x_{2,5} x_{3,3} \\ & w_4 x_{1,4}^2 x_{2,4}^2 x_{3,4}^2 w_4 x_{1,5} x_{2,5} x_{3,5} \\ & w_1 x_{1,4}^2 x_{1,4}^2 x_{1,4}^2 x_{1,4}^2 x_{1,5}^2 x_{1,5} x_{2,5} \\ & x_{1,3}^2 x_{1,3}^2 x_{1,3}^2 x_{1,3}^2 x_{1,3}^2 x_{1,5}^2 x_{1,5} x_{2,5} \\ & x_{1,4}^2 x_{1,4}^2 x_{1,4}^2 x_{1,4}^2 x_{1,5}^2 x_{1,5} x_{2,5} \\ & x_{2,4}^2 x_{2,4}^2 x_{2,5}^2 x_{2,5}^2 x_{2,5}^2 x_{2,5} \\ & x_{2,4}^2 x_{2,4}^2 x_{2,4}^2 x_{2,4}^2 x_{2,5}^2 x_{1,5} x_{2,5} \\ & x_{2,4}^2 x_{2,4}^2 x_{2,4}^2 x_{2,4}^2 x_{2,4}^2 x_{2,5} \\ & x_{1,4}^2 x_{1,4}^2 x_{1,4}^2 x_{1,4}^2 x_{1,5}^2 x_{1,5} x_{1,5} \\ & x_{2,4}^2 x_{2,4}^2 x_{2,4}^2 x_{2,4}^2 x_{2,4}^2 x_{2,5} \\ & x_{1,4}^2 x_{1,4}^2 x_{1,4}^2 x_{1,4}^2 x_{1,5} \\ & x_{1,4}^2 x_{1,4}^2 x_{1,4}^2 x_{1,5} \\ & x_{1,4}^2 x_{1,4}^2 x_{1,4}^2 x_{1,4}^2 x_{1,5} \\ & x_{1,4}^2 x_{1,4}^2 x_{1,4}^2 x_{1,4}^2 x_{1,5} \\ & x_{1,4}^2 x_{1,5} \\ & x_{1,4}^2 x_{1,4}^2 x_{1,5} \\ & x_$$

Conclusion

- Practical issues of the FPT algorithm
- Close the gap of approximation (trivial $\sqrt{|S|}$ -approx, far from the APX-hardness)

Dziękuję!