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2-Balanced 3-SAT (or (3, B2)-SAT)

e each clause has exactly 3 literals,
e each variable appears exactly 4 times, twice negative
and twice positive.
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» Start from an instance I = (C, X) from (3, B2)-SAT
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EXT VC can be solved in time @*(29(UD),

Bipartite Graphs

» A reduction from MULTICOLORED INDEPENDENT SET.

EXT VC parameterized by |U| is W[1]-complete in bipartite graphs.
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Price of Extension: Positive Results

» BIPARTITE GRAPHS — &-apx
» BOUNDED DEGREE A — +-apx

» CHORDAL GRAPHS

EXTuxVC ISDS

OPTextmuve(G.U) = [U| = OPTisps(G')
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Price of Extension: Positive Results

» BIPARTITE GRAPHS — &-apx
» BOUNDED DEGREE A — +-apx

» CHORDAL GRAPHS — polynomial
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Conclusion

» EXT VC and EXT IS are NP-complete in bipartite, planar,... while
are polynomial decidable in chordal, circular arc.

» EXT VC and EXT IS are W[1]-complete in bipartite graphs and are
in FPT in planar graphs parameterized by |U| and |V \ U| respectively.

» EXTy.VC and EXT IS are equivalent and difficult to approximate
in general, but easier on special graph classes (most notably, exactly
solvable in polynomial time on chordal graphs).
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Thanks for your attention!
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