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4-color Theorem
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Cliques are lower bounds...
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... but not necessary

I There are graphs (e.g. Mycielski graph) without triangles
but with arbitrarily large chromatic number

...
(chromatic number of 1, 2, 3, 4...)
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Order matters

I Suppose you give always the lowest possible color
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Order matters

I DSatur [Brélaz 79] greedily colors the graph with the smallest
possible color

I The chosen vertex is the “most constrained” (max degree to
break ties)

Often good...
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Problem to solve

I Optimisation: finding the chromatic number of the graph

I Decision: given a graph and an integer k , can the graph be
colored with k colors

I We focus on the latter (we can simulate the former with
decreasing values of k)
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Coloring as a game

Settings:

I The number of allowed colors k is fixed

I Move: put color c to a vertex v

I Playout: given a vertex ordering, color each node of the graph

I Score: number of edges minus number of improperly colored
edges
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(Legal) Moves

2 possibilities:

1. All |V | ∗ k possible moves

2. Fix an ordering and vertex after vertex, set its legal colors
(colors not in the neighborhood) as legal moves
I If no available colors, set all k coloration as legal moves (it will

decreases the score)

I Option 2. is more efficient (less moves) but relies on the
ordering (we use DSatur ordering)
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Complexity

I Very hard, even for 3 colors

I Not approximable at all

I However, largely used in applications, important to solve
(scheduling, timetabling...)
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In practice

I Exact moderately exponential algorithms

I Mathematical programming

I Approximation on special graph classes

I Parameterized complexity and data reduction

I Heuristics, meta-heuristics...

I Exact methods are limited after few hundred of vertices
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Competitors

1. Greedy Coloring according to the DSatur ordering

2. Näıve SAT encoding solved with MiniSAT

3. HEAD [Moalic and Gondran 18]

I Local search (Tabu-Search) mixed with an evolutionary
algorithm and specialized graph-coloring operators

To be compared with:

1. Nested Monte Carlo Search (NMCS) [Cazenave 09]

2. Nested Rollout Policy Adaptation (NRPA) [Rosin 11]
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Settings

I Benchmark of graphs by [Gualandi and Chiarandini] (from
DIMACS) from different sources (road network, random, latin
square...)

I Optimum is known for most of them

I We start from k given by the greedy coloring

I We use the decision algorithm for each lower k as long as it
returns YES (30min TO)

I “cheat” : we stop when we reach the known optimum
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Results

I Monte Carlo solve all instances marked “easy” and
“medium” in the benchmark

I Contrary to experiments of [Edelkamp et al. 17], NMCS
showed less good results than NRPA , especially on hard
instances

I NRPA often better than the SAT approach

I HEAD is better in general but NRPA is sometimes better
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Some results

NRPA sometimes the best
HEAD often the best
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Some results

NRPA better than NMCS and SAT, but HEAD dominates
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Some results

NMCS struggle with large graphs
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On some instances, NRPA continues to “learn” over time
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Conclusion

I Monte Carlo competes without any specialized rules

I Mix with heuristic like HEAD?

I Using Neural Network to learn the order of coloring?

I Other graph problems?
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