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Min weighted Edge Cover Problem

Input: A Graph G = (V, E,w) with w(e) > 0 for all e € E.
Solution: A subset S C E which covers all vertices in V.

Output: Minimizing w(S) = ), .qw(e).
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Max-Min Edge Cover (Weighted Upper Edge Cover)

Input: A Graph G = (V, E,w) with w(e) > 0 for all e € E.
Solution: An inclusion-wise minimal edge cover S C FE.

Output: Maximizing w(S) = ) .qw(e).
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Max Spanning Star Forest Problem

Input: A Graph G = (V, E,w) with w(e) >0 for all e € E.
Solution: A spanning star forest S = {S1,...,5,} C E.
Output: Maximizing w(S) = Y cqw(e) = Y01 > g, w(e)
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Upper Edge Cover vs. Max Spanning Star Forest
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UNWEIGHTED VERSION
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Upper Edge Cover vs. Max Spanning Star Forest

UNWEIGHTED VERSION

» Any minimal edge cover of graph G is a spanning star forest of

G.

» Any spanning star forest can be converted into a spanning star
forest without trivial stars with same value.

» UrPER EDGE COVER and MAX SSF are completely equivalent,
even in approximation.
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» Any minimal edge cover of graph G is a spanning star forest of G.
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Upper Edge Cover vs. Max Spanning Star Forest

WEIGHTED VERSION

» Any minimal edge cover of graph G is a spanning star forest of G.
B optwssr(G,w) > optwuec (G, w).
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Weighted UEC in Complete graphs

» Max WSSF in general graphs is equivalent to WEIGHTED UEC
in complete graphs.

6/13



Weighted UEC in Complete graphs

» Max WSSF in general graphs is equivalent to WEIGHTED UEC
in complete graphs.

6/13



Weighted UEC in Complete graphs

» Max WSSF in general graphs is equivalent to WEIGHTED UEC
in complete graphs.

Max WSSF ‘Weighted UEC

6/13



Weighted UEC in Complete graphs

» Max WSSF in general graphs is equivalent to WEIGHTED UEC
in complete graphs.

Max WSSF ‘Weighted UEC

6/13



Weighted UEC in Complete graphs

» Max WSSF in general graphs is equivalent to WEIGHTED UEC
in complete graphs.

B WEeIGHTED UEC is 0.5-apx in complete graphs. [D.
Chakrabarty et al. 2010]

B WEeIGHTED UEC is }—(1] in-apx in complete graphs unless
P=NP. [C. T. Nguyen et al. 2008]
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Weighted UEC in Bipartite graphs

» WEIGHTED UEC in bipartite graphs is as hard as Max IS in
general graphs.
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Weighted UEC in Bipartite graphs

» WEIGHTED UEC in bipartite graphs is as hard as Max IS in

general graphs.
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Weighted UEC in Bipartite graphs

» WEIGHTED UEC in bipartite graphs is as hard as Max IS in
general graphs.

B For any € > 0, WEIGHTED UEC in bipartite graphs with n vertices is
1
not O(n®~2) -apx.

B For any € > 0, it is hard to approximate WEIGHTED UEC in bipartite
graphs og max. degree A within a factor O(A~1).
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Weighted UEC in Graphs of max. degree A

WEIGHTED UEC is APX-complete in graphs of max. degree A.
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Weighted UEC in Graphs of max. degree A

WEIGHTED UEC is APX-complete in graphs of max. degree A.

B For any ¢ > 0, it is hard to approximate WEIGHTED UEC in
bipartite graphs of max. degree A within a factor O(A®~1).

| \ANEIGHTED UEC is ﬁ approximable in graphs of max. degree
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Weighted UEC in graphs of max. degree A

APPROXIMATION ALGORITHM

> Let G = (V, E,w) is a graph of max. degree A.

G=(V,E,w) with A =5
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Weighted UEC in graphs of max. degree A

APPROXIMATION ALGORITHM

» Suppose S = {51, ..., Sk} is an approximation solution of MAX
WSSF which contains all pendant edges.

G = (V,E,w) with A =5
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Weighted UEC in graphs of max. degree A

APPROXIMATION ALGORITHM

» We build a vertex-weighted graph G’ with max. degree A — 1.
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9/13



Weighted UEC in graphs of max. degree A

APPROXIMATION ALGORITHM

» We build a vertex-weighted graph G’ with max. degree A — 1.

@ ©
© ®
© %@

G = (V,E,w) with A =5 G' = (V',E',w'") with A’ <4

9/13



Weighted UEC in graphs of max. degree A

APPROXIMATION ALGORITHM

» We build a vertex-weighted graph G’ with max. degree A — 1.

3(b) Cb
®

G = (V,E,w) with A =5 G' = (V',E',w'") with A" <4

9/13



Weighted UEC in graphs of max. degree A

APPROXIMATION ALGORITHM

» Find MAaX WEIGHTED IS in G’ greedily by weights.

3(b) Cb
©

G = (V,E,w) with A =5 G' = (V',E',w'") with A" <4

9/13



Weighted UEC in graphs of max. degree A

APPROXIMATION ALGORITHM

» Find MAaX WEIGHTED IS in G’ greedily by weights.

® ®

3 1
© ©
2 5
© o6
G = (V,E,w) with A =5 G' = (V',E',w') with A’ <4

w(l') > g Coevr w(0) 2 5 Xpeyr w(v)

9/13



Weighted UEC in graphs of max. degree A

APPROXIMATION ALGORITHM

» Find MAaX WEIGHTED IS in G’ greedily by weights.

® ®
3(b) é
O H—@

G' = (V',E',w') with A’ <4

w(l') > g Coevr w(0) 2 5 Xpeyr w(v)

9/13



Weighted UEC in graphs of max. degree A

APPROXIMATION ALGORITHM

B MAX EXTENDED SPANNING STAR FOREST is %-approximable.
[Khoshkhah et al. 2018]
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Weighted UEC in graphs of max. degree A

APPROXIMATION ALGORITHM

B MAX EXTENDED SPANNING STAR FOREST is % approximable.
[Khoshkhah et al. 2018]

w(S) > soptpssr(G) > toptwupc(G)

w(S") > Fxoptwusc
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Weighted UEC in k-trees

A k-tree defined inductively as follows:
> A Kpyq is a k-tree.
» If G is a k-tree, then adding a new vertex which has exactly k

neighbors in G such that these k£ + 1 vertices induce a K41,
forms a k-tree.
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Weighted UEC in k-trees

WEIGHTED UEC is APX-complete in k-trees.

B WEIGHTED UEC is not approximable within i—(l) in complete weighted
graphs.

B WEIGHTED UEC is 2(’27111) approximable in k-trees.
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Weighted UEC in k-trees
APPROXIMATION ALGORITHM

» Any k-tree can be colored greedily by k£ + 1 colors in linear time.

3-trees, G = (V, E,w)
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Weighted UEC in k-trees
APPROXIMATION ALGORITHM

> Suppose S = {S1,...,S-} is a nice spanning star forest of the
k-tree.

o
N

O
3-trees, G = (V, E, w)
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Weighted UEC in k-trees
APPROXIMATION ALGORITHM

» Modify spanning star forest S to obtain an edge cover S’.

PROPERTY. let c1,ca be two distinct colors of coloring C. For each trivial star v in
S,let V! = {v € N(v) : C(v) € {c1,c2}}, then for any u € V', S’ = (S\{uc})U{uv}
is a new solution.
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3-trees, G = (V, B, w)
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Weighted UEC in k-trees

APPROXIMATION ALGORITHM
For each color ¢;, let E., = {cv € S: C(v) = ¢;}.
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Weighted UEC in k-trees

APPROXIMATION ALGORITHM
For each color ¢;, let E., = {cv € S: C(v) = ¢;}.
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Weighted UEC in k-trees

APPROXIMATION ALGORITHM

Suppose for two distinct colors c1,c2, w(Ee; U Eey) = min{w(Ee, U Ee;) : 4,5 €
{1,...,k+1}}, then for each trivial vertex v in S, remove an edge uc € {E¢, U Ec, }
from S and add the edge uv to S.
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{1,...,k+1}}, then for each trivial vertex v in S, remove an edge uc € {E¢, U Ec, }
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3-trees, G = (V, E,w)
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Weighted UEC in k-trees

APPROXIMATION ALGORITHM

w(E,, UE,;) < Z5w(E(S))

w(S') > w(E(S) — (By U Ey,)) 2w (E(S))

+1
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Weighted UEC in k-trees

APPROXIMATION ALGORITHM

B Max WSSF is % approximable in k-trees.

WEIGHTED UEC is approximable

2w+n
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Thank you for your attention.
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