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Min weighted Edge Cover Problem

Input: A Graph G = (V,E,w) with w(e) ≥ 0 for all e ∈ E.

Solution: A subset S ⊆ E which covers all vertices in V .

Output: Minimizing w(S) =
∑
e∈S w(e).
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Max-Min Edge Cover (Weighted Upper Edge Cover)

Input: A Graph G = (V,E,w) with w(e) ≥ 0 for all e ∈ E.

Solution: An inclusion-wise minimal edge cover S ⊆ E.

Output: Maximizing w(S) =
∑
e∈S w(e).
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Max Spanning Star Forest Problem

Input: A Graph G = (V,E,w) with w(e) ≥ 0 for all e ∈ E.

Solution: A spanning star forest S = {S1, . . . , Sp} ⊆ E.

Output: Maximizing w(S) =
∑
e∈S w(e) =

∑p
i=1

∑
e∈Si

w(e)

4/13



Max Spanning Star Forest Problem

Input: A Graph G = (V,E,w) with w(e) ≥ 0 for all e ∈ E.

Solution: A spanning star forest S = {S1, . . . , Sp} ⊆ E.

Output: Maximizing w(S) =
∑
e∈S w(e) =

∑p
i=1

∑
e∈Si

w(e)

1 2

2 4 5

3 2 2

1 2

5
4

1

6

3

4/13



Max Spanning Star Forest Problem

Input: A Graph G = (V,E,w) with w(e) ≥ 0 for all e ∈ E.

Solution: A spanning star forest S = {S1, . . . , Sp} ⊆ E.

Output: Maximizing w(S) =
∑
e∈S w(e) =

∑p
i=1

∑
e∈Si

w(e)

1 2

2 4 5

3 2 2

1 2

5
4

1

6

3

4/13



Upper Edge Cover vs. Max Spanning Star Forest
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Unweighted version
I Any minimal edge cover of graph G is a spanning star forest of G.
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Upper Edge Cover vs. Max Spanning Star Forest

Unweighted version
I Any minimal edge cover of graph G is a spanning star forest of
G.

I Any spanning star forest can be converted into a spanning star
forest without trivial stars with same value.

I Upper Edge Cover and Max SSF are completely equivalent,
even in approximation.
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Upper Edge Cover vs. Max Spanning Star Forest

Weighted version
I Any minimal edge cover of graph G is a spanning star forest of G.
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Weighted UEC in Complete graphs

I Max WSSF in general graphs is equivalent to Weighted UEC
in complete graphs.
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Weighted UEC in Complete graphs

I Max WSSF in general graphs is equivalent to Weighted UEC
in complete graphs.

� Weighted UEC is 0.5-apx in complete graphs. [D.
Chakrabarty et al. 2010]

� Weighted UEC is 10
11 in-apx in complete graphs unless

P=NP. [C. T. Nguyen et al. 2008]
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Weighted UEC in Bipartite graphs

I Weighted UEC in bipartite graphs is as hard as Max IS in
general graphs.

7/13



Weighted UEC in Bipartite graphs

I Weighted UEC in bipartite graphs is as hard as Max IS in
general graphs.

a

v

c

u

e

w

Max IS

7/13



Weighted UEC in Bipartite graphs

I Weighted UEC in bipartite graphs is as hard as Max IS in
general graphs.

a

v

c

u

e

w

Max IS

a

v

c

u

e

w

Weighted UEC

7/13



Weighted UEC in Bipartite graphs

I Weighted UEC in bipartite graphs is as hard as Max IS in
general graphs.

a

v

c

u

e

w

Max IS

a

v

c

u

e

w

Weighted UEC

7/13



Weighted UEC in Bipartite graphs

I Weighted UEC in bipartite graphs is as hard as Max IS in
general graphs.

a

v

c

u

e

w

Max IS

a

v

c

u

e

w

Weighted UEC

7/13



Weighted UEC in Bipartite graphs

I Weighted UEC in bipartite graphs is as hard as Max IS in
general graphs.

a

v

c

u

e

w

Max IS

a

v

c

u

e

w

Weighted UEC

w(e) = 1

w(e) = 0

7/13



Weighted UEC in Bipartite graphs

I Weighted UEC in bipartite graphs is as hard as Max IS in
general graphs.

a

v

c

u

e

w

Max IS

a

v

c

u

e

w

Weighted UEC

w(e) = 1

w(e) = 0

7/13



Weighted UEC in Bipartite graphs

I Weighted UEC in bipartite graphs is as hard as Max IS in
general graphs.

a

v

c

u

e

w

Max IS

a

v

c

u

e

w

Weighted UEC

w(e) = 1

w(e) = 0

7/13



Weighted UEC in Bipartite graphs

I Weighted UEC in bipartite graphs is as hard as Max IS in
general graphs.

a

v

c

u

e

w

Max IS

a

v

c

u

e

w

Weighted UEC

w(e) = 1

w(e) = 0

7/13



Weighted UEC in Bipartite graphs

I Weighted UEC in bipartite graphs is as hard as Max IS in
general graphs.

a

v

c

u

e

w

Max IS

a

v

c

u

e

w

Weighted UEC

7/13



Weighted UEC in Bipartite graphs

I Weighted UEC in bipartite graphs is as hard as Max IS in
general graphs.

� For any ε > 0, Weighted UEC in bipartite graphs with n vertices is
not O(nε− 1

2 ) -apx.

� For any ε > 0, it is hard to approximate Weighted UEC in bipartite
graphs og max. degree ∆ within a factor O(∆ε−1).
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Weighted UEC in Graphs of max. degree ∆

Weighted UEC is APX-complete in graphs of max. degree ∆.
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� For any ε > 0, it is hard to approximate Weighted UEC in
bipartite graphs of max. degree ∆ within a factor O(∆ε−1).

� Weighted UEC is 1
2.∆ approximable in graphs of max. degree
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Weighted UEC in graphs of max. degree ∆

Approximation algorithm
I Let G = (V,E,w) is a graph of max. degree ∆.
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Weighted UEC in graphs of max. degree ∆

Approximation algorithm
I Suppose S = {S1, ..., Sk} is an approximation solution of Max

WSSF which contains all pendant edges.
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Weighted UEC in graphs of max. degree ∆

Approximation algorithm
I We build a vertex-weighted graph G′ with max. degree ∆− 1.
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Weighted UEC in graphs of max. degree ∆

Approximation algorithm
I Find Max Weighted IS in G′ greedily by weights.
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∑
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Weighted UEC in graphs of max. degree ∆

Approximation algorithm

� Max Extended Spanning Star Forest is 1
2 -approximable.

[Khoshkhah et al. 2018]
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Approximation algorithm

� Max Extended Spanning Star Forest is 1
2 approximable.

[Khoshkhah et al. 2018]

w(S) ≥ 1
2optESSF (G) ≥ 1

2optW UEC(G)

w(S ′) ≥ 1
2.∆optW UEC
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Weighted UEC in k-trees

A k-tree defined inductively as follows:

I A Kk+1 is a k-tree.

I If G is a k-tree, then adding a new vertex which has exactly k
neighbors in G such that these k + 1 vertices induce a Kk+1,
forms a k-tree.
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Weighted UEC in k-trees
Approximation algorithm
I Any k-tree can be colored greedily by k + 1 colors in linear time.
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Weighted UEC in k-trees
Approximation algorithm
I Suppose S = {S1, ..., Sr} is a nice spanning star forest of the
k-tree.

3-trees, G = (V,E,w)
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Weighted UEC in k-trees
Approximation algorithm
I Modify spanning star forest S to obtain an edge cover S′.

Property. let c1, c2 be two distinct colors of coloring C. For each trivial star v in
S, let V ′ = {v ∈ N(v) : C(v) ∈ {c1, c2}}, then for any u ∈ V ′, S′ = (S\{uc})∪{uv}
is a new solution.

3-trees, G = (V, E, w)
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Weighted UEC in k-trees
Approximation algorithm
For each color ci, let Eci

= {cv ∈ S : C(v) = ci}.
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Weighted UEC in k-trees
Approximation algorithm
Suppose for two distinct colors c1, c2, w(Ec1 ∪ Ec2 ) = min{w(Eci ∪ Ecj ) : i, j ∈
{1, ..., k + 1}}, then for each trivial vertex v in S, remove an edge uc ∈ {Ec1 ∪Ec2}
from S and add the edge uv to S.

3-trees, G = (V, E, w)
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c1
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Weighted UEC in k-trees
Approximation algorithm

w(Eci
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) ≤ 2
k+1w(E(S))

w(S ′) ≥ w(E(S)− (Ec1 ∪ Ec2)) ≥ k−1
k+1w(E(S))
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� Max WSSF is 1
2 approximable in k-trees.

Weighted UEC is k−1
2(k+1) approximable
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Thank you for your attention.
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