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Software entities (software products or processes) are characterized by many attributes, each one in its turn can be measured by one or more 
measures. In several cases the software entities have to be evaluated as a whole, thus raising the problem of aggregating measures to give an 
overall, single view on the software entity. This paper presents a method to aggregate measures, which works comparing the product/process with 
predefined, ideal entities, or profiles. Profiles are defined starting from ranges of values on measures of attributes. The method is based on two 
main phases, namely definition of the evaluation model and application of the evaluation model. It is presented through a simplified case study that 
deals with evaluating the level of quality of an asset to decide if accepting it in a reuse repository. A plausible way of how the method could be 
applied to process maturity assessment is also provided. The advantages of the method are that it allows using ordinal scales, while it deals 
explicitly with preferences expressed, implicitly or explicitly, by the evaluator. 

Keywords: Software evaluation; quality models; multiple criteria decision aiding. 
 

1. Introduction 
Software products and processes are complex items with many attributes; each one can be characterized by a measure. For 
instance a code module could be characterized by size, functionality, complexity, modularity, and the related measures. A 
software product could be characterized by functionality, reliability and cost. Alternatively, process attributes may be 
modeled around key process areas.  
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Sometimes entities need to be evaluated as a whole, not only on each attribute alone. Examples of evaluations are (see 
also [23]):  

• Decide if a management information system (MIS) should be kept, or changed. The existing MIS is compared with 
the new, expected one.  

• Decide which commercial off the shelf (COTS) product to buy, to fulfill a need. COTS are compared to each other, 
and possibly they are compared with the ideal one, fulfilling the need. 

• Decide if a code module can be accepted, as far as its quality level is concerned. This evaluation could be performed 
by the quality assurance function of a company; the module is compared with a virtual, ideal module described in a 
company document or in a standard.  

• Certify a software product/process. This case is in fact a variation of the case above. The evaluation is performed by 
an independent entity, an international/national standard is used, a whole product or process is evaluated. 

On the other hand, a software entity may represent a broad class of Information Technology concepts (a programming 
language, a software development approach, a software organization, etc.). Examples of such practical evaluation situations 
are: 

• choice of a programming language to be used in a project 

• choice of open-source or close-source approach in developing a new system 

• determination of the capability maturity level a software company belongs to 

We can recognize some common patterns in the evaluation cases listed above. 

• An evaluator (project manager, quality assurance manager, certification body, etc.) is charged with the solution of a 
decision problem.  

• The decision problem can be Boolean (keep- buy, accept – reject, certify – not certify) or implies a choice (select a 
COTS product). 

• The evaluation involves many entities (e.g. selection of COTS product) or only one. In the latter case, a second 
entity (the ideal one) is often used for comparison. In other words the evaluation is not absolute, but uses a reference 
for comparison.  

• The starting point of the evaluation is a set of simple attributes where measures are available. For instance, to decide 
if a code module can be accepted, internal attributes (such as size, complexity, number of defects, etc.) are 
measured. But the final decision is Boolean, accept-reject. We call this problem aggregation. Simple measures have 
to be aggregated in a single view to help the decision. 

In the literature, evaluations, and specifically aggregations, are mostly dealt with using the Weighted Average Sum 
(WAS) approach. The problem with WAS is that it requires that the measures have interval scales. In real world cases 
measures with ordinal scales, or judgements on ordinal scales (such as good, average, bad) are much more common. If one or 
more ordinal scales are involved, the aggregation should be made as if all scales were ordinal. Otherwise, ordinal scales will 
be treated as if they were ratio, therefore introducing arbitrary information that makes the evaluation unfair. Kontio [11] uses 
the Analytic Hierarchy Process (AHP) [22], that fits well the hierarchic nature of quality models used in evaluations, but 
requires also ratio scales on all measures. If we apply such a procedure on ordinal information we obtain meaningless results. 
A mathematical treatment of the above issues and a detailed analysis on aggregation problems and drawbacks can be found 
in [3] (see also [15]). 

Morisio and Tsoukiàs [13] propose to use an ordinal aggregation method in a COTS product selection evaluation case 
(see also [24] and [26]), but limit their examples only to ranking problems. The advantage is that ordinal scales can be used, 
and that preferences are clearly distinguished from measures. Starting from this work we propose in this paper a method that 
compares software entities with predefined profiles. The method applies to any situation where preferences are expressed on 
an ordinal scale and where alternatives are not compared between them, but to "profiles" in order to fit them in pre-defined 
categories. A similar approach has already been applied in real world cases (see [15]). In this paper we describe in full detail 
such an approach, providing also the theoretical justification for its use. In addition, we provide a complete application 
example and extend the approach to process evaluation as well. 



In the following we examine in more detail the concepts of measurement, evaluation, measure, preference, aggregation 
and their mutual relationships. The paper is organized as follows. Section 2 focus on the differences between measuring 
objects and evaluating them under a decision perspective, that is establishing a preference relation. Section 3 presents a new 
method based on comparisons between alternatives and pre-established profiles of categories. A product assessment problem 
is shown in this section. Section 4 applies the method on a process assessment problem, while section 5 briefly discusses the 
results obtained.  

2. Evaluation Concepts 
2.1 Measurement and evaluation 
The problem of evaluation of an entity is often addressed in a confusing way. The basic confusion arises between the 
measurement of attributes of the entity and the evaluation of an entity based on these attributes for any decision purpose. In 
the first case a measurement is expected to be performed, while in the second the decision maker’s preferences have to be 
modeled. These are two completely different activities (Tab. 1) and have to be treated as such (for a detailed discussion see 
[2] and [3]). 

 
The construction of a measure requires: 
• The definition of the semantics of the measure (what do we measure?); 
• The definition of the structure of the metric (what scale is used?); 
• The definition of one or more standards (how the measurement is performed?). 
 

On the other hand, evaluating a set of entities under a decision perspective requires answering questions of the type:  
• Who evaluates?  
• Why is it necessary to evaluate?  
• For what purpose is the evaluation?  
• How has the evaluation to be done?  
• Who is responsible for the consequences?  
• What resources are available for the evaluation?  
• Is there any uncertainty? 
 

A measure is a unary function m: A→ M mapping the set of entities A to the set of measures M. The set M is equipped 
with a structure, which is the scale on which the measure is established. Such scales can be nominal, ordinal, ratio, interval or 
absolute. Each type is univocally defined by its admissible transformations [18]. Measuring the elements of A can be done 
only if M is defined. So, an external reference system and standards are necessary (represented by M). 

A preference [25] is usually represented by a binary relation R, R ⊆ A × A, so that the set A is mapped to itself. We 
obviously need to know under which conditions r(x,y)  x,y ∈ A is true, but there is no need of external reference system. 
Typically, an evaluator can decide that he prefers x to y, basing the decision on simple judgement, or using a measure, in 
both cases this establishes that  r(x,y)  is true. 

When R is a complete binary relation (∀ x,y ∈ A r(x,y) ∨ r(y,x)) then it may admit a numerical representation, which 
depends on what other properties R fulfills. For instance if R satisfies the Ferrers property and semi-transitivity (for such 
concepts see [19]), then it is known that ∃ v:A →  ℜ : r(x,y) ⇔ v(x) ≥  v(y)+k  (k being a real constant). A typical confusion 
is to consider the function v as a “measurement”' applied on the set A where the concept of measure intuitively implies that 
any kind of arithmetic operation is allowed. Actually there exist an infinity of functions v representing the relation R and any 
one could be chosen. Since there is no standard (or metric) any of such functions v is just a numerical representation of R, but 
not any type of measure. For instance if on the preference relation x is indifferent to y, y is indifferent to z, but z is preferred 
to x, then two numerical representations of such preferences are 
 

u(x)=10,u(y)=12,u(z)=14,k=3 and 
v(x)=50,v(y)=55,u(z)=60,k=6. 

 
We call criterion a preference relation with a numerical representation. 
Finally, if for a given set A a measurement function exists, it is always possible to infer a preference relation from the 

measurement. However, such a preference relation is not unique (the fact that two objects have a different length, which is a 
measure, does not imply a precise preference among them). Suppose that ∃ l:A →  ℜ   (a measure mapping the set A to the 
reals, let’s say a length). Then the following are all admissible:  



l(x) ≥ l(y) ⇔ r(x,y) (x is better than y if the length of x is bigger than the length of y) 
l(x) ≥  l(y)+k  ⇔ r(x,y) (x is better than y if the length of x is bigger than the length of y plus a threshold) 
l(x) ≥ 2l(y)  ⇔ r(x,y) (x is better than y if the length of x is bigger than twice the length of y) 

 
These are all admissible preference relations, but with an obvious different semantic. The choice of the “correct”' one 

depends on the answers on the evaluation questions. An evaluation therefore is always part of a decision aiding process and 
represents its subjective dimension (different decision makers might consider different preferences although the lengths are 
the same). The reader can see more about meaningful and admissible models and operations in [5], [17] and [18]. 

 
Table 1. Properties of measures and preferences 

 Measure Preference 
Definition Function Binary relation 
Used for Measurement Evaluation 
Constraints Representation 

condition, 
meaningfulness 

Properties of 
the binary 
relation 

Obtained by Measurement 
(reference 
system) 

Established by 
the evaluator 
(possibly using a 
measure) 

Scale Nominal to 
absolute 

Ordinal to 
absolute (defined 
for the 
corresponding 
criterion, not for 
the preference) 

Value obtained 
by 

Measurement 
(reference 
system) 

From measure or 
from judgement 

Choice of 
aggregation 
operator 

Function of 
scales of 
measures and 
semantics 

Function of 
scales of criteria 
and semantics 

 
2.2 Aggregation 
The differences between measurement and evaluation (seen as preference modeling) reflect also the possibilities we have in 
order to obtain an aggregated measure or an aggregated preference from sets of measures or sets of preferences. Typically 
sets of preferences or measures regard a set of attributes that characterize an entity. But a comprehensive measure or 
preference relation is needed, which may represent all the different dimensions we want to consider. It is surprising how 
often the choice of the aggregation operator is done without any critical consideration about its properties. Let's take two 
examples. 

Suppose you have two three dimension objects a,b, for which their dimensions (length, height and depth) are known 
(l(a),l(b),h(a),h(b),d(a),d(b)). In order to have an aggregate measure of each object dimension we may compute their volume, 
which is  

v(a)=l(a)h(a)d(a) and v(b)=l(b)h(b)d(b). 
 

If the three dimensions are prices we may use an average, that is  
 

p(a)=l(a)+h(a)+d(a)/3 and  p(b)=l(b)+h(b)+d(b)/3. 
 

From a mathematical point of view both operators are admissible (when l(x),h(x),d(x) are ratio scales as in our example). 
However, the semantics of the two measures are quite different. It will make no sense to compute a geometric mean in order 
to have an idea of the price of a,b as it will make no sense to compute an arithmetic mean in order to have an idea of the 



volume of a,b. The choice between the geometric and the arithmetic mean depends on the semantics of the single measures 
and of the aggregated one. 

For the next example, suppose you have two entities a,b evaluated on two attributes. For each one a complete preference 
relation (r1, r2) is defined. 

Let’s pass to the numerical representation, defining the criteria g1 and g2 
 

g1 : A→ [0,1] and g1 (a)=0 and g1 (b)=1 
g2 : A→ [0,2] and g2 (a)=2 and g2 (b)=1. 

 
Under the hypothesis that both criteria are of equal importance, many people will compute the average (weighted average 

sum) to infer the global preference relation.  
 

g(a)= (g1 (a)+ g2 (a))/2=1 and 
g(b)= (g1 (b)+ g2 (b))/2=1 

 
so the two entities result to be indifferent.  However, if an average is used it is implicitly assumed that g1 and g2 admit ratio 
transformations. Therefore it is possible to replace g2 by g’2: A→ [0,1] so that g’2 (a)=1 and g’2 (b)= 1/2 (known as scale 
normalization). Under the usual hypothesis of equal importance of the two criteria we obtain now g(a)=1/2 and g(b)=3/4 
meaning that b is preferred to a.  

The problem is that the average aggregation was chosen without verifying whether the conditions under which it is 
admissible hold. First of all if the values of a and b are obtained from ordinal judgements (of the type good, medium, bad 
etc.) then the numerical representation does not admit a ratio transformation (in other words we cannot use its cardinal 
information). Second, even if the ratio transformation were admissible, the concept of criteria importance is misleading. In a 
“weighted arithmetic mean” (as the average is) the weights are constants representing the ratios between the scales of the 
criteria. 

In the example, if we reduce g2 to g’2 we have to give to g’2 twice the weight of g’1 in order to maintain the concept of 
“equal importance”. In other words it is not possible to speak about importance of the criteria (in the weighted arithmetic 
mean case) without considering the cardinality of their co-domains. 

From the above examples we can induce a simple rule. In order to choose appropriately an aggregation operator it is 
necessary to take in consideration the semantics of the operator and of each single preference or measure and the properties 
(axiomatic) of the aggregation operator. In other words, if the aggregation operator is chosen randomly, neither the 
correctness of the result, nor its meaningfulness can be guaranteed. For a detailed discussion on the above problems the 
reader may consult [5]. 

Uncertainty can be considered using intervals, fuzzy measures, possibility and/or probability distributions etc., instead of 
exact evaluations. For each such case, precise procedures apply.  In this paper we present a principle of ordinal preference 
aggregation, not a complete method. To this end, we chose an easy example in order to show how such a family of methods 
works, not for presenting a universal, definitive method. 
 

3. The Evaluation Method: Product Assessment 
In this section we present the evaluation method using a simplified real life case as working example. This case is a variation 
of the third evaluation type presented in the introduction, “Decide if a code module can be accepted ...”.  

A reuse repository contains reusable assets. These are made of source code and documents describing design and 
functionality of the asset.  

The reuse manager receives the potential assets, and has to verify their quality level to accept them in the repository, or 
not.  For this purpose, the reuse manager, helped by the quality assurance function, builds a quality model. His intuition is to 
establish a judgement of the type “very good” (VG), “good” (G), “quite good” (QG), “acceptable” (A), “unacceptable” (U) 
and introduce to the repository assets judged at least “A”. “Unacceptable” occurs when either complexity or documentation 
becomes “unacceptable”. 

Of course reusers can choose assets not only according to functional requirements, but also according to the quality level. 
The reuse manager has information concerning only specific attributes of the assets and finds difficult to define the 
comprehensive judgements. Actually the reuse manager is facing a problem of measurement aggregation from the single 
quality attributes to the comprehensive ordinal scale “VG > G >QG > A > U”. 

In this section we briefly present the method adopted, consisting of the following steps (we identify the reuse manager as 
a decision maker): 



Phase 1 - definition of evaluation model 
Definition of quality model 
Definition of criteria 
Definition of profiles and categories 

Phase 2 - application of evaluation model 
Selection of entities 
Measurement of entities 
Aggregation of measures 

 
3.1 Definition of the evaluation model 
The evaluation model is established defining a hierarchy of attributes and the associated measures. Measures can have any 
scale, from nominal to absolute. 
 

Table 2. Attributes and measures for Code Understandability 

Attribute Subattribute Measure Criterion scale 
Code understandability 

Algorithmic 
complexity 

Mc Cabe’s 
cyclomatic 
number 

Inverse 

Size LOCs*  Inverse 

Complexity 

Fan out Number of 
functions called, 
not contained in 
the asset 

Inverse 

Documentation Comments on 
code 

(Physical lines of 
code containing 
comments) / 
LOCs 

Identity 

 Descriptiveness Unacceptable (U), 
Acceptable (A), 
Quite Good (QG), 
Good (G),  
Very Good (VG) 

VG > G > QG > A > U 

 Appropriateness Unacceptable (U), 
Acceptable (A) 

A > U 

*LOCs = Physical lines of code, less comments and blank lines 
 

Table 3. Attributes and measures for Reliability 

Attribute Subattribute Measure Criterion scale 
Reliability Branch 

coverage 
Branch 
coverage 
(percentage of 
statements and 
decisions 
exercised by 
test cases) 

Identity 

 Inspection Yes (the source 
code was 
formally 
inspected), No 

Yes > No 



 Defects 
correction 
ratio 

(Number of 
defects fixed 
after release) / 
(Number of 
defects reported 
after release) 

Identity 

 MTTF Mean Time To 
Failure 

Identity 

 
 
In our working example, quality for reusable assets is defined, using a constructive quality model approach [9], in terms 

of code understandability and code reliability. This model is also influenced by the ISO 9126 standard [6], which lists 
reliability and maintainability as quality characteristics, and suggests understandability as a decomposition of maintainability.  

Code understandability is further decomposed in complexity and documentation. Next, each leaf quality attribute 
(complexity, documentation, reliability) is characterized through a number of measures. This step uses a GQM approach [1] 
and is also influenced by the Reboot reusability model [8]. Refer to Tables 2 and 3 for the complete definition of attributes, 
subattributes and measures. 
 
3.2 Definition of criteria/attributes/scales 
Given that the decision maker is willing to express a quality judgment on an ordinal scale, all attributes have to be equipped 
with at least ordinal scales of measurement. Further on, since the final scale is both a measurement and a criterion (in the 
sense that obviously VG objects are preferred to G objects, etc.) we have to associate to each attribute a preference model. 

For each attribute a correspondent criterion has to be defined, with its scale. While an attribute is neutral, a criterion 
expresses a preference by an evaluator. For example, code size is an attribute that allows stating that a 200 Loc source code 
module is of larger size than a 100 Loc module. A criterion based on size expresses the preference of an evaluator for larger 
or smaller modules. In one context an evaluator could prefer larger modules, in another smaller ones.  

A criterion can have the same scale as the attribute (identity transformation, larger modules are preferred to smaller 
modules), or the inverse scale (small modules are preferred to large ones). Another common transformation is defining an 
ordinal scale for the criterion starting from a nominal scale for the attribute. Other transformations are possible (e.g. a 
preference may be expressed as an interval), but we will not deal with them explicitly in this paper. 

The rightmost column of tables 2 and 3 shows how the scale of the criterion was defined starting from the scale of the 
attribute. The attribute Descriptiveness uses an ordinal scale, and depends on the judgement of the reuse manager, possibly 
using company specific guidelines.  The attribute Inspection uses a measure with nominal scale (values yes, no); the 
corresponding criterion uses an ordinal scale. For all other criteria the scale is the same as for the attribute, or the inverse one. 

g1

g2

g3

gm-1

gm

Categ. 1 Categ. 2 Categ. p-1 Categ. p Categ. p+1

b1
bp-1 bp  

Fig. 1: Definition of categories and profiles  

  

3.3 Definition of profiles and categories 
Next, profiles and categories (see figure 1) have to be defined.  The criteria of the evaluation model compose a tree, for 
instance criterion g0 decomposes in criteria g1, g2,..gn. A profile for g0 is a set of values, one for each criterion gi.  In figure 1, 
g1..gm indicate generic criteria,  b1..bp generic profiles, that define p+1 categories. In our method bh represents the upper limit 
of category Ch and the lower limit of category Ch+1. 

In our example, four profiles and five categories (Very good (VG), Good (G), Quite good (QG), Acceptable (A), 
Unacceptable (U)) are defined for each composed criterion (tables 4, 5 and 6). 



 
Table 4: Profiles for criteria Complexity and Documentation 

Composed 
criterion 

Criterion Profile A Profile 
QG 

Profile 
G 

Profile 
VG 

Algorithmic 
complexity 

8 6 4 2 

Size 10000 5000 2000 1000 

Complexity 

Fan out 20 10 7 5 
Comments on 
code 

10% 20% 30% 40% 

Descripti-
veness 

A QG G VG 

Documentatio
n 

Appropria-
teness 

A A G G 

      
Table 5: Profile for criterion Code Understandability 

Composed 
criterion 

Criterion Profile A Profile 
QG 

Profile 
G 

Profile 
VG 

Complexity A QG G VG 
 

Code 
Understanda-
bility Documenta-

tion 
A QG G VG 

 
Table 6: Profile for criterion Reliability 

Composed 
criterion 

Criterion Profile A Profile 
QG 

Profile 
G 

Profile 
VG 

Branch 
coverage 

20% 40% 60% 100% 

Inspection No Yes Yes Yes 

Reliability 

Defects 
correction 
ratio 

50% 70% 80% 100% 

 MTTF 
[hours] 

1000 5000 8000 10000 

    

3.4 Selection, measurement 
At this point Phase II starts. Elements to be evaluated are selected and identified. In our example, assets are produced and 
submitted to the reuse manager. Next, elements are measured on each attribute of the evaluation module. In the example, 
these measures are taken partially by the project that produces the asset, partially by the reuse manager. As already noted, 
some attributes are judged and not measured, such as Descriptiveness. Table 7 reports values for four assets to be evaluated 
on Code Understandability. 

Table 7: Values for attributes related to Code understandability 

Composed 
criterion 

Criterion Asset 
p0 

Asset 
p1 

Asset 
p2 

Asset 
p3 

Algorithmic 
complexity 

2 2 5 2 

Size 2378 4277 9501 1010 

Complexity 

Fan out 6 15 20 5 
Comments on 
code 

15% 15% 5% 40% 

Descriptiveness U U A VG 

Docume-
ntation 

Appropriateness U U A A 



3.5 Aggregation 
The aggregation phase assigns an element to be evaluated to a category of the root criterion in the tree. The aggregation is 
performed using an algorithm inspired by the ELECTRE-TRI procedure [14], [21], [27]. For similar methods see also [10], 
[12]. The method uses what is known in literature as an “outranking relation”.  

Outranking relations represent one of the two basic tools used in order to explore a set of feasible solutions when several 
criteria have to be considered and a reasonable compromise is requested. Outranking relations simply translate (and expand) 
in the decision aiding context the concepts of majority procedures used in voting and social choice theory. In other terms, an 
alternative x is considered to be “at least as good as” y iff the “weighted” majority of criteria agree so. In order to establish a 
choice or a ranking on a set of alternatives, pairwise comparisons are performed among the alternatives, allowing to establish 
where the outranking holds and then an ordering relation is constructed. Methods using such an approach expand their 
flexibility, introducing, besides the positive reasons for which x is supposed to be better than y (the weighted majority), the 
negative reasons (not supporting the sentence “x is at least as good as”) represented by vetos, thresholds and blocking 
minorities (for more details see [4], [5]). 

Typically, in order to establish a ranking, each alternative is compared to all other alternatives in turn. This is 
accomplished through the basic concept of the algorithm chosen, namely the Outranking relation S, which has to be read as 
“is at least as good as”, and has to be computed between each element and each profile. The outranking relation holds if the 
concordance and non-discordance tests are satisfied. 

The concordance test is the majority strength to be reached in order to be able to establish with a certain degree of 
confidence the outranking relation. Such a majority is generally computed using the relative importance (weight) of each 
criterion. 

The non-discordance test is the minority strength not to be reached in order to be able to establish the outranking relation. 
Such a minority is generally computed using the relative importance of each criterion.  

Formally, for each ordered pair (x, y), where x and y stand for  a and bh or vice versa, and for a set of criteria G in which a 
composed criterion is decomposed: 

( ){ }
( ){ }
( ){ }
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where  pj(x, y) means that x is preferred to y on criterion gj while  ij(x, y) means that x and y are indifferent on criterion gj. 

Let wj be the relative importance of a criterion, with ∑ ,  wj = 1

S x y C x y D x y( , ) ( , ) ( , )⇔ ∧ ¬   
 
the non-discordance relation is: 

¬ ⇔ ≤ ∧ ∀ ∈ ¬
∈ −
∑D x y w d g G v x yj
j G

j j( , ) : ( , )  

The concordance relation C(x,y) has a different definition if the element (a) is compared with the profile (b) or vice versa.  
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with: 
• c: concordance threshold; 
• d: discordance threshold; 
• c+d ≠ 1; 
• vj(x,y): veto, expressed on criterion gj, of y on x. 

When the relation S is obtained, the assignment of an element to a category can be done in two ways: 
1) Pessimistic assignment: 
• a is iteratively compared with  bi, for i = p, p-1, ..., 0, 
• as soon as a profile bh exists for which  S(a, bh) then a is assigned  to the  category Ch. 
2) Optimistic assignment: 
• a is iteratively compared with bi, for i = 1, 2, ..., p, 
• as soon as a profile bh exists for which S(bh, a) ∧ ¬ S(a, bh) then a is assigned to category Ch-1. 

The pessimistic procedure finds the profile for which the element is not worst. The optimistic procedure finds the profile 
against which the element is surely worst. If the optimistic and pessimistic assignments coincide, then no uncertainty exists 
for the assignment. Otherwise, an uncertainty exists and should be considered by the evaluator. When the two assignments 
do not coincide, it means that there are strong incomparabilities between the alternatives and the profiles of the categories, 
demanding further discussion with the decision maker. The safe ultimate rule is to use the pessimistic assignment. 

Let’s show how this works on our example. Aggregation will be limited to the Code Understandability criterion. 
Consider asset p0 and the sub-node complexity. The performance vector of p0 is [2, 2378, 6] (from Table 7.). The best 
profile to which p0 is “at least as good as” is G ([4, 2000, 7]); therefore the pessimistic assignment is in class G. The worst 
profile, which is strictly, better than p0 is VG ([2, 1000, 5]), therefore the optimistic assignment is in class G. 
  

Table 9: Categories of assets for Complexity and Documentation 

Composed 
criterion 

Criterion Asset p0 Asset p1 Asset p2 Asset p3 

Complexity QG QG A VG 
 

Code 
Under-

standability Docume-
ntation 

A A A VG 

 
Table 10: Categories of assets for Code Understandability 

Criterion Asset p0 Asset p1 Asset p2 Asset p3 

Code Understandability A A A VG 

 
Tables 9 and 10 show the allocation of assets to categories on the code understandability, complexity and documentation 

nodes. In all cases the pessimistic and the optimistic assignment coincide. For all composed criteria, composing criteria have 
the same weight. In all cases the thresholds used are 70% for the concordance threshold, 28% for the discordance threshold 
(these figures are commonly used in literature [5] and thus have been introduced in this example, usually it is the decision 
maker who provides this information). 
 



4. The Evaluation Method: Process Assessment 
In this section we show how our profile-based approach may be applied to process assessment methods. Process assessment 
methods involve the evaluation of software processes as a whole, rather than focusing on individual activities [17]. One of 
the most known such models is CMM (Capability Maturity model) [16]. According to CMM a software organisation is rated 
on an ordinal scale: level 1 (Initial), level 2 (Repeatable), level 3 (Defined), level 4 (Managed), level 5 (Optimising). 
Determination of the appropriate level is accomplished by examining certain Key Process Areas (KPAs), different for each 
level. For example, among other, you need to master KPA Software Project Planning in order to obtain level 2. The 
implementation and institutionalisation of a KPA is assessed according to a number of Key Practices, common to all KPAs 
independently of the level the KPAs belong to. Examples of such practices are Activities performed, Measurement and 
analysis, etc.   

Evaluation in CMM is conducted through CBA-IPI, i.e. the CMM-based appraisal for internal process improvement. The 
assessment is based on the use of maturity questionnaires, documentation and interviews. Questions ask whether a key 
practice for a specific KPA is followed and may be answered “yes”, “no”, “don’t know” and “does not apply”. Ratings are 
subjectively assigned, so team consensus and consolidation of findings is frequently needed [7]. If all key practices are 
satisfied for a KPA then it is considered that all KPA goals are also satisfied. In case some KPA goal is not satisfied then it is 
examined whether an alternative organization practice exists that can satisfy the goal. If all KPAs of a given CMM level are 
satisfied and all KPAs for lower levels are also satisfied then the organization is considered to have reached that level.  

CBA-IPI examines both organization project and process profiles in order to build the organization maturity profile. The 
use of profiles in process assessment is even more explicit in SPICE [20]. However, the assessment method can be 
considered quite rigid. For example, Pfleeger ([17], p. 549) emphasizes that: “…It is important to remember that capability 
maturity does not involve a discrete set of possible ratings. Instead, maturity represents relative locations on a continuum 
from 1 to 5…”, and “…If one part of a process is more mature than the rest, an activity or tool can enhance the visibility of 
that part and help to meet overall project goals, at the same time bringing the rest of the process up to a higher level of 
maturity…”. On the other hand, sometimes “big-bang” approaches [7] are suggested in order to reach higher CMM levels, 
involving significant risks. In the next, we will use CMM terminology, although the ideas presented might be applied to 
other process assessment methods as well.  

The profile-based approach may be used to accommodate extensions of existing process assessment methods, or 
implement already foreseen profile-based evaluation within such methods. In particular, an extension of a process assessment 
method might include intermediate values for maturity levels, i.e. an organization might receive ratings between level 
“repeatable” and level “defined”. While keeping the order of the maturity levels, such an assessment may be useful to show 
the progress that one organization is making while moving from one level to the higher one and depict the “distance” the 
organization has to cover in order to reach the next higher level. At a finer grain of detail, assessment might involve the 
rating of a key practice with intermediate values between “yes” and “no” and the use of other, more refined and, probably, 
more appropriate measurement scales for factors affecting key practices, in order to produce such intermediate values.       
 

4.1 Definition of criteria, profiles, categories 
For process assessment purposes, profiles and categories (see again figure 1) must be defined. A process assessment criteria 
tree may be defined as follows. Criterion g0 (process maturity) is decomposed in criteria g1, g2, .. gn, where gi represents a 
KPA.  A KPA is further decomposed and evaluated according to its preset goals. One may proceed further by evaluating 
KPA goals according to the key practices.  

Process maturity may be rated according to standard levels, i.e. 1 (initial), 2 (defined), …, 5 (optimizing), while 
additional intermediate levels, i.e. 1-2 (intermediate between initial and repeatable), 2-3 (intermediate between repeatable 
and defined), etc., may be used to add flexibility to the model. Alternatively, each maturity level might be represented 
through three profiles, namely Reached (R), On-going (O), Not Reached  (NR). 

  In this example, three profiles and four categories (Satisfied (SA), Improving (IG), Improvable (IE), Starting (ST)) are 
defined for each KPA. Table 11 shows plausible profiles for KPA Software Project Planning and its goals. For process 
assessment flexibility purposes, goal satisfaction may be measured in terms of percentage of projects for which the goal is 
found to be achieved. Of course other means of measurement may also apply.  For example, goal satisfaction may receive 
values on the ordered scale “very good” (VG), “good” (G), “quite good” (QG),  “initial” (I), quite similar to the one used in 
the previous software product assessment example, reflecting the degree of their fulfillment as judged by the process 
evaluators. Table 12 shows how intermediate maturity levels may be implemented as profiles according to KPA assessment. 
In Table 12, KPAk denotes a set representing all KPAs that belong to level k. 
 
 

Table 11: Profiles for one Key Process Area 



Composed 
criterion 
(Key 
Process 
Area) 

Criterion 
(Goal) 

Profile 
ST 

Profile 
IE 

Profile 
IG 

Profile  
SA 

Estimate 
documentation  

I QG G VG 

Planned and 
documented 
project 
activities and 
commitments  

25% 50% 75% 100% 

Software 
Project 
Planning 

Affected 
groups and 
individuals 
agreement 

25% 50% 75% 100% 

    
Table 12: Profiles for Process Maturity 

Composed 
criterion 

Crite
rion 

(KPA
s) 

Level 2 
Repeatable 

Level 2-
3  

Level 3 
Defined 

Level 3-4  ... 

KPA1 SA SA SA SA  
KPA2 ST IG SA SA  
KPA3 ST ST ST IG  
KPA4 ST ST ST IG  

Process 
Maturity 

KPA5 ST ST ST ST  
 

In addition to a single organization certification, other situations may require the comparison of the process maturity of 
many organizations at once, e.g. when determining the most mature organization during tenders or when an acquisition 
department creates vendor lists according to predefined profiles. In these cases, as a final step, the aggregation mechanism, 
described in the previous section should be used. 
  

5. Discussion 
A new method to evaluate software entities has been presented. The method distinguishes between measures and preferences 
and uses an ordinal aggregation operator. Both points are essential, as (a) evaluations are decision problems that, even if they 
use measures as a starting point, involve judgment, and (b) because real life evaluation models often use ordinal measures 
that require ordinal aggregation operators. 

The application of the method on product evaluation has shown that the definition of the evaluation model is a difficult 
task, probably the most difficult in an evaluation problem. One problem is the decomposition in attributes and subattributes. 
In some parts (for instance product attributes branch coverage, inspection, and defects correction ratio) this corresponds to 
defining a predictive model, where the difficulty lies in validating it.  

Another problem lies in the definition of profiles, and therefore categories. We have discovered that four profiles and five 
categories are probably too many. Both empirical and intuitive evidence of how the value of a measure discriminates assets 
and therefore defines profiles is missing. Accordingly, next versions of the evaluation models presented will be built with 
two profiles and three categories only. 

Initially, reliability and understandability were supposed to be aggregated in a final evaluation considering both of them. 
Actually, this further aggregation was not performed, because it did not correspond with the need of the final user of an asset 
who decides to use an asset in function of understandability only.  The evaluation on reliability is used by the reuse manager 
to reject some assets, then the user selects on understandability only. In other words, two evaluation models are actually 
used, one on understandability, by the user and the reuse manager, one on reliability, by the reuse manager only. 

This situation could change in a safety critical systems context, where a user could be constrained to select an asset in 
function of the class of risk of the project, or part of project. Reliability categories of assets would be mapped to classes of 
risk, and the user should select accordingly. This situation will be the object of further research. 



Process evaluation has also been proven to be an interesting application field for profile-based evaluation. Profiles are 
inherent in process evaluation, while subjective assessments are scattered throughout the entire evaluation process, adding 
difficulty to the rating of a process or organization as a whole. Taking into account these difficulties, we believe that process 
evaluation may benefit from the approach described in this paper.  
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