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Given a graph

give a color to each vertex
such that adjacent vertices receive different colors
proper coloration

Chromatic number : smallest number of colors needed to
have a proper coloration
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4-color Theorem
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Graph Coloring...

... but not necessary

» There are graphs (e.g. Mycielski graph) without triangles
but with arbitrarily large chromatic number

M, M, M, M,

singleton graph 2—path graph S—cycle graph Griizsch graph

(chromatic number of 1, 2, 3, 4...)
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Order matters

» Suppose you give always the lowest possible color

» Use 4 (even n/2) colors
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Order matters

» Suppose you give always the lowest possible color

» Use 2 colors !
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Graph Coloring...

Order matters

» DSatur [Briraz 79] greedily colors the graph with the smallest
possible color

» The chosen vertex is the “most constrained” (max degree to
break ties)

Often good...
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...meets Monte Carlo

Problem to solve

» Optimisation: finding the chromatic number of the graph

» Decision: given a graph and an integer k, can the graph be
colored with k colors

» We focus on the latter (we can simulate the former with
decreasing values of k)

12/27



...meets Monte Carlo

Coloring as a game

Settings:
» The number of allowed colors k is fixed
> Move: put color ¢ to a vertex v
» Playout: given a vertex ordering, color each node of the graph

» Score: number of edges minus number of improperly colored
edges
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(Legal) Moves

2 possibilities:
1. All |V|* k possible moves

2. Fix an ordering and vertex after vertex, set its legal colors
(colors not in the neighborhood) as legal moves

> If no available colors, set all k coloration as legal moves (it will
decreases the score)

14/27



(Legal) Moves

2 possibilities:
1. All |V|* k possible moves

2. Fix an ordering and vertex after vertex, set its legal colors
(colors not in the neighborhood) as legal moves

> If no available colors, set all k coloration as legal moves (it will
decreases the score)

» Option 2. is more efficient (less moves) but relies on the
ordering (we use DSatur ordering)

14/27



(Legal) Moves

2 possibilities:
1. All |V| =« k possible moves

2. Fix an ordering and vertex after vertex, set its legal colors
(colors not in the neighborhood) as legal moves

> If no available colors, set all k coloration as legal moves (it will
decreases the score)

» Option 2. is more efficient (less moves) but relies on the
ordering (we use DSatur ordering)

c
b d
a

k = 3, legal moves for a: 1,2,3

14/27



(Legal) Moves

2 possibilities:
1. All |V| =« k possible moves

2. Fix an ordering and vertex after vertex, set its legal colors
(colors not in the neighborhood) as legal moves

> If no available colors, set all k coloration as legal moves (it will
decreases the score)

» Option 2. is more efficient (less moves) but relies on the
ordering (we use DSatur ordering)

c
b d
a

k =3, legal moves for b: 2, 3

14/27



(Legal) Moves

2 possibilities:
1. All |V| =« k possible moves

2. Fix an ordering and vertex after vertex, set its legal colors
(colors not in the neighborhood) as legal moves

> If no available colors, set all k coloration as legal moves (it will
decreases the score)

» Option 2. is more efficient (less moves) but relies on the
ordering (we use DSatur ordering)

c
b d
a

k =3, legal move for c : 3

14/27



(Legal) Moves

2 possibilities:
1. All |V| =« k possible moves

2. Fix an ordering and vertex after vertex, set its legal colors
(colors not in the neighborhood) as legal moves

> If no available colors, set all k coloration as legal moves (it will
decreases the score)

» Option 2. is more efficient (less moves) but relies on the
ordering (we use DSatur ordering)

c
b d
a

k=3, legal moves ford: 2,3

14/27



(Legal) Moves

2 possibilities:
1. All |V|* k possible moves

2. Fix an ordering and vertex after vertex, set its legal colors
(colors not in the neighborhood) as legal moves

> If no available colors, set all k coloration as legal moves (it will
decreases the score)

» Option 2. is more efficient (less moves) but relies on the
ordering (we use DSatur ordering)
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Complexity

» Very hard, even for 3 colors

> Not approximable at all

» However, largely used in applications, important to solve
(scheduling, timetabling...)

16/27



Competitors

In practice

Exact moderately exponential algorithms
Mathematical programming

Approximation on special graph classes
Parameterized complexity and data reduction

Heuristics, meta-heuristics...

Exact methods are limited after few hundred of vertices
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Competitors

Competitors

1. Greedy Coloring according to the DSatur ordering

2. Naive SAT encoding solved with MiniSAT
3. HEAD [MoALIC AND GONDRAN 18]

> Local search (Tabu-Search) mixed with an evolutionary
algorithm and specialized graph-coloring operators
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Competitors

1. Greedy Coloring according to the DSatur ordering

2. Naive SAT encoding solved with MiniSAT
3. HEAD [Moavic anp GONDRAN 18]

> Local search (Tabu-Search) mixed with an evolutionary
algorithm and specialized graph-coloring operators

To be compared with:
1. Nested Monte Carlo Search (NMCS) [Cazenave 09)
2. Nested Rollout Policy Adaptation (NRPA) [rosiv 11]
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Settings

» Benchmark of graphs by [Guaranni axn Chiaranbini (from
DIMACS) from different sources (road network, random, latin

square...)
» Optimum is known for most of them
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Settings

» Benchmark of graphs by [Guaranpr anp Criaranpmv] (from
DIMACS) from different sources (road network, random, latin

square...)
» Optimum is known for most of them

> We start from k given by the greedy coloring

> We use the decision algorithm for each lower k as long as it
returns YES (30min TO)
> ‘“cheat” : we stop when we reach the known optimum
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Experimental results

Results

» Monte Carlo solve all instances marked “easy” and
“medium” in the benchmark

» Contrary to experiments of [Epeicavr vt ar. 17], NMCS
showed less good results than NRPA , especially on hard
instances

» NRPA often better than the SAT approach
» HEAD is better in general but NRPA is sometimes better
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Some results

Experimental results

NMCS NRPA SAT HEAD
Instance ||V| |E| x UBI|UB Reached|UB Reached|UB Reached|UB Reached

flat300.28.0) 300 21695 28 41 |38 20% |35 20% |39 100% |31 100%

rl000.5 1000 238267 234 248 (243 20% 240+, 40% 247 100% 248 -
r250.5 250 14849 65 67 |65 100% |65 100% |65 100% |66  40%
DSJR500.5 | 500 58862 122 132125 60% 122 40% |126 100% 60%
DSJR500.1¢c| 500 121275 85 88 | 88 - 87 60% |86 100% 80%
DSICI25.5| 125 3891 17 23 |19 100% J18% 100% |19 100% 00%
DSIC125.9 | 125 6961 44 50 (45 40% (|44 | 100% |46 100% 00%
DSJC250.9 | 250 27897 72 90 (84 20% |76 | 20% |86 100% 00%
queenl0_10| 100 2940 11 14 |11 60% (11 & 40% |12 100% 00%
queenll_11]121 3960 11 14|13 100% 100% |13  100% 100%

NRPA sometimes the best
HEAD often the best
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Some results

NMCS NRPA SAT HEAD
Instance | |[V| |E| x UBI|UB Reached|UB Reached|UB Reached UB Reached
le450.5a | 450 5714 5 10| 6 20% 5 100% |5 100% |5 100%
1e450_.5b | 450 5734 5 7 |6 40% 5 20% |5 100% |5 100%
le450_15b | 450 8169 15 17 [15 100% 100% |15 100% 100%
1e450_15¢c | 450 16680 15 24 (22 100% ‘|21 | 100% |22 100% /15 100%
le450_15d | 450 16750 15 24 (22 100% |20 & 20% |22 100% ( 15 100%
le45025¢c | 450 17343 25 28 (27 100% |26, 100% |27 100% 426+ 100%
le450.25d | 450 17425 25 29 (27 100% 6 100% |27 100% |26 100%
qg.order60 | 3600 212400 60 63 |60 40% |62 100% |61 100% |60 100%
qg.order100{10000 990000 100 106| — 20% (102 20% |- 20% |100 100%
Avg. ratio to x 1.7626 1.0963 1.1300 1.0089

NRPA better than NMCS and SAT, but HEAD dominates
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Experimental results

Some results

NMCS | NRPA SAT HEAD
instance | |V m X1 UBI|UB Reached|UB Reached UB Reached|UB Reached

DSIC250.1 | 250 4 109 100% |8 40% |9 100% 100%
DSIC250.5 | 250 15668 26 3734 100% 100% |35 100% 100%
DSIC500.1 1614 40% 100% |15 100% 100%
DSICS00.5 65 |67, 20% 80% |63 100% 100%
DSJC500.9 163 20% 20% |163 100%
DSIC1000.1 25 - 100% |25 - 100%
DSIC1000.5 14 - a0% (114 - 60%
DSIC1000.9 301 - 40% 301 - 20%
lat1000_50.0 113 - a0% |13 - 100%

NMCS struggle with large graphs
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Experimental results

Hope
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On some instances, NRPA continues to “learn” over time
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Experimental results

Conclusion

» Monte Carlo competes without any specialized rules
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Experimental results

Conclusion

» Monte Carlo competes without any specialized rules

» Mix with heuristic like HEAD?
» Using Neural Network to learn the order of coloring?

» Other graph problems?
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Thanks!
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