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I Hardness results for the extension problem EXT Ind Sys
(Flashlight) for independent systems [Lawler et. al., 1980].

Given as input X,Y ⊆ V , is there any maximum indepen-
dent set that includes X and does not intersect with Y .
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I Hardness results for EXT VC for planar cubic graphs [Bazgan
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I NP-hardness results of EXT DS on planar cubic graphs [Bazgan
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Hardness: Cubic Bipartite Graphs

I Start from an instance I = (C,X ) from (3, B2)-SAT
I C = {c1, ..., cm}
I X = {x1, ..., xn}

2-Balanced 3-SAT (or (3, B2)-SAT)

• each clause has exactly 3 literals,
• each variable appears exactly 4 times, twice negative
and twice positive.
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Exact Algorithms: Planar and Bipartite

I Assuming ETH, there is no 2o(n+m) algorithm for (3, B2)-SAT.

EXT VC is not decidable in 2o(n+m) for cubic bipartite graphs.

I EXT VC can be decided in O∗(2t) in graphs of tree-width t.

I Planar graphs of order n have tree-width bounded by
√

n.

EXT VC can be decided in time O∗(2
√

n) in planar graphs.

I 4-Bounded Planar 3-Connected SAT is not solvable in 2o(
√

n+m),
unless ETH fails.

EXT VC is not decidable in 2o(
√

n) for planar instances of order n.
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EXT VC: Chordal and Circular-arc Graphs
I Weighted Independent Dominating Set (WISDS) in chordal graphs of

binary weights: w(v) ∈ {0, 1} is polynomial solvable [Farber, 1982].

I WISDS in circular-arc graphs is polynomial solvable [Chang, 1998].

I Make a reduction from EXT VC to WISDS:

I G′ = G[NG[U ]],

I w(v) = 1 if v ∈ U , otherwise, w(v) = 0,

I (G, U) is a yes-instance of EXT VC iff w(S∗) = 0.

(G, U)
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Parameterized Complexity: Planar and Bipartite
Planar Graphs

I (G, U) is a yes-instance of EXT VC iff (G[NG[U ]], NG[U ] \ U) is a
yes-instance of EXT IS.

I The diameter of G[NG[U ]] is bounded by 3|U |.

I The tree-width of G[NG[U ]] is at most 9|U | [Bodlaender, 1996].

EXT VC can be solved in time O∗(2O(|U|)).

Bipartite Graphs

I A reduction from Multicolored Independent Set.

EXT VC parameterized by |U | is W[1]-complete in bipartite graphs.
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Price of Extension

I EXTminIS on G = (V,E) when U = ∅ called Independent
Dominating Set (minimum maximal independent set).

I Independent Dominating Set is in-approximable within
O(n1−ε) in graphs of n vertices for every ε > 0 [Halldorsson,
1993].

I For any constant ε > 0, any ρ ∈ O(n1−ε) and ρ ∈ O(∆1−ε), there
is no polynomial-time ρ-approximation for EXTminIS.
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Conclusion

I EXT VC and EXT IS are NP-complete in bipartite, planar,... while
are polynomial decidable in chordal, circular arc.

I EXT VC and EXT IS are W[1]-complete in bipartite graphs and are
in FPT in planar graphs parameterized by |U | and |V \U | respectively.

I EXTmaxVC and EXTminIS are equivalent and difficult to approximate
in general, but easier on special graph classes (most notably, exactly
solvable in polynomial time on chordal graphs).
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Thanks for your attention!
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