Monte Carlo Graph Coloring

Tristan Cazenave, Benjamin Negrevergne, Florian Sikora

LAMSADE, Université Paris Dauphine, CNRS - France

Outline

Graph Coloring...

...meets Monte Carlo

Competitors

Experimental results

Graph Coloring

Given a graph

Graph Coloring

Given a graph

- give a color to each vertex
- such that adjacent vertices receive different colors
- proper coloration

Graph Coloring

Given a graph

- give a color to each vertex
- such that adjacent vertices receive different colors
- proper coloration
- Chromatic number : smallest number of colors needed to have a proper coloration

Examples

Examples

4-color Theorem

Competitors

Cliques are lower bounds...

Cliques are lower bounds...

Cliques are lower bounds...

... but not necessary

There are graphs (e.g. Mycielski graph) without triangles but with arbitrarily large chromatic number

Suppose you give always the lowest possible color

• Use 4 (even n/2) colors

- DSatur [BRÉLAZ 79] greedily colors the graph with the smallest possible color
- The chosen vertex is the "most constrained" (max degree to break ties)

- DSatur [BRÉLAZ 79] greedily colors the graph with the smallest possible color
- The chosen vertex is the "most constrained" (max degree to break ties)

- DSatur [BRÉLAZ 79] greedily colors the graph with the smallest possible color
- The chosen vertex is the "most constrained" (max degree to break ties)

- DSatur [BRÉLAZ 79] greedily colors the graph with the smallest possible color
- The chosen vertex is the "most constrained" (max degree to break ties)

- DSatur [BRÉLAZ 79] greedily colors the graph with the smallest possible color
- The chosen vertex is the "most constrained" (max degree to break ties)

- DSatur [BRÉLAZ 79] greedily colors the graph with the smallest possible color
- The chosen vertex is the "most constrained" (max degree to break ties)

- DSatur [BRÉLAZ 79] greedily colors the graph with the smallest possible color
- The chosen vertex is the "most constrained" (max degree to break ties)

- DSatur [BRÉLAZ 79] greedily colors the graph with the smallest possible color
- The chosen vertex is the "most constrained" (max degree to break ties)

- DSatur [BRÉLAZ 79] greedily colors the graph with the smallest possible color
- The chosen vertex is the "most constrained" (max degree to break ties)

- DSatur [BRÉLAZ 79] greedily colors the graph with the smallest possible color
- The chosen vertex is the "most constrained" (max degree to break ties)

Outline

Graph Coloring...

...meets Monte Carlo

Competitors

Experimental results

Problem to solve

- **Optimisation**: finding the chromatic number of the graph
- Decision: given a graph and an integer k, can the graph be colored with k colors
- We focus on the latter (we can simulate the former with decreasing values of k)

Coloring as a game

Settings:

- The number of allowed colors k is fixed
- Move: put color c to a vertex v
- Playout: given a vertex ordering, color each node of the graph
- Score: number of edges minus number of improperly colored edges

- 2 possibilities:
 - **1.** All |V| * k possible moves
 - **2.** Fix an ordering and vertex after vertex, set its legal colors (colors not in the neighborhood) as legal moves
 - If no available colors, set all k coloration as legal moves (it will decreases the score)

- 2 possibilities:
 - **1.** All |V| * k possible moves
 - **2.** Fix an ordering and vertex after vertex, set its legal colors (colors not in the neighborhood) as legal moves
 - If no available colors, set all k coloration as legal moves (it will decreases the score)
 - Option 2. is more efficient (less moves) but relies on the ordering (we use DSatur ordering)

- 2 possibilities:
 - **1.** All |V| * k possible moves
 - **2.** Fix an ordering and vertex after vertex, set its legal colors (colors not in the neighborhood) as legal moves
 - If no available colors, set all k coloration as legal moves (it will decreases the score)
 - Option 2. is more efficient (less moves) but relies on the ordering (we use DSatur ordering)

k = 3, legal moves for a : 1,2,3

- 2 possibilities:
 - **1.** All |V| * k possible moves
 - **2.** Fix an ordering and vertex after vertex, set its legal colors (colors not in the neighborhood) as legal moves
 - If no available colors, set all k coloration as legal moves (it will decreases the score)
 - Option 2. is more efficient (less moves) but relies on the ordering (we use DSatur ordering)

k = 3, legal moves for b : 2, 3

- 2 possibilities:
 - **1.** All |V| * k possible moves
 - **2.** Fix an ordering and vertex after vertex, set its legal colors (colors not in the neighborhood) as legal moves
 - If no available colors, set all k coloration as legal moves (it will decreases the score)
 - Option 2. is more efficient (less moves) but relies on the ordering (we use DSatur ordering)

k = 3, legal move for c : 3

- 2 possibilities:
 - **1.** All |V| * k possible moves
 - **2.** Fix an ordering and vertex after vertex, set its legal colors (colors not in the neighborhood) as legal moves
 - If no available colors, set all k coloration as legal moves (it will decreases the score)
 - Option 2. is more efficient (less moves) but relies on the ordering (we use DSatur ordering)

k = 3, legal moves for d : 2, 3

- 2 possibilities:
 - **1.** All |V| * k possible moves
 - **2.** Fix an ordering and vertex after vertex, set its legal colors (colors not in the neighborhood) as legal moves
 - If no available colors, set all k coloration as legal moves (it will decreases the score)
 - Option 2. is more efficient (less moves) but relies on the ordering (we use DSatur ordering)

Outline

Graph Coloring...

...meets Monte Carlo

Competitors

Experimental results

Complexity

- Very hard, even for 3 colors
- Not approximable at all
- However, largely used in applications, important to solve (scheduling, timetabling...)

In practice

- Exact moderately exponential algorithms
- Mathematical programming
- Approximation on special graph classes
- Parameterized complexity and data reduction
- Heuristics, meta-heuristics...
- Exact methods are limited after few hundred of vertices

Competitors

- 1. Greedy Coloring according to the DSatur ordering
- 2. Naïve SAT encoding solved with MiniSAT
- 3. HEAD [MOALIC AND GONDRAN 18]
 - Local search (Tabu-Search) mixed with an evolutionary algorithm and specialized graph-coloring operators

Competitors

- 1. Greedy Coloring according to the DSatur ordering
- 2. Naïve SAT encoding solved with MiniSAT
- 3. HEAD [MOALIC AND GONDRAN 18]
 - Local search (Tabu-Search) mixed with an evolutionary algorithm and specialized graph-coloring operators

To be compared with:

- 1. Nested Monte Carlo Search (NMCS) [CAZENAVE 09]
- 2. Nested Rollout Policy Adaptation (NRPA) [ROSIN 11]

Outline

Graph Coloring...

...meets Monte Carlo

Competitors

Experimental results

Settings

- Benchmark of graphs by [GUALANDI AND CHIARANDINI] (from DIMACS) from different sources (road network, random, latin square...)
- Optimum is known for most of them

Settings

- Benchmark of graphs by [GUALANDI AND CHIARANDINI] (from DIMACS) from different sources (road network, random, latin square...)
- Optimum is known for most of them
- ▶ We start from *k* given by the greedy coloring
- We use the decision algorithm for each lower k as long as it returns YES (30min TO)
- "cheat" : we stop when we reach the known optimum

Results

- Monte Carlo solve all instances marked "easy" and "medium" in the benchmark
- Contrary to experiments of [EDELKAMP ET AL. 17], NMCS showed less good results than NRPA, especially on hard instances
- NRPA often better than the SAT approach
- ► HEAD is better in general but NRPA is sometimes better

Some results

					NMCS		NRPA		SAT		HEAD	
Instance	V	E	χ	UBI	UB	Reached	UB	Reached	UB	Reached	UB	Reached
flat300_28_0	300	21695	28	41	38	20%	35	20%	39	100%	31	100%
r1000.5	1000	238267	234	248	243	20%	240	40%	247	100% 🥖	248	-
r250.5	250	14849	65	67	65	100%	65	100%	65	100%	66	40%
DSJR500.5	500	58862	122	132	125	60%	122	/ 40%	126	100%	124	60%
DSJR500.1c	500	121275	85	88	88	-	87	60%	86	100%	86	80%
DSJC125.5	125	3891	17	23	19	100%	18	100%	19	100%	17	100%
DSJC125.9	125	6961	44	50	45	40%	44	100%	46	100%	44	100%
DSJC250.9	250	27897	72	90	84	20%	76	20%	86	100%	72	100%
queen10_10	100	2940	11	14	11	60%	11	40%	12	100%	11	100%
queen11_11	121	3960	11	14	13	100%	13	100%	13	100%	12	/100%

NRPA sometimes the best HEAD often the best

Some results

					NMCS		NRPA		SAT		HEAD	
Instance	V	E	χ	UBI	UB	Reached	UB	Reached	UB	Reached	UB	Reached
le450_5a	450	5714	5	10	6	20%	5	100%	5	100%	5	100%
le450_5b	450	5734	5	7	6	40%	5	20%	5	100%	5	100%
le450_15b	450	8169	15	17	15	100%	15	100%	15	100%	15	100%
le450_15c	450	16680	15	24	22	100%	21	100%	22	100%	15	100%
le450_15d	450	16750	15	24	22	100%	20	20%	22	100%	15	100%
le450_25c	450	17343	25	28	27	100%	26	100%	27	100%	26	/ 100%
le450_25d	450	17425	25	29	27	100%	26	100%	27	100%	26	100%
qg.order60	3600	212400	60	63	60	40%	62	100%	61	100%	60	100%
qg.order100	10000	990000	100	106	-	20%	102	20%	-	20%	100	100%
Avg. ratio to χ					1.7626		1.0963		1.1300		1.0089	

NRPA better than NMCS and SAT, but HEAD dominates

Some results

					NMCS		NRPA		SAT		HEAD	
instance	V	E	χ_{LB}	UBI	UB	Reached	UB	Reached	UB	Reached	UB	Reached
DSJC250.1	250	3218	4	10	9	100%	8	40%	9	100%	8	100%
DSJC250.5	250	15668	26	37	34	100%	32	100%	35	100%	28	100%
DSJC500.1	500	12458	9	16	14	40%	14	100%	15	100%	12	100%
DSJC500.5	500	62624	43	65	62	20%	59	80%	63	100%	48	100%
DSJC500.9	500	112437	123	163	161	20%	148	20%	163	-	126	100%
DSJC1000.1	1000	49629	10	25	25	1 - 1	24	100%	25	- [21	100%
DSJC1000.5	1000	249826	73	114	114	1 - 1	112	40%	114	- 1	83	60%
DSJC1000.9	1000	449449	216	301	301	1 - 1	299	40%	301	- 1	223	20%
flat1000_50_0	1000	245000	15	113	113	- 1	111	40%	113	_	50	100%

NMCS struggle with large graphs

Hope

On some instances, NRPA continues to "learn" over time

Conclusion

Monte Carlo competes without any specialized rules

Conclusion

- Monte Carlo competes without any specialized rules
- Mix with heuristic like HEAD?
- Using Neural Network to learn the order of coloring?
- Other graph problems?

Thanks!