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Abstract. In this article we are interested in the representation of
qualitative preferences with the help of 3-points intervals (a vector of
three increasingly ordered points). Preferences are crucial when an
agent has to autonomously make a choice over several possible ac-
tions. We provide first of all an axiomatization in order to character-
ize our representation and then we construct a general framework for
the comparison of 3-points intervals. Our study shows that from the
fifteen possible different ways to compare 3-points intervals, seven
different preference structures can be defined, allowing the represen-
tation of sophisticated preferences. We show the usefulness of our
results in two classical problematics: the comparison of alternatives
and the numerical representation of preference structures. Concern-
ing the former one, we propose procedures to construct non classical
preference relations (intransitive preferences for example) over ob-
jects being described by three ordered points. Concerning the latter
one, assuming that preferences on the pairwise comparisons of ob-
jects are known, we show how to associate a 3-points interval to every
object, and how to define some comparison rules on these intervals
in order to have a compact representation of preferences described
with these pairwise comparisons.

1 Introduction

The notion of preference, initially introduced by economists ([3, 6])
and researchers on Decision Making (DM) ([13, 11, 18, 17, 15]), has
recently received an increasing attention in AI where artificial agents
play the role of automated decision makers ([19, 7]).

In DM, preferences are used for two different problematics ([21]):
thecomparison problemand thenumerical representation problem.
These two problems arise naturally in AI since comparing objects
and establishing preference (or any other order relations) is a key
issue in knowledge representation and elicitation.

The comparison problemdeals with the construction of preference
relations over each pair of alternatives. In such a case evaluations of
alternatives are known and may have different nature: numbers, col-
ors, symbols, figures, intervals, fuzzy numbers, etc. The construction
of relations may not be an easy task even with quantitative evalua-
tions. For instance, consider a maximization problem with three al-
ternatives (a, b andc) evaluated by numbers (g(a) = 25, g(b) = 11
andg(c) = 9). Depending on the context and/or the decision maker,
we may have different relations. One solution may be to say that there
are only strict preferences (a is strictly preferred tob andc (aPb and
aPc) andb is strictly preferred toc (bPc)) while in a different con-
text the alternativesb andc may be considered as indifferent (bIc)
since the difference between their evaluation is not significant. It is
clear that the relations obtained in the two different contexts do not
have the same properties and they do not lead to the same model.
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The numerical representation problemgoes in the opposite way.
The preference on each pair of alternatives being known, the problem
is to check if there exists (and under which conditions) one or more
real valued functions which, when applied to the set of alternatives,
will return the preferences of the decision maker. As an example,
consider three alternativesa, b andc for which the decision maker
claims that he is indifferent betweenc andb and he strictly prefersc
to a andb to a. There are several different numerical representations
which could account for such preferences. One option may be to as-
sociate intervals[0, 1] to a, [2, 4] to b and[3, 6] to c under the rules
“x is preferred toy iff the interval ofx is completely to the right of
the interval ofy (no intersection) ”.

We consider both types of problems with a special attention to an
interval representation. Comparing intervals is a problem relevant to
several disciplines. We need intervals in order to take into account in-
transitivity of indifference due to the presence of one or more thresh-
olds, to compare time intervals ([2]), or to represent imprecision or
uncertainty (the price ofx lies between A and B, the quality ofy
lies between “medium” and “good” ...). In this article, we make use
of a special type of intervals that we call “3-points intervals” (inter-
vals with an intermediate point). Such intervals contain only ordinal
information (the distances between points are not important) which
allows us to represent qualitative evaluations. Qualitative approaches
become more and more attractive in AI since the only existing knowl-
edge may be qualitative or it may be easier to get qualitative infor-
mation from experts or qualitative rules may be easier and faster (see
[4] and [5]).

The main contribution of this article is to propose a general frame-
work for the comparison of3-points intervals. The general advan-
tage of these intervals is their capacity of representation, especially
for sophisticated preferences. Our results are useful for both of the
problematics. Concerning the comparison problem, our work shows
how to compare two intervals having only ordinal information in or-
der to fit some desired properties such as transitivity of preference,
intransitivity of indifference etc. Concerning the numerical represen-
tation problem, there are two main advantages. First of all the use
of 3-points intervals allows to represent complex preferences. For
instance, the use of simple numbers remains inefficient in the major-
ity of cases (only total orders and weak orders have a representation
with numbers), such a reason has led to the use of intervals for dif-
ferent preference structures ([12, 8, 20, 16]). There are manyresults
concerning the classical intervals (2-points intervals), however such
intervals may appear insufficient face to more complex preferences
(for example when the preference is intransitive). For that reason we
are interested in3-points intervals for which there is a limited num-
ber of research ([10]). Another advantage is related to the cardinality
of the set of alternatives. When there are too many alternatives (letn

be the number of alternatives), it can be preferable to stock only the
3-points interval representation of each alternative (3 ∗ n informa-



tion) instead of stocking all the pairwise comparisons of alternatives
( n(n−1)

2
information). From this point of view we can say that3-

points interval representation proposes a compact representation for
complex preferences.

We organize the paper in the following way: in section 2 we intro-
duce basic notations, we propose an axiomatization for the character-
ization of the3-points interval representation. A general type of rep-
resentation satisfying such axioms are also presented in this section.
In section 3 we propose an exhaustive analysis of all the preference
structures having a3-points interval representation and in section 4
we conclude with some future research directions.

2 Basic notions and 3-points interval
representation

In this paper we study complete preference structures with two bi-
nary relations: the strict preference relationP which is an asymmet-
ric relation and the indifference relationI which is the symmetric
complement ofP . We introduce first of all some notions that we will
use in the axiomatization.

We call a “3-points interval” an intervalx = [f1(x), f3(x)] with
an intermediate pointf2(x) (i.e.f1(x) < f2(x) < f3(x)).

Then, we introduce a new notion that we call the “relative posi-
tion” and that we denote byϕ. The notationϕ(x, y) represents the
position of the intervalx with respect to the intervaly (ϕ(x, y) 6=
ϕ(y, x)).

Definition 1 (Relative position) The relative positionϕ(x, y) is the
3-tuple (ϕ1(x, y), ϕ2(x, y), ϕ3(x, y)) whereϕi(x, y) represents the
number ofj such thatfi(x) < fj(y).

Intuitively, ϕ represents to what extend the position of two inter-
vals is close to the case of two disjoint intervals, case which guaran-
tees a strict preference. The following example illustrates the previ-
ous definition.

Example 1 Letx andy be two 3-points intervals represented in fig-
ure 1, thenϕ(x, y) = (1, 0, 0). ϕ1(x, y) = 1 since there is only
f3(y) being greater thanf1(x) andϕ2(x, y) = ϕ3(x, y) = 0 since
f2(x) andf3(x) are greater than all the points ofy.

f1(x) f2(x) f3(x)

f1(y) f2(y) f3(y)

Figure 1. Relative positionϕ(x, y) = (1, 0, 0)

Let us remark that there are 20 ((2∗3)!

(3!)2
) different relative positions

when two 3-points intervals are compared.
The strict preference between two intervals depends on their rel-

ative positions and naturally there are some relative positions which
are more suitable for the representation of a strict preference than
others. For example the case where two intervals are disjoint is more
suitable for a strict preference than a case where one interval is in-
cluded to another. For such a purpose we introduce a new binary
relation, called “stronger than”, on the set of relative positions.

Definition 2 (“Stronger than” relation) Let ϕ and ϕ′ be two rel-
ative positions, then we say thatϕ is “stronger than” ϕ′ and note
ϕ � ϕ′ if ∀i ∈ {1, . . . , n}, ϕi ≤ ϕ′

i.

We present an example showing how we define a “stronger than”
relation.

Example 2 Let ϕ(x, y) andϕ(x, t) be two relative positions of the
figure 2. We haveϕ(x, y) = (1, 1, 0), ϕ(x, t) = (2, 1, 0). We get
“ ϕ(x, y) is stronger thanϕ(x, t)” since 1 ≤ 2, 1 ≤ 1 and0 ≤ 0.

f1(t) f2(t) f3(t)

f1(y) f2(y) f3(y)

f1(x) f2(x) f3(x)

Figure 2. Example:(1, 1, 0) � (2, 1, 0)

The “stronger than” relation satisfies some classical properties:

Proposition 1 � is a partial order (reflexive, antisymmetric and
transitive) defining a lattice on the set of possible relative positions.

Proof. � is a partial order since it is induced from the relation “<”
which is reflexive, antisymmetric and transitive.�

Let us remark that the relation� is not complete: for example we
have(2, 0, 0) ⋫ (1, 1, 0) and (1, 1, 0) ⋫ (2, 0, 0). We present in
figure 3 the graph of the relation�.

(0, 0, 0)

(1, 0, 0)

(2, 0, 0) (1, 1, 0)

(3, 0, 0) (2, 1, 0) (1, 1, 1)

(3, 1, 0) (2, 2, 0) (2, 1, 1)

(3, 2, 0) (3, 1, 1) (2, 2, 1)

(3, 3, 0) (3, 2, 1) (2, 2, 2)

(3, 3, 1) (3, 2, 2)

(3, 3, 2)

(3, 3, 3)

Figure 3. Graph of the stronger than relation

We are ready now to define the strict preference relationP and the
indifference relationI. We will defineP as a set of relative positions,
satisfying some constraints, and constructI as the complement ofP .
For such a purpose we propose an axiomatization:

Axiome 1 The relationP ∪ I is complete andI is the complement
of P (i.e. I(x, y) ⇔ ¬P (x, y) ∧ ¬P (y, x)).

Axiome 2 The relationsP (x, y) and I(x, y) depends only on the
relative position ofx andy.

Axiome 3 If a relative positionϕ is in the set of the strict preference
P then all the relative positions which are stronger thanϕ are also
in the set ofP .

Axiome 4 If for all i, fi(x) < fi(y) thenP (x, y) is not satisfied.



Axiome 5 The set of relative positions formingP has one and only
one weakest relative position (relative position which is weak than
every relative position of the set).

Axiom 1 shows thatP and I are exhaustive and exclusive, ax-
iom 2 presents the comparison parameters and axiom 3 guaranties
the monotonicity. Every relative position is not a good candidate to
represent a strict preference. Axiom 4 eliminates some undesired sit-
uations in the definition ofP . The role of the strongest relative po-
sition of a set ofP is very important since we can determine all the
other elements of the set by the help of the strongest one. Axiom 5
guarantees a unique representation for the strict preference relations
by forbidding the existence of more than one strongest relative posi-
tions in their set.

It is easy to calculate the number of sets satisfying such axioms.
Since every set has just one strongest relative position, every relative
position may present one set, of course except the ones which do not
satisfy the axiom 4. The number of relative positions with “for all
i, fi(x) < fi(y)” is five ( 1

3+1

�
6
3

�
). Since there are, in total, twenty

relative positions, the number of sets satisfying axioms 1-5 is fifteen.
We can present now the3-points interval representation of a pref-

erence structure satisfying axioms 1-5. First of all, let’s give a formal
definition of the preference structure induced by the different possi-
ble relative positions of 3-points intervals.

Definition 3 Let ϕ = (ϕ1, ϕ2, ϕ3) be a3-tuple in{0, 1, 2, 3}, and
x and y two 3-points intervals. The preference relationsP≤ϕ, I≤ϕ

associated toϕ is defined as

P≤ϕ(x, y) ⇐⇒ ϕ(x, y) � ϕ

I≤ϕ(x, y) ⇐⇒ ¬P≤ϕ(x, y) ∧ ¬P≤ϕ(y, x)

Now, consider the preference relationP≤(2,0,0). Then
P≤(2,0,0)(x, y) iff f1(y) < f1(x), f3(y) < f2(x) and
f3(y) < f3(x). We can remark that the third inequality is re-
dundant. This motivates the definition of the component set of a
triple ϕ.

Definition 4 Let ϕ = (ϕ1, ϕ2, ϕ3) be a3-tuple in{0, 1, 2, 3}. The
component setCp≤ϕ associated toϕ is the set of couples(3−ϕi, i)
such that there is noi′ < i with ϕi′ ≤ ϕi.

For instance,Cp≤(2,0,0) = {(1, 1), (3, 2)}. Hence,Cp≤ϕ repre-
sents the set of couples of points that are sufficient to be compared.
Conditions on the elements ofCp≤ϕ guarantees the minimality
of the representation. The setCp≤ϕ contains all the information
concerning the preference structure.

It is easy to verify that the preference structure associated to a
triple ϕ verifies axioms 1,2,3 and 5. Following definition 4, one can
show that axiom 4 is verified byP≤ϕ iff Cp≤ϕ contains at least one
(i, j) with i ≥ j.

3 3-points interval comparisons

In this section we analyze in details the fifteen sets ofP satisfying
our axiomatization. Let us remind that each set represents a strict
preference relation which has a 3-points interval representation and
the component setCp≤ϕ has the whole information about this rep-
resentation.

Our study shows that from the fifteen sets ofP , seven different
preference structures can be defined, some of them having more than

one3-points interval representation. For the sake of clarity, we will
first of all present the classical definition of these seven structures,
then give their equivalent characterization with3-points intervals by
the help of component sets and finally present in table 1 all the3-
points interval representations of these preference structures.

An exhaustive study of the3-points intervals shows that weak or-
ders and bi-weak orders have three different3-points interval rep-
resentations while three-weak orders have one, interval orders have
three, split interval orders have one, triangle orders have two and in-
transitive orders have two. We present first of all the definition of
each preference structure that we cited:

Let P be a binary relation on a finite setA andI be the symmetric
complement ofP , then

• P ∪ I is a weak orderif and only if there exists a real-valued
functionf defined onA such that
∀x, y ∈ A, xPy ⇐⇒ f(x) > f(y)

• P ∪ I is a bi-weak orderif and only if there exist two different
real-valued functionsf1 andf2 defined onA such that

∀x, y ∈ A, xPy ⇐⇒

�
f1(x) > f1(y)
f2(x) > f2(y)

It is easy to see that bi-weak orders are defined as the intersection
of two weak orders.

• P∪I is a3-weak orderif and only if it is defined as the intersection
of three weak orders.

• P ∪ I is aninterval orderif and only if there exist two real-valued
functionsf1 andf2, defined onA such that�

∀x, y ∈ A, xPy ⇐⇒ f1(x) > f2(y)
∀x ∈ A, f2(x) > f1(x)

• P ∪ I is asplit interval orderif and only if there exist three real-
valued functionsf1, f2 andf3 defined onA such that8<: ∀x, y ∈ A, xPy ⇐⇒

�
f1(x) > f2(y),
f2(x) > f3(y),

∀x ∈ A, f3(x) > f2(x) > f1(x)

• P ∪ I is atriangle orderif and only if it is defined as the intersec-
tion of one weak order and one interval order.

• P ∪ I is anintransitive orderif and only if P is intransitive.

From these seven structures weak orders are the most used ones.
Their difference from linear orders (total orders) comes from the fact
that weak orders may have equivalence classes (two different objects
may be considered as indifferent) which is forbidden in the case of
linear orders. Bi-weak orders are also known structures, especially
for the researchers of DM. They are equivalent to bilinear orders (in-
terested reader may find more details in [9]). Three-weak orders were
born from the generalization of bi-weak orders (for more details see
[14]). Interval orders have been introduced by Fishburn ([8]). The re-
laxation of the coherence condition of semiorders (semiorders have
an interval representation where each interval has the same length)
has led to interval orders which are especially used in the presence of
discrimination thresholds in order to represent intransitive indiffer-
ence. Split interval orders are especially studied by mathematicians
([10]) and allow the representation of very sophisticated preferences.
The name of triangle orders comes from their classical representa-



tion: an object is preferred to another one if and only if the triangle
representing the first object is completely to the right of the trian-
gle representing the second one (no intersection)(more details can be
found in [14]). Intransitive orders are marginal orders, howeverthey
are used in some special domains (such as the biology in the case
of cellule comparison or the chemistry in the case of molecular con-
nection [1]). Circles are used in order to represent such structures:an
object is preferred to another one if and only if the circle representing
the first object is completely to the right of the circle representing the
second one (circles may have different diameters). Unfortunately, we
can not give here more details about these seven structures, interested
reader may find more information in the cited references.

Let us remark that the classical representation of the majority of
these structures do not make use of intervals (intervals can be seen as
vectors of some ordered points). For instance weak orders use simple
numbers while bi-weak orders (resp. three-weak orders) utilize two,
not necessarily ordered numbers (resp. three points) (for instancewe
can havef1 < f2 or f2 < f1). Triangle orders are represented by
triangles and intransitive orders by circles. Our study shows that all
these seven structures have a3-points interval representation. We will
present now the general form of these representations by the help
of component sets. We begin by some propositions concerning the
transitivity properties since they are fundamental for some preference
structures :

• P≤ϕ is transitiveif and only if ∀(i, j) ∈ Cp≤ϕ, i ≥ j,

• I≤ϕ is transitiveif and only if ∃i, Cp≤ϕ = {(i, i)},

• P≤ϕ ∪ I≤ϕ is aweak orderif and only if ∃i, Cp≤ϕ = {(i, i)},

• P≤ϕ ∪ I≤ϕ is a bi-weak order if and only if |Cp≤ϕ| =
2 and∀(i, j) ∈ Cp≤ϕ, i = j,

• P≤ϕ ∪ I≤ϕ is a 3-weak order if and only if |Cp≤ϕ| =
3 and∀(i, j) ∈ Cp≤ϕ, i = j,

• P≤ϕ ∪ I≤ϕ is an interval order if and only if Cp = {(i, j)}
wherei ≥ j,

• P≤ϕ ∪ I≤ϕ is a triangle order if and only if Cp≤ϕ =
{(l, l), (i, j)}, wherei ≥ j,

• P≤ϕ ∪ I≤ϕ is a intransitive order if and only if ∃(i, j) ∈
Cp≤ϕ, i < j.

We present now the key-steps of the proofs of these general propo-
sitions.

• The transitivity ofP≤ϕ:
- If ∀(i, j) ∈ Cp≤ϕ, i ≥ j thenP≤ϕ is transitive: obvious.
- If P≤ϕ is transitive then∀(i, j) ∈ Cp≤ϕ, i ≥ j: we prove
this result by showing that if∃(i, j) ∈ Cp≤ϕ i < j =⇒
∃x, y, z, P≤ϕ(x, y) ∧ P≤ϕ(y, z) and¬P≤ϕ(x, z).

• The transitivity ofI≤ϕ:
- Cp≤ϕ = {(i, i)} impliesI≤ϕ is transitive: obvious.
- I≤ϕ is transitive impliesCp≤ϕ = {(i, i)}: we prove this
result by contradiction. Supposing thatI≤ϕ is transitive we
analyze two different cases:∃(i, j) ∈ Cp≤ϕ, i 6= j, and
∀(i, j) ∈ Cp≤ϕ, i = j and|Cp≤ϕ| > 1. We show that these two

cases are contradictory with the transitivity ofI≤ϕ.

• Weak order:
- If Cp≤ϕ = {(i, i)} thenP≤ϕ ∪ I≤ϕ is a weak order: we prove
thatI≤ϕ andP≤ϕ are transitive andP≤ϕ ∪ I≤ϕ is reflexive and
complete.
- If P≤ϕ ∪ I≤ϕ is a weak order thenCp≤ϕ = {(i, i)}: the key
idea is the transitivity ofI≤ϕ. If P≤ϕ ∪ I≤ϕ is a weak order then
I≤ϕ is transitive and ifI≤ϕ is transitive thenCp≤ϕ = {(i, i)}.

• Bi-weak order: the proof follows directly from the one of weak
orders.

• Three-weak order: the proof follows directly from the one of
weak orders.

• Interval order: for this proof we make use of the relational char-
acterization of an interval order:P ∪ I is an interval order if�

P.I.P ⊂ P,

P∪ I is reflexive and complete.
whereP.I.P ⊂ P means∀x, y, z, t, if P (x, y)∧I(y, z)∧P (z, t)
thenP (x, t).
We prove first of all thatP≤ϕ.I≤ϕ.P≤ϕ ⊂ P≤ϕ iff Cp = {(i, j)}
wherei ≥ j:
- If Cp = {(i, j)} wherei ≥ j thenP≤ϕ.I≤ϕ.P≤ϕ ⊂ P≤ϕ:
obvious.
- If P≤ϕ.I≤ϕ.P≤ϕ ⊂ P≤ϕ thenCp = {(i, j)} wherei ≥ j: first
of all if Cp = {(i, j)} with i < j thenP≤ϕ is not transitive.
In this case it is easy to see that whenI≤ϕ is the identity
P≤ϕ.I≤ϕ.P≤ϕ ⊂ P≤ϕ is not satisfied. We prove then that
if |Cp≤ϕ| > 1 then not (P≤ϕ.I≤ϕ.P≤ϕ ⊂ P≤ϕ). We analyze
two cases where|Cp≤ϕ| > 1: ∃(i, j) ∈ Cp≤ϕ, i < j and
∀(i, j) ∈ Cp≤ϕ, i ≥ j. The first one provides an intransitive
P≤ϕ. The key point of the analysis of the second case is the
definition ofI≤ϕ when|Cp≤ϕ| > 1: let (i, j), (l, m) be elements
of Cp≤ϕ thenfi(x) ≥ fj(y) ∧ fl(y) ≥ fm(x) with (i, j) 6=
(l, m) =⇒ I≤ϕ(x, y). It is easy to see that this implication
has one part where a point ofx is greater than a point of
y and another part which inverses such inequality. In this
case one can always find four elementsw, x, y, z such that
P≤ϕ(w, x), I≤ϕ(x, y), P≤ϕ(y, z) and¬P≤ϕ(w, z).

We can now proof the characterization of interval orders:
- If Cp = {(i, j)} wherei ≥ j thenP≤ϕ ∪ I≤ϕ is an interval
order: we prove thatP≤ϕ ∪ I≤ϕ is reflexive and complete and
P≤ϕ.I≤ϕ.P≤ϕ ⊂ P≤ϕ.
- If P≤ϕ ∪ I≤ϕ is an interval order thenCp = {(i, j)}
where i ≥ j: if P≤ϕ ∪ I≤ϕ is an interval order then
P≤ϕ.I≤ϕ.P≤ϕ ⊂ P≤ϕwhich implies|Cp≤ϕ| = 1.

• Triangle order: the proof follows directly from the ones of weak
orders and of interval orders.

• Intransitive order: the proof follows directly from the transitivity
of P≤ϕ.

These propositions give us general representations of structures in
the sense that these are also true for intervals having more than 3
points. We can conclude now this section by presenting all the3-
points interval representations for the seven preference structures in
table1.



Preference Structure 〈P≤ϕ, I≤ϕ〉 interval representation

Weak Orders
Cp≤(3,3,0) = {(3, 3)}
Cp≤(3,1,1) = {(2, 2)}
Cp≤(2,2,2) = {(1, 1)}

Bi-weak Orders
Cp≤(3,1,0) = {(2, 2), (3, 3)}
Cp≤(2,1,1) = {(1, 1), (2, 2)}
Cp≤(2,2,0) = {(1, 1), (3, 3)}

Three-Weak Orders Cp≤(2,1,0) = {(1, 1), (2, 2), (3, 3)}

Interval Orders
Cp≤(0,0,0) = {(3, 1)}
Cp≤(3,0,0) = {(3, 2)}
Cp≤(1,1,1) = {(2, 1)}

Split Interval Orders Cp≤(1,0,0) = {(3, 2), (2, 1)}

Triangle Orders
Cp≤(1,1,0) = {(2, 1), (3, 3)}
Cp≤(2,0,0) = {(1, 1), (3, 2)}

Intransitive Orders
Cp≤(3,2,0) = {(3, 3), (1, 2)}
Cp≤(2,2,1) = {(1, 1), (2, 3)}

Table 1. Preference structures with3-points interval representation

4 Conclusion

Our study provides an exhaustive view of the comparison of3-points
intervals. Concerning the comparison problem, we have defined and
analyzed all the possible3-points interval comparison procedures
that satisfy our axiomatization. Our analysis allows us to know which
procedure provides which preference structure and to detect the prop-
erties of the resulted preference relations. Concerning the numerical
representation problem, we know now all the preference structures
having a3-points interval representation. When ordered points are
used, the use of exactly three points is optimal for three-weak orders,
triangle orders, split interval orders and intransitive orders, however
weak orders, bi-weak orders and interval orders need less than three
ordered points. The classical representation of triangle orders and in-
transitive orders make use of geometric figures (dimension two). As
a result they have more complicated comparison rules (for example
the comparison of circles is done by a quadratic function) and the
representation of preferences needs more space. By proposing a3-
points interval representation we facilitate the comparison rules and
the preference representation. We show also that preference struc-
tures may have more than one representation.

A possible interesting extension would be the generalization of
our study in the casen-points intervals. Such a generalization would
offer a general framework for the comparison of ordinal intervals and
would allow a systematic study of all the preference structures having
an interval representation (for instance forn=4 there are 56 sets of
P , some of them are already known thanks to the propositions that
we presented in this paper).
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