Weighted Upper Edge Cover: complexity and approximability

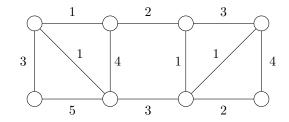
Mehdi Khosravian

Joint work with: Kaveh Khoshkhah, Jérôme Monnot and Florian Sikora

March 2, 2019

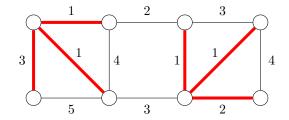
Min weighted Edge Cover Problem

Input: A Graph G = (V, E, w) with $w(e) \ge 0$ for all $e \in E$. **Solution:** A subset $S \subseteq E$ which covers all vertices in V. **Output:** Minimizing $w(S) = \sum_{e \in S} w(e)$.



Min weighted Edge Cover Problem

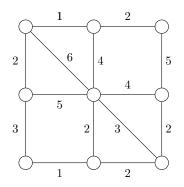
Input: A Graph G = (V, E, w) with $w(e) \ge 0$ for all $e \in E$. **Solution:** A subset $S \subseteq E$ which covers all vertices in V. **Output:** Minimizing $w(S) = \sum_{e \in S} w(e)$.



Max-Min Edge Cover (Weighted Upper Edge Cover)

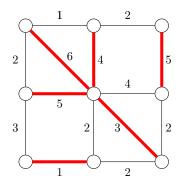
Input: A Graph G = (V, E, w) with $w(e) \ge 0$ for all $e \in E$. Solution: An inclusion-wise minimal edge cover $S \subseteq E$. Output: Maximizing $w(S) = \sum_{e \in S} w(e)$. Max-Min Edge Cover (Weighted Upper Edge Cover)

Input: A Graph G = (V, E, w) with $w(e) \ge 0$ for all $e \in E$. Solution: An inclusion-wise minimal edge cover $S \subseteq E$. Output: Maximizing $w(S) = \sum_{e \in S} w(e)$.



Max-Min Edge Cover (Weighted Upper Edge Cover)

Input: A Graph G = (V, E, w) with $w(e) \ge 0$ for all $e \in E$. Solution: An inclusion-wise minimal edge cover $S \subseteq E$. Output: Maximizing $w(S) = \sum_{e \in S} w(e)$.

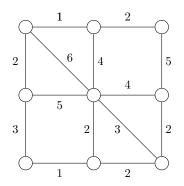


Max Spanning Star Forest Problem

Input: A Graph G = (V, E, w) with $w(e) \ge 0$ for all $e \in E$. **Solution:** A spanning star forest $S = \{S_1, \ldots, S_p\} \subseteq E$. **Output:** Maximizing $w(S) = \sum_{e \in S} w(e) = \sum_{i=1}^p \sum_{e \in S_i} w(e)$

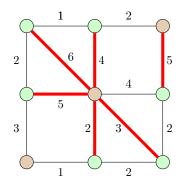
Max Spanning Star Forest Problem

Input: A Graph G = (V, E, w) with $w(e) \ge 0$ for all $e \in E$. **Solution:** A spanning star forest $S = \{S_1, \ldots, S_p\} \subseteq E$. **Output:** Maximizing $w(S) = \sum_{e \in S} w(e) = \sum_{i=1}^p \sum_{e \in S_i} w(e)$



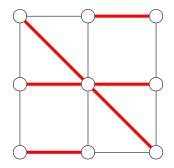
Max Spanning Star Forest Problem

Input: A Graph G = (V, E, w) with $w(e) \ge 0$ for all $e \in E$. **Solution:** A spanning star forest $S = \{S_1, \ldots, S_p\} \subseteq E$. **Output:** Maximizing $w(S) = \sum_{e \in S} w(e) = \sum_{i=1}^p \sum_{e \in S_i} w(e)$



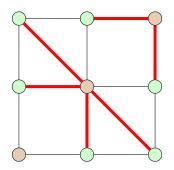
UNWEIGHTED VERSION

• Any minimal edge cover of graph G is a spanning star forest of G.



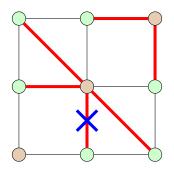
UNWEIGHTED VERSION

 Any spanning star forest can be converted into a spanning star forest without trivial stars with same value.



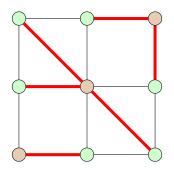
UNWEIGHTED VERSION

 Any spanning star forest can be converted into a spanning star forest without trivial stars with same value.



UNWEIGHTED VERSION

 Any spanning star forest can be converted into a spanning star forest without trivial stars with same value.



UNWEIGHTED VERSION

- Any minimal edge cover of graph G is a spanning star forest of G.
- Any spanning star forest can be converted into a spanning star forest without trivial stars with same value.
- ► UPPER EDGE COVER and MAX SSF are completely equivalent, even in approximation.

WEIGHTED VERSION

• Any minimal edge cover of graph G is a spanning star forest of G.

WEIGHTED VERSION

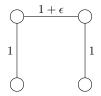
• Any minimal edge cover of graph G is a spanning star forest of G.

 $\quad \bullet \quad opt_{WSSF}(G,w) \ge opt_{WUEC}(G,w).$

WEIGHTED VERSION

• Any minimal edge cover of graph G is a spanning star forest of G.

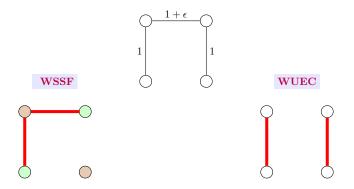
• $opt_{WSSF}(G, w) \ge opt_{WUEC}(G, w).$



WEIGHTED VERSION

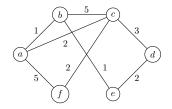
 \blacktriangleright Any minimal edge cover of graph G is a spanning star forest of G.

• $opt_{WSSF}(G, w) \ge opt_{WUEC}(G, w).$

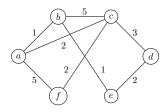


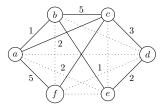
► MAX WSSF in general graphs is equivalent to WEIGHTED UEC in complete graphs.

► MAX WSSF in general graphs is equivalent to WEIGHTED UEC in complete graphs.



► MAX WSSF in general graphs is equivalent to WEIGHTED UEC in complete graphs.

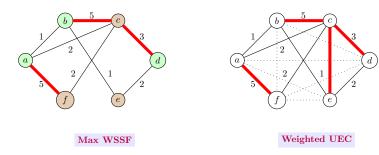




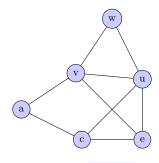
Max WSSF

Weighted UEC

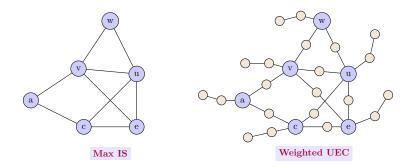
► MAX WSSF in general graphs is equivalent to WEIGHTED UEC in complete graphs.

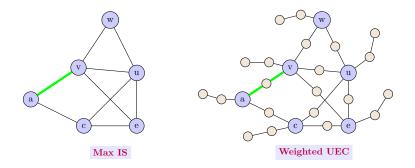


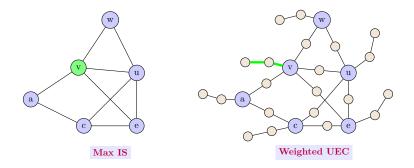
- ► MAX WSSF in general graphs is equivalent to WEIGHTED UEC in complete graphs.
 - WEIGHTED UEC is 0.5-apx in complete graphs. [D. Chakrabarty et al. 2010]
 - **WEIGHTED UEC** is $\frac{10}{11}$ in-apx in complete graphs unless P=NP. [C. T. Nguyen et al. 2008]

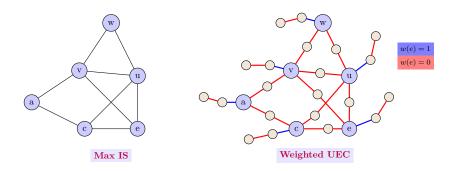


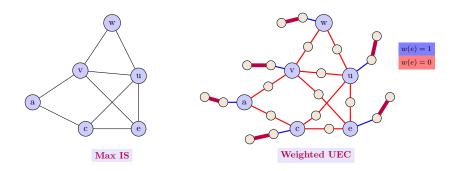
Max IS

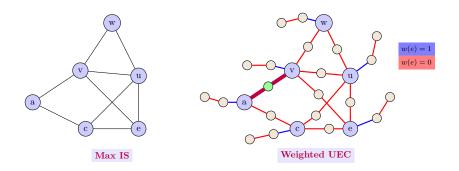




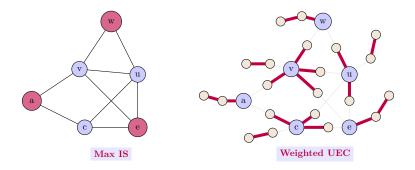












- ▶ WEIGHTED UEC in bipartite graphs is as hard as MAX IS in general graphs.
 - For any $\varepsilon > 0$, WEIGHTED UEC in bipartite graphs with *n* vertices is not $O(n^{\varepsilon \frac{1}{2}})$ -apx.
 - For any $\varepsilon > 0$, it is hard to approximate WEIGHTED UEC in bipartite graphs og max. degree Δ within a factor $O(\Delta^{\varepsilon-1})$.

Weighted UEC in Graphs of max. degree Δ

Weighted UEC is APX-complete in graphs of max. degree Δ .

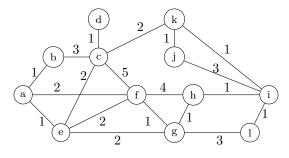
WEIGHTED UEC is APX-complete in graphs of max. degree Δ .

For any $\varepsilon > 0$, it is hard to approximate WEIGHTED UEC in bipartite graphs of max. degree Δ within a factor $O(\Delta^{\varepsilon-1})$.

■ WEIGHTED UEC is $\frac{1}{2.\Delta}$ approximable in graphs of max. degree Δ .

APPROXIMATION ALGORITHM

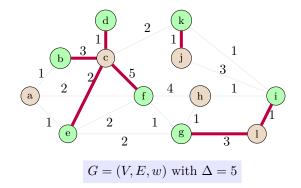
• Let G = (V, E, w) is a graph of max. degree Δ .



G = (V, E, w) with $\Delta = 5$

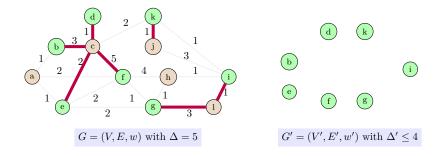
APPROXIMATION ALGORITHM

Suppose S = {S₁,...,S_k} is an approximation solution of MAX WSSF which contains all pendant edges.



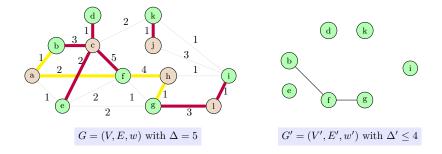
APPROXIMATION ALGORITHM

▶ We build a vertex-weighted graph G' with max. degree $\Delta - 1$.



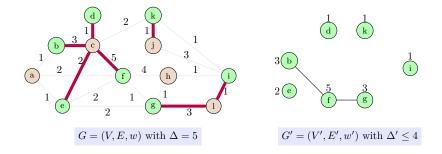
APPROXIMATION ALGORITHM

▶ We build a vertex-weighted graph G' with max. degree $\Delta - 1$.



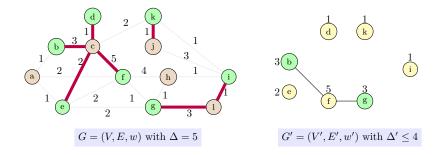
APPROXIMATION ALGORITHM

▶ We build a vertex-weighted graph G' with max. degree $\Delta - 1$.



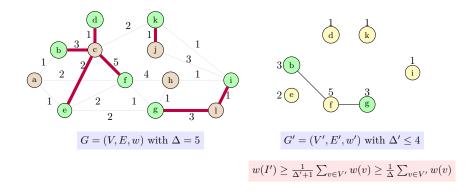
APPROXIMATION ALGORITHM

Find MAX WEIGHTED IS in G' greedily by weights.



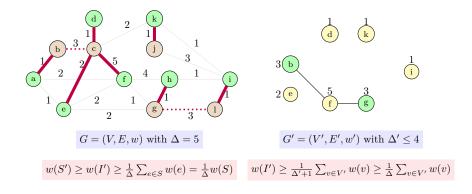
APPROXIMATION ALGORITHM

Find MAX WEIGHTED IS in G' greedily by weights.



APPROXIMATION ALGORITHM

Find MAX WEIGHTED IS in G' greedily by weights.



APPROXIMATION ALGORITHM

 MAX EXTENDED SPANNING STAR FOREST is ¹/₂-approximable. [Khoshkhah et al. 2018]

APPROXIMATION ALGORITHM

 MAX EXTENDED SPANNING STAR FOREST is ¹/₂ approximable. [Khoshkhah et al. 2018]

$$w(S) \ge \frac{1}{2}opt_{ESSF}(G) \ge \frac{1}{2}opt_{WUEC}(G)$$
$$w(S') \ge \frac{1}{2.\Delta}opt_{WUEC}$$

A k-tree defined inductively as follows:

- A K_{k+1} is a k-tree.
- If G is a k-tree, then adding a new vertex which has exactly k neighbors in G such that these k + 1 vertices induce a K_{k+1} , forms a k-tree.

WEIGHTED UEC is APX-complete in k-trees.

WEIGHTED UEC is APX-complete in k-trees.

• WEIGHTED UEC is not approximable within $\frac{10}{11}$ in complete weighted graphs.

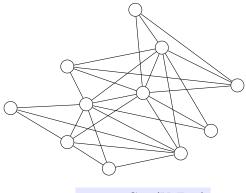
WEIGHTED UEC is APX-complete in k-trees.

- WEIGHTED UEC is not approximable within $\frac{10}{11}$ in complete weighted graphs.
- WEIGHTED UEC is $\frac{k-1}{2(k+1)}$ approximable in k-trees.

Approximation algorithm

APPROXIMATION ALGORITHM

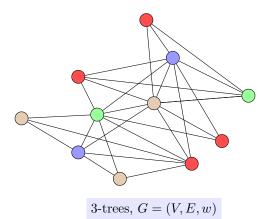
• Let G = (V, E, w) is a k-tree.



3-trees, G = (V, E, w)

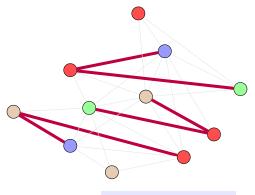
APPROXIMATION ALGORITHM

▶ Any k-tree can be colored greedily by k + 1 colors in linear time.



APPROXIMATION ALGORITHM

▶ Suppose $S = \{S_1, ..., S_r\}$ is a nice spanning star forest of the *k*-tree.

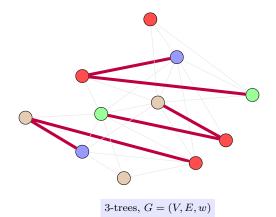


3-trees, G = (V, E, w)

APPROXIMATION ALGORITHM

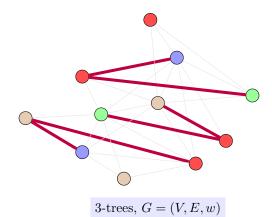
• Modify spanning star forest S to obtain an edge cover S'.

PROPERTY. let c_1, c_2 be two distinct colors of coloring C. For each trivial star v in S, let $V' = \{v \in N(v) : C(v) \in \{c_1, c_2\}\}$, then for any $u \in V', S' = (S \setminus \{uc\}) \cup \{uv\}$ is a new solution.



APPROXIMATION ALGORITHM

For each color c_i , let $E_{c_i} = \{cv \in S : C(v) = c_i\}.$



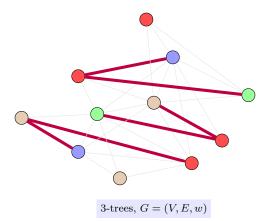
APPROXIMATION ALGORITHM

For each color c_i , let $E_{c_i} = \{cv \in S : C(v) = c_i\}.$



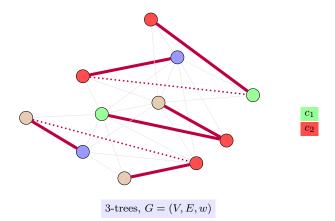
APPROXIMATION ALGORITHM

Suppose for two distinct colors $c_1, c_2, w(E_{c_1} \cup E_{c_2}) = \min\{w(E_{c_i} \cup E_{c_j}) : i, j \in \{1, ..., k+1\}\}$, then for each trivial vertex v in S, remove an edge $uc \in \{E_{c_1} \cup E_{c_2}\}$ from S and add the edge uv to S.



APPROXIMATION ALGORITHM

Suppose for two distinct colors $c_1, c_2, w(E_{c_1} \cup E_{c_2}) = \min\{w(E_{c_i} \cup E_{c_j}) : i, j \in \{1, ..., k+1\}\}$, then for each trivial vertex v in S, remove an edge $uc \in \{E_{c_1} \cup E_{c_2}\}$ from S and add the edge uv to S.



Weighted UEC in k-trees Approximation algorithm

$$w(E_{c_i} \cup E_{c_j}) \le \frac{2}{k+1}w(E(S))$$

$$w(S') \ge w(E(S) - (E_{c_1} \cup E_{c_2})) \ge \frac{k-1}{k+1}w(E(S))$$

Weighted UEC in k-trees APPROXIMATION ALGORITHM

$$w(E_{c_i} \cup E_{c_j}) \le \frac{2}{k+1} w(E(S))$$
$$w(S') > w(E(S) - (E_{c_1} \cup E_{c_j})) > \frac{k-1}{k+1} w(E(S))$$

$$w(D) \ge w(D(D)) \quad (D_{c_1} \cup D_{c_2})) \ge k+1 w(D(D))$$

• MAX WSSF is $\frac{1}{2}$ approximable in *k*-trees.

WEIGHTED UEC is
$$\frac{k-1}{2(k+1)}$$
 approximable

Weighted Upper Edge Cover		
	Negative result	Positive result
Complete graphs	$\frac{10}{11}$ in-apx	a $\frac{1}{2}$ apx-alg

Weighted Upper Edge Cover		
	Negative result	Positive result
Complete graphs	$\frac{10}{11}$ in-apx	a $\frac{1}{2}$ apx-alg
Bipartite graphs	$O(n)^{\varepsilon - \frac{1}{2}}$ in-apx	

Weighted Upper Edge Cover		
	Negative result	Positive result
Complete graphs	$\frac{10}{11}$ in-apx	a $\frac{1}{2}$ apx-alg
Bipartite graphs	$O(n)^{\epsilon - \frac{1}{2}}$ in-apx	
Graphs of max degree Δ	$O(\Delta)^{\epsilon-1}$ in-apx	a $\frac{1}{2.\Delta}$ apx-alg

Weighted Upper Edge Cover		
	Negative result	Positive result
Complete graphs	$\frac{10}{11}$ in-apx	a $\frac{1}{2}$ apx-alg
Bipartite graphs	$O(n)^{\epsilon - \frac{1}{2}}$ in-apx	
Graphs of max degree Δ	$O(\Delta)^{\epsilon-1}$ in-apx	a $\frac{1}{2.\Delta}$ apx-alg
Split graphs	$O(n)^{\epsilon - \frac{1}{2}}$ in-apx	

Weighted Upper Edge Cover		
	Negative result	Positive result
Complete graphs	$\frac{10}{11}$ in-apx	a $\frac{1}{2}$ apx-alg
Bipartite graphs	$O(n)^{\epsilon - \frac{1}{2}}$ in-apx	
Graphs of max degree Δ	$O(\Delta)^{\epsilon-1}$ in-apx	a $\frac{1}{2.\Delta}$ apx-alg
Split graphs	$O(n)^{\epsilon - \frac{1}{2}}$ in-apx	
k-trees	$\frac{259}{260}$ in-apx	a $\frac{k-1}{2(k+1)}$ apx-alg

Thank you for your attention.