
Incomplete information tables and rough classi�cation

Jerzy Stefanowski (*), Alexis Tsouki�as (+)

(*) Institute of Computing Science

Poznan University of Technology, 60-965, Poznan, Poland

e-mail: Jerzy.Stefanowski@cs.put.poznan.pl

(+) LAMSADE - CNRS,

Universit�e Paris Dauphine, 75775 Paris C�edex 16, France

e-mail: tsoukias@lamsade.dauphine.fr

Abstract. The rough set theory, based on the original de�nition of the indiscernibility

relation, is not useful for analysing incomplete information tables where some values of

attributes are unknown. In this paper we distinguish two di�erent semantics for incomplete

information: the \missing value " semantics and the \absent value" semantics. The already

known approaches, e.g. based on the tolerance relations, deal with the missing value case.

We introduce two generalisations of the rough sets theory to handle these situations. The

�rst generalisation introduces the use of a non symmetric similarity relation in order to

formalise the idea of absent value semantics. The second proposal is based on the use of

valued tolerance relations. A logical analysis and the computational experiments show that

for the valued tolerance approach it is possible to obtain more informative approximations

and decision rules than using the approach based on the simple tolerance relation.

Keywords: incomplete information, rough sets, fuzzy sets, similarity relation, valued

tolerance relation, decision rules

1 Introduction

Rough sets theory has been developed since Pawlak's paper [Pawlak, 1981] (see also

[Pawlak, 1991, Komorowski et al., 1999]) as a tool for analysing vague descriptions of ob-

jects. The starting point of this theory is an observation that objects having the same

description are indiscernible (or similar) with respect to available information. In other

words, it may happen that objects considered as distinct could have the same (or similar)

description, at least as far as a set of attributes is considered. Such a set of attributes can

be viewed as the possible dimensions under which the surrounding world can be described

for a given knowledge.

However, an explicit hypothesis done in the rough sets theory is that all available

objects are completely described by the set of attributes. Denoting the set of objects as

A = fa1; � � � ang and the set of attributes as C = fc1; � � � cmg it is assumed that 8aj 2
A; ci 2 C, the attribute value always exists, i.e. ci(aj) 6= ;.

Such a hypothesis, although sound, contrasts with several empirical situations where

information concerning the set A is only partial, either because it has not been possible to

record the attribute values (for instance, if the set A are patients and the attributes are

clinical examinations, some results may not be available in a given moment) or because it

is de�nitely impossible to get a value on a given attribute for certain object (for instance,
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this patient could be allergic to a speci�c examination). A problem arises when such an

incomplete information table is used in order to make a classi�cation which implies an

action. It may be the case that such an action has to be undertaken while the information

is still incomplete. Therefore, it is necessary to develop a theory which may enable to

classify objects in presence of partial information.

The problem has already been faced in literature. [S lowi�nski and Stefanowski, 1989]

and [Grzymala, 1991] proposed two di�erent approaches to replace unknown value of at-

tribute by speci�c subsets of values. Grzymala [Grzymala et al., 1999, Grzymala et al. 2000]

performed computational studies on the medical data, where unknown values of attributes

were replaced using probabilistic techniques. Kryszkiewicz introduced a new tolerance

relation to handle incomplete information tables without any changes in their content

[Kryszkiewicz, 1995, Kryszkiewicz, 1998]. Some properties of incomplete information were

also studied in [Toumi, 1996]. Recently, Greco and Slowinski used a speci�c de�nition of

the indiscernibility relation to analyse unknown attributes values for multi-criteria decision

problems [Greco et al.,1999a, Greco et al.,1999b]. In their approach the indiscernibility re-

lation between a pair of objects is considered as a directional statement where a subject

object is compared to a referent object that cannot have any missing values.

Our paper enhances such works by distinguishing two di�erent semantics for incomplete

information:

� the \missing value" semantics (unknown values of attributes allow any comparison),

� the \absent value "semantics (unknown values of attributes do not allow any com-

parison).

Three di�erent formalisms to handle incomplete information tables are explored: tolerance

relation, non symmetric similarity relations and valued tolerance relation. In all cases

particular attention is paid to create approximations of sets and to induce decision rules

from the incomplete information table.

The paper is organised as follows. In section 2, a brief reminder of rough sets is

presented. Then, an example of incomplete information table is introduced which will

be used all along the paper in order to help the understanding of the di�erent ap-

proaches. In section 3, we present and discuss the tolerance relation approach proposed

by Kryszkiewicz [Kryszkiewicz, 1995]. In section 4, an approach based on non symmetric

similarity relations is introduced using some results obtained by S lowi�nski and Vander-

pooten [S lowi�nski and Vanderpooten, 1997, S lowi�nski and Vanderpooten, 2000]. We also

demonstrate that the non symmetric similarity approach re�nes the results obtained using

the tolerance relation approach. In section 5, a valued tolerance approach is introduced

through the concepts of lower and upper approximability. In section 6, we show how ap-

proximations can be computed and how decision rules can be induced using such a valued

tolerance relation. Since in this approach the user can control the process of calculating

approximations and decision rules by some thresholds referring to his acceptance levels, we

performed a computational study on several data sets. Results are summarised in section

7. Further research directions are included in the conclusions.
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2 Rough Sets

Rough sets have been introduced by Pawlak [Pawlak, 1981] as a new approach for analysing

vague information and more precisely the capability of distinguishing objects described in

an ambiguous way.

Following Pawlak, an information table IT is a pair (A;C) where A 6= ; is a non-empty

set of objects and C is a non empty set of attributes, such that 8c 2 C : U ! Vc where

Vc is a domain of c. Each subset of attributes B � C de�nes an indiscernibility relation

IND(B) as:

IND(B) = f(x; y) 2 A�A : 8ci 2 B ci(x) = ci(y)g

Let A=IND(B), or shortly A=B, be the family of all the equivalence classes of the equiv-

alence relation IND(B) on A.

Given an information table IT = (A;C) and a non-empty subset of attributes B � C,

with each subset of objects � � A we associate two sets:

�B =
[
fY 2 A=B : Y � �g

�B =
[
fY 2 A=B : Y \ � 6= ;g

called the B-lower and B-upper approximation of �, respectively. In other words, if it is

diÆcult to describe a set of objects � (some classes of IND(B) may contain at the same

time objects of � and of its complement), then it is possible to approximate it using two

sets: the lower approximation and the upper approximation. The lower approximation

contains objects of A which are certainly assigned to � while the upper approximation

contains these objects which possibly belong to �, following the partition A=B.

Bn(�) = �B n�B is the B-boundary region of �, i.e. it is the set of elements for which

there is a doubt about their assigning to �.

The de�nition of approximation of a subset � 2 A can be extended to a classi�cation

of all objects, i.e. partition Y = f�1;�2; : : : ;�ng of A. By B-lower and B-upper approxi-

mations of Y we understand sets YB = f�1B ;�2B ; : : : ;�nB
g and YB = f�B

1 ;�
B

2 ; : : : ;�
B
n g,

respectively.

The approximations of Y by the set of attributes B � C can be numerically charac-

terised by the coeÆcient called a quality of the approximation of classi�cation Y. It is

de�ned as ratio


B(Y) =
(
P

n

i=1 j �iB
j)

j A j

where j � j denotes the cardinality of a set.

The basic concepts of rough approximations can be used for further operations, i.e.

reduction of attributes and derivation of decision rules from the decision table. Reduction

of the information table allows to �nd smaller subsets of attributes that preserve the

quality of approximation of classi�cation for all objects in the table. It is done on the

basis of a reduct of the subset of attributes B � C.

The subset B0 � B is a reduct of B with respect to the approximation of partition

Y on A (notation REDY(B)) if it is a minimal subset of B which keeps the quality of
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classi�cation unchanged, i.e. 
B0(Y) = 
B(Y). More than one Y-reduct of B can exist in

an information table.

A decision table DT is an information table (A;C[fdg) where d =2 C is a distinguished

attribute called decision and elements of C are called condition attributes. The decision

attribute induces a partition of A into decision classes in a way which is independent

from the condition attributes of C. If we underline the functional dependencies between

condition and decision attributes, a decision table may also be seen as a set of decision

rules.

A decision rule � is represented in the following form:

^cj2B(cj(ai) = v) ! (d(ai) = w)

where cj 2 B � C, v is a value of condition attribute cj and w is a value of decision

attribute d.

The elementary condition is usually represented as an attribute value pair (cj = v) and

decision as a pair (d = w). We denote by s = ^j(cj = v) and by t = (d = w) the condition

and decision part of a rule, respectively. Let [s] be the set of objects in DT satisfying s

and [t] be the set of objects satisfying t. Objects which satisfy both expressions s and t

are called objects supporting a rule. A decision rule s ! t is certain if [s] � [t]. If the

decision table contains inconsistencies, possible decision rules can be induced from upper

approximations of decision classes. In such a case [s] should be a subset of the B-upper

approximation of a decision class expressed in t.

Certain and possible decision rules should have non-redundant condition parts, i.e.

no other certain (possible) rule can be constructed from a proper subset of elementary

conditions occurring in the given rule. Induction of decision rules from decision tables

is a complex task and a number of algorithms have been already proposed (see e.g.

[Grzymala, 1992, Skowron, 1993, Stefanowski, 1998, Komorowski et al., 1999, S lowi�nski et al., 2000]).

Let us introduce an example of incomplete information table which will be used all

along the paper in order to help the understanding of the di�erent approaches and allow

their comparisons.

Example 2.1 Suppose the following information table is given

A c1 c2 c3 c4 d

a1 3 2 1 0 �

a2 2 3 2 0 �

a3 2 3 2 0 	

a4 * 2 * 1 �

a5 * 2 * 1 	

a6 2 3 2 1 	

a7 3 * * 3 �

a8 * 0 0 * 	

a9 3 2 1 3 	

a10 1 * * * �

a11 * 2 * * 	

a12 3 2 1 * �
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where a1, ...., a12 are the available objects, c1, ...., c4 are four attributes which values

(discrete) range from 0 to 3, d is a decision attribute classifying objects either to the set

� or to the set 	 and � denotes the unknown value of attribute.

Suppose that we are trying to induce some decision rules for sets � or 	. Then,

following the original de�nition of the indiscernibility relation (wrt. to c1 � � � c4) we get a

result which is of very little help. In the following sections we will present three di�erent

approaches in order to handle such a situation.

3 The tolerance relation

In the following section, we brie
y present the idea introduced by [Kryszkiewicz, 1995] (see

also [Kryszkiewicz, 1998]). The readers can refer to the quoted papers for more details.

In our point of view the key concept introduced in this approach is to interpret an

unknown value of the attribute as similar to all other possible values for this attribute.

Such an interpretation corresponds to the idea that such values are just \missing", but

they do exist. In other words, it is our imperfect knowledge that obliges us to work with

a partial information table. Each object potentially has a complete description, but it is

just missed for the moment.

Given an information table IT = (A;C), a subset of attributes B � C, denoting the

missing attribute value by �, 8x; y 2 A�A the following binary relation T is de�ned:

TB(x; y) , 8cj 2 B; cj(x) = cj(y) or cj(x) = � or cj(y) = �

Clearly T is a re
exive and symmetric relation, but not necessarily transitive. We call

the relation T a \tolerance relation". Further on, let us denote by IB(x) the set of objects

y for which TB(x; y) holds. In other words, the set IB(x) can be seen as the set of objects

similar to x taking into account attributes B. The set IB(x) is called the tolerance class

of x.

The tolerance classes are the basis for rede�ning the concept of lower and upper ap-

proximation of a set � using the set of attributes B � C. The B-lower approximation and

the B-upper approximation of � are:

�B = fx 2 A j IB(x) � �g

�B = fx 2 A j IB(x) \ � 6= ;g

It is easy to observe that �B =
S
fI(x) j x 2 �g. The usual properties of lower and

upper approximations apply in this case [Kryszkiewicz, 1995].

Continuation of Example 2.1 Using the example introduced in section 1 we have the

following results for all attributes C (notice that 	 = �c, the complement of �):

IC(a1) = fa1; a11; a12g,
IC(a2) = fa2; a3g,
IC(a3) = fa2; a3g,
IC(a4) = fa4; a5; a10; a11; a12g,
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IC(a5) = fa4; a5; a10; a11; a12g,
IC(a6) = fa6g,
IC(a7) = fa7; a8; a9; a11; a12g,
IC(a8) = fa7; a8; a10g,
IC(a9) = fa7; a9; a11; a12g,
IC(a10) = fa4; a5; a8; a10; a11g,
IC(a11) = fa1; a4; a5; a7; a9; a10; a11; a12g,
IC(a12) = fa1; a4; a5; a7; a9; a11; a12g,
From which we can deduce that:

�C = ;, �C = fa1; a2; a3; a4; a5; a7; a8; a9; a10; a11; a12g,
	C = fa6g, 	C = A

The results are quite poor. Moreover there exist objects which intuitively could be

classi�ed in � or in 	, while they are not. Take for instance object a1. We have its

complete description and intuitively there is no other object perceived as very similar to

it. However, a1 is not included into the lower approximation of �. This is due to missing

attribute values of objects a11 and a12 which enables them to be considered as \similar"

to a1. Of course, this is a \safe" approach because potentially these two objects could

come up with exactly the same values of a1. Same type of reasoning may apply to objects

a7; a8; a9; a10.

Approximations of sets by tolerance relation are then used to de�ne a reduct of the

information table. A reduct is de�ned similarly as in the \classical" rough set, i.e. it is

a minimal subset of attributes that preserves the same lower approximations of object

classi�cation as for all attributes . In Example 2.1, the set of attributes fc1; c2; c4g is the

only reduct.

[Kryszkiewicz, 1995] discussed the generation of decision rules from incomplete in-

formation tables. She considered mainly generalised decision rules of the form ^j(cj =

v) ! _(d = w). If the decision part contains one disjunct only, the rule is certain. Let

B be a set of condition attributes which occur in a condition part of the rule s ! t. A

decision rule is true if for each object x satisfying condition part s, IB(x) � [t]. It is also

required that the rule must have non-redundant conditional part.

In our example, we can �nd only one certain decision rule (due to the small size of the

lower approximation) :

(c1 = 2)^(c2 = 3)^(c4 = 1)!(d = 	).

4 Similarity Relations

We introduce now a new approach based on the concept of a not necessarily symmet-

ric similarity relation. Such a concept has been introduced in rough sets in order to

enhance the concept of indiscernibility relation (see [S lowi�nski and Vanderpooten, 1997,

S lowi�nski and Vanderpooten, 2000]).

Although at a �rst glance a non symmetric similarity relation may appear odd, we

have several intuitive examples where such situation may occur. We always say that a

child is similar to a parent but we do not claim that the parent is similar to his child. A

copy of a painting is similar to the original, but non necessarily the inverse holds too.
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We �rst introduce what we call the \absent values semantics" for incomplete informa-

tion tables. In this approach we assume that objects may be partially described not only

because of our imperfect knowledge, but also because it is de�nitely impossible to describe

them on all the attributes. For instance, it is impossible to give a colour to a transparent

glass, or to make an examination of a patient su�ering a speci�c allergy. Therefore, we do

not consider the unknown attribute values as uncertain, but as \non existing" and we do

not allow to compare unknown values.

Using this interpretation each object may have a more or less complete description,

depending on how many attributes have been applied. From this point of view an object

x can be considered as similar to another object y only if they have the same known

attribute values. Such a relation will not be symmetric since if one object has a more

complete description than the other, the inverse relation will not hold. More formally,

denoting the unknown attribute value as �, given an information table IT = (A;C) and a

subset of attributes B � C we introduce 8x; y 2 A�A a similarity relation S as follows:

S(x; y) , 8cj 2 B such that cj(x) 6= �; cj(x) = cj(y)

.

It is easy to observe that such a relation although not symmetric is transitive. The

relation S is a partial order on the set A. Actually it can be seen as a representation of

the inclusion relation since we can consider that \x is similar to y" i� the \the description

of x" is included in \the description of y". We can now introduce for any object x 2 A

two sets:

R(x) = fy 2 A j S(y; x)g the set of objects similar to x;

R�1(x) = fy 2 A j S(x; y)g the set of objects to which x is similar.

Clearly R(x) and R�1(x) are two di�erent sets. We can now introduce our de�nitions

for the B-lower and B-upper approximation of a set � (denoted by �B and �B) as follows:

�B = fx 2 AjR�1(x) � �g

�B =
[
fR(x)jx 2 �g

In other words, the B-lower approximation of a set � contains all objects which have

objects similar to them belonging to �. On the other hand, the B-upper approximation

contains all objects which are similar to an object in �.

Comparing our approach with the tolerance relation based approach we can state the

following result:

Theorem 4.1 Given an information table IT = (A;C) and a set �, the upper and lower

approximations of � obtained using the similarity relation are a re�nement of the ones

obtained using the tolerance relation.
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Proof. Denote as �T

B
the lower approximation of � using the tolerance approach

and �S

B
the lower approximation of � using the similarity approach, �B

T
and �B

S
being

the upper approximations respectively. We have to demonstrate that: �T

B
� �S

B
and

�B

S
� �B

T
.

By de�nition of relations S and T we have that the conditions for which the relation S

holds are a subset of the conditions for which the relation T holds. Thus, if (x; y) 2 S then

(x; y) 2 T or 8x; y S(x; y)!T (x; y). Therefore: 8x R(x) � I(x) and R�1(x) � I(x).

1. �T

B
� �S

B
. By de�nition �T

B
= fx 2 AjI(x) � �g and �S

B
= fx 2 AjR�1(x) � �g.

Therefore if an object x belongs to �T

B
we have that IB(x) � � and since R�1(x) �

I(x) we have that R�1(x) � � and therefore the same object x will belong to �S

B
.

The inverse is not always true. Thus the lower approximation of � using the non

symmetric similarity relation is at least as rich as the lower approximation of � using

the tolerance relation.

2. �B

S
� �B

T
. By de�nition �B

S
= [x2�R(x) and �B

T
= [x2�I(x) and since R(x) � I(x)

the union of the sets R(x) will be a subset of the union of the sets I(x). The inverse is

not always true. Therefore the upper approximation of � using the non symmetric

similarity relation is at most as rich as the upper approximation of � using the

tolerance relation.

Intuitively speaking, since the relation S is a subset of relation T , tolerance classes of

elements in A will be \wider" than the respective similarity classes. Thus, approximations

based on relation T are less precise than approximations based on relation S.

Continuation of Example 2.1 Let us come back to the example introduced in section

2. Using the complete set of attributes C we have the following results:

R�1(a1) = fa1g R(a1) = fa1; a11; a12g,
R�1(a2) = fa2; a3g R(a2) = fa2; a3g,
R�1(a3) = fa2; a3g R(a3) = fa2; a3g,
R�1(a4) = fa4; a5g R(a4) = fa4; a5; a11g,
R�1(a5) = fa4; a5g R(a5) = fa4; a5; a11g,
R�1(a6) = fa6g R(a6) = fa6g,
R�1(a7) = fa7; a9g R(a7) = fa7g,
R�1(a8) = fa8g R(a8) = fa8g,
R�1(a9) = fa9g R(a9) = fa7; a9; a11; a12g,
R�1(a10) = fa10g R(a10) = fa10g,
R�1(a11) = fa1; a4; a5; a9; a11; a12g R(a11) = fa11g,
R�1(a12) = fa1; a9; a12g R(a12) = fa11; a12g

From which we can deduce that:

�C = fa1; a10g, �C = fa1; a2; a3; a4; a5; a7; a10; a11; a12g,
	C = fa6; a8; a9g, 	C = fa2; a3; a4; a5; a6; a7; a8; a9; a11; a12g.

As expected the new approximations are more informative than the tolerance based

ones. Moreover, we �nd now in the lower approximations of the sets � and 	 some of
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the objects which intuitively were expecting to be there. Obviously such an approach

is less \safe" than the tolerance based one, since objects can be classi�ed as belonging

to �B although very little is known about them (e.g. the object a10). However, within

the \absent values" semantic, we do not consider a partially described object as \little

known", but as \known" just on few attributes. From this point of view there are no

objects in A which could be similar to the object a10 because there is no other object with

the same known values. Therefore, we can classify a10 into the B-lower approximation of

�. Absent values semantics allows us to make a kind of \non monotonic classi�cation",

in the sense that the classi�cation is defeasible when new information is added, such that

an object will have a more complete description (resulting in a di�erent class).

Let us consider the concept of a reduct using the similarity relation. The subset B0 of B

is a reduct with the respect of classi�cation Y if it is a minimal subset of attributes B that

keeps the same lower approximation of the classi�cation Y. Let us observe that according

to de�nition of the relation, an object \totally unknown" (i.e. having unknown values for

all attributes) is not similar to any other object. If we eliminate one or more attributes

which will make an object to become \totally unknown" on the remaining attributes, we

lose relevant information for the classi�cation. We can therefore conclude that all such

attributes have to be in the reducts. In Example 1 there is one reduct fc1; c2; c4g - it leads

to the same classes R�1(x) and R(x) as using all attributes.

While de�ning the decision rule we employ classes R(x). The decision rule is de�ned

as s ! t (where s = ^j(cj = v) and t = (d = w)). The certain rule is true if for each

object x satisfying s its class R(x) � [t]. The condition part cannot contain redundant

conditions. This way of de�ning the decision rule follows the semantics of the rules dis-

cussed in the original version of similarity approach [S lowi�nski and Vanderpooten, 1997,

S lowi�nski and Vanderpooten, 2000]. Moreover, it is consistent with our idea of \non-

monotonic classi�cation", i.e. we classify objects which are as similar as possible to a

given rule although this might not be the safest conclusion.

The following certain decision rules can be generated from the example of the infor-

mation table:

(c1 = 1) ! (d = �)

(c3 = 1)^(c4 = 0) ! (d = �)

(c1 = 3)^(c4 = 0) ! (d = �)

(c2 = 3)^(c4 = 1) ! (d = 	)

(c2 = 0) ! (d = 	)

(c3 = 0) ! (d = 	)

The absent value semantics gives more informative decision rules than tolerance based ap-

proach. Nevertheless these two di�erent approaches (the tolerance and the non symmetric

similarity) appear to be two extremes, in the middle of which it could be possible to use

a more 
exible approach. We will present such an approach in the next section.

5 Valued tolerance relations

5.1 Motivations

Let us consider the objects a1, a11 and a12 in the illustrative example. For both the

tolerance (T ) relation approach and the non symmetric (S) similarity relation approach
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we have:

T (a11; a1); T (a12; a1); S(a11; a1); S(a12; a1):

However we may desire to express the intuitive idea that a12 is \more similar" to a1
than a11 or that a11 is \less similar" to a1 than a12. This is due to the fact that in the

case of a12 only one attribute value is unknown and the rest all are equal, while in the

case of a11 only one value is equal and the rest are unknown. We may try to capture such

a di�erence using a valued tolerance relation.

The reader may notice that di�erent types of valued tolerance (or similarity) can de-

�ned using di�erent comparison rules. Moreover a valued tolerance (or similarity) relation

can be de�ned also for complete information tables. In fact, the approach we will present

is independent from the speci�c formula adopted for the valued tolerance and can be

extended to any type of valued relation (see also [Stefanowski and Tsouki�as 2000]).

5.2 Lower and upper approximability

Given a valued tolerance relation, for each element of A we can de�ne a \tolerance class",

that is a fuzzy set with membership function being the \tolerance degree" to the reference

object. It is easy to observe that if we associate the value 1 to the non zero tolerance

degree we obtain the tolerance classes introduced in section 3.

The open problem is how to de�ne the concepts of upper and lower approximation

of a set �. The approach we will adopt in this paper considers an approximation as a

continuous valuation. Given a set � and a set Z � A we will try to de�ne the degree by

which Z approximates from the top or from the bottom the set �. Technically, we will

try to give the functional equivalent of the concepts of lower and upper approximation.

Some researchers [Dubois and Prade, 1990, Greco et al. 1998, Greco et al. 2000] made

similar considerations and explored the idea of combining fuzzy and rough sets. The

basic idea in such approaches is to consider lower and upper approximations as fuzzy

sets to which elements from the universe of discourse may more or less belong. However,

our approach is di�erent. We consider the power set 2A as a fuzzy set both as far as

the lower and upper approximation is concerned. Each subset of A may be a lower or

upper approximation of �, but to a di�erent degree which we denote as \lower (upper)

approximability" (such an approach has been inspired by the work of [Kitainik, 1993]).

Therefore, we need to de�ne for each subset Z of A its degree of lower (upper) ap-

proximation for a given set � with respect to a set of attributes B. For this purpose we

need to translate in a functional representation the usual logical connectives of negation,

conjunction etc. (in the following x; y represent membership degrees).

1. A negation is a function N : [0; 1] 7! [0; 1], such that N(0) = 1 and N(1) = 0. An

usual representation of the negation is N(x) = 1 � x.

2. A T -norm is a continuous, non decreasing function T : [0; 1]2 7! [0; 1] such that

T (x; 1) = x. Clearly a T -norm stands for a conjunction. Usual representations of

T -norms are:

- the min: T (x; y) = min(x; y);

- the product: T (x; y) = xy;

- the  Lukasiewicz T -norm: T (x; y) = max(x+ y � 1; 0).
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3. A T -conorm is a continuous, non decreasing function S : [0; 1]2 7! [0; 1] such that

S(0; y) = y. Clearly a T -conorm stands for a disjunction. Usual representations of

T -conorms are:

- the max: S(x; y) = max(x; y);

- the product: S(x; y) = x+ y � xy;

- the  Lukasiewicz T -conorm: S(x; y) = min(x + y; 1).

If S(x; y) = N(T (N(x); N(y))) we have the equivalent of the De Morgan law and we

call the triplet hN;T; Si a De Morgan triplet. I(x; y), the degree by which x may imply y

is again a function I : [0; 1]2 7! [0; 1]. However, the de�nitions of the properties that such

a function may satisfy do not make the unanimity. Two basic properties which could be

required are:

- the �rst claiming that I(x; y) = S(N(x); y) translating the usual logical equivalence

x!y=def:x_y,

- the second claiming that whenever the membership degree x is not greater than the

membership degree y, then the implication should be true (x � y , I(x; y) = 1).

It is almost impossible to satisfy both these two properties. In few cases where it hap-

pens other properties are not satis�ed (for an excellent discussion see [Dubois et al., 1991].

Given a set of objects Z � A, a subset of attributes B � C and a set � � A the usual

de�nitions of lower and upper approximations are:

1. Z = �B , 8 z 2 Z; �B(z) � �,

2. Z = �B , 8 z 2 Z; �B(z) \ � 6= ;.

where �B(z) is the \indiscernibility (tolerance, similarity etc.)" class of element z created

on the basis of the subset of attributes B.

The functional translation of such de�nitions is straightforward. Considering that,

8 x �(x) =def Tx�(x);

9 x �(x) =def Sx�(x);

� � 	 =def Tx(I(��(x); �	(x)));

� \	 6= ; =def 9 x �(x)^ (x) =def Sx(T (��(x); �	(x))) we get:

1. ��B
(Z) = Tz2Z(Tx2�B(z)(I(RB(z; x); x̂))).

2. ��B (Z) = Tz2Z(Sx2�B(z)(T (RB(z; x); x̂))).

where:

��B
(Z) is the B-lower approximability of � by set Z;

��B(Z) is the B-upper approximability of � by set Z;

�B(z) is the tolerance class of element z;

T; S; I are the functions previously de�ned;

RB(z; x) is the membership degree of element x in the tolerance class of z (at the same

time it is the valued tolerance relation between elements x and z for attribute set B; in

our case RB(z; x) = Tj2BRj(z; x));

x̂ is the membership degree of element x in the set � (x̂ 2 f0; 1g).
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An interesting property of lower approximability is that its value decreases as the

number of attributes considered decreases. More formally:

Proposition 5.1 8Z � A; B̂ � B)��
B̂

(Z) � ��B
(Z).

Proof.

Since RB(z; x) = Tj2BRj(z; x), if B̂ � B then 8x R
B̂

(z; x) � RB(z; x) and therefore

8x 1�R
B̂

(z; x) � 1�RB(z; x). Then by de�nition of lower approximability the proposition

holds.

The choice of the appropriate functions for the operators N , S, T and I mainly depends

on the semantics we associate to the valued tolerance relation. If the tolerance relation is

valued because we associate a possibility distribution to this relation, then we will choose

operators generated by the min T-norm. If we associate a probability distribution, then

we will use the product T-norm, etc.

6 On the use of valued tolerance

6.1 De�ning approximations

Continuation of Example 2.1 Assuming that the set of possible values on each attribute

is discrete, we make the hypothesis that there exists a uniform probability distribution

among such values (i.e., all values have the same probability to be associated to an element

x 2 A). Such an hypothesis (although sound) is arbitrary, but helps the presentation of

our approach. Consider an attribute cj in an information table IT = (A;C) and associate

to it the set Ej = fe1
j
; � � � em

j
g of all the possible values of the attribute. Given an object

x 2 A, the probability that cj(x) = ei
j

is equal to 1=jEj j. Therefore, for any two objects

x; y 2 A and an attribute cj, if cj(y) = ei
j
, the probability Rcj

(x; y) that x is similar to y

on the attribute cj is 1=jEj j. Moreover, if both values are unknown, then the probability

Rcj
(x; y) that x is similar to y on the attribute cj is 1=jEj j

2. Obviously, if both values are

known and di�erent, then the probability that x and y are similar is 0.

On this basis we can compute the probability that two objects are similar to each other

on a set of attributes C as the joint probability RC that the values of the two elements

are the same on all such attributes:

RC(x; y) =
Y

cj2C

Rcj
(x; y)

It is easy to observe that if the two elements have di�erent known values on at least

one attribute such a probability is 0.

Let us consider the example 2.1 where all attributes have the same set of possible values

f0; 1; 2; 3g. The probability that a12 is similar to a1 is 1=4 resulting from: Rc1
(a12; a1) =

1; Rc2
(a12; a1) = 1; Rc3

(a12; a1) = 1; Rc4
(a12; a1) = 1=4 The probability that a11 is sim-

ilar to a1 is 1=64 resulting from: Rc1
(a11; a1) = 1=4; Rc2

(a11; a1) = 1; Rc3
(a11; a1) =

1=4; Rc4
(a12; a1) = 1=4. The probability that a11 is similar to a12 is 1=256 resulting from:

Rc1
(a11; a12) = 1=4; Rc2

(a11; a12) = 1; Rc3
(a11; a12) = 1=4; Rc4

(a12; a11) = 1=16. Applying

this rule to the complete set of examples we obtain the following table 1 representing the

valued tolerance relation.
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a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

a1 1 0 0 0 0 0 0 0 0 0 1/64 1/4

a2 0 1 1 0 0 0 0 0 0 0 0 0

a3 0 1 1 0 0 0 0 0 0 0 0 0

a4 0 0 0 1 1/256 0 0 0 0 1/1024 1/1024 1/64

a5 0 0 0 1/256 1 0 0 0 0 1/1024 1/1024 1/64

a6 0 0 0 0 0 1 0 0 0 0 0 0

a7 0 0 0 0 0 0 1 1/256 1/16 0 1/1024 1/64

a8 0 0 0 0 0 0 1/256 1 0 1/1024 0 0

a9 0 0 0 0 0 0 1/16 0 1 0 1/64 1/4

a10 0 0 0 1/1024 1/1024 0 0 1/1024 0 1 1/4096 0

a11 1/64 0 0 1/1024 1/1024 0 1/1024 0 1/64 1/4096 1 1/256

a12 1/4 0 0 1/64 1/64 0 1/64 0 1/4 0 1/256 1

Table 1. Valued tolerance relation for example 2.1

If we consider object a1 and the set of attributes C, the valued tolerance relation

RC(a1; x); x 2 U will result in the vector [1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1=64; 1=4] which actually

represents the tolerance class �C(a1) of object a1. The reader may notice that the crisp

tolerance class of object a1 was the set fa1; a11; a12g which corresponds to the vector

[1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 1]. Following our \probabilistic approach" we may choose for T

and S the product representation, while for I we will satisfy the De Morgan property thus

obtaining:

T (x; y) = xy;

S(x; y) = x+ y � xy;

I(x; y) = 1 � x+ xy;

Clearly our choice of I(x; y) does not satisfy the second property of implication. How-

ever, the reader may notice that in our speci�c case we have a peculiar implication from

a fuzzy set (�B(z)) to a regular set (�), such that x̂ 2 f0; 1g. The application of any

implication satisfying the second property will reduce the valuation to the set f0; 1g and

therefore the degree ��B
(Z) will collapse to f0; 1g (i.e. to the usual lower approximation).

We obtain (for attributes B � C):

��B
(Z) =

Y

z2Z

Y

x2�B(z)

(1 �RB(z; x) +RB(z; x)x̂)

��B (Z) =
Y

z2Z

(1 �
Y

x2�B(z)

(1 �RB(z; x)x̂))

In order to explain computations in our example, consider the set � and as the set Z

consider the object a1. We are going to compute the degree by which a1 is a lower (upper)

approximation of �. We have (B = C):

��C
(a1) =

Y

x2�C(a1)

(1 �RC(a1; x) +RC(a1; x)x̂)

��C (a1) = (1 �
Y

x2�C(a1)

(1 �RC(a1; x)x̂))
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whereRC(a1; x) was previously introduced and x̂ takes the values 1; 1; 0; 1; 0; 0; 1; 0; 0; 1; 0; 1

(membership to set �).

We obtain ��C
(a1) = (1 � 1 � 1 � 1) � (1 � 1=64 + (1=64) � 0) � (1 � 1=4 + 1=4 � 1) = 0:984

and ��C (a1) = (1 � (1 � 1 � 1) � (1 � (1=64) � 0) � (1 � (1=4) � 1)) = 1. The fact that lower

approximability of � by a1 is less than 1 (although a1 belongs to �) is due to the presence

of element a11 (not belonging to �) which could be similar to a1. However, since the

probability that the two objects have the same values is very low (1/64), as we expect, the

in
uence of such an element is \marginal". In the same way we may compute ��C
(a12) =

0:73 and ��C (a12) = 1, from which we can obtain ��C
(a1; a12) = 0:984 � 0:73 = 0:71 and

��C (a1; a12) = 1 and so on for any subset of U . The degrees by which single objects

approximate sets � and 	 are presented in Table 2.

��C
(z) ��C (x) �	C

(z) �	C (x)

a1 0.984 1 0 0.016

a2 0 1 0 1

a3 0 1 0 1

a4 0.995 1 0 0.005

a5 0 0.020 0.98 1

a6 0 0 1 1

a7 0.933 1 0 0.067

a8 0 0.005 0.995 1

a9 0 0.297 0.703 1

a10 0.998 1 0 0.002

a11 0 0.022 0.978 1

a12 0.735 1 0 0.265

Table 2. Lower and upper approximability of � and 	 by each element of A.

Let us notice that in the valued tolerance relation, unlike the previous approaches,

each subset of objects Z could be a lower (upper) approximation of the given set but

with a di�erent degree. For instance, degrees for one element subsets of A to be C-lower

approximation of � are presented in Table 2., examples of two element subsets are fa1; a4g
with degree ��C

(a1; a4) = 0:984 �0:995 = 0:979, fa1; a7g with ��C
(a1; a7) = 0:984 �0:933 =

0:918, fa1; a10g with ��C
(a1; a10) = 0:984 � 0:998 = 0:928 fa4; a10g with ��C

(a4; a10) =

0:995 � 0:998 = 0:993. Then, an example of three element C-lower approximation of � is

fa1; a4; a10g with degree ��C
(a1; a4; a10) = 0:984 �0:995 �0:998 = 0:974, an example of four

element approximation is fa1; a4; a7; a10g with degree ��C
(a1; a4; a7; a10) = 0:984 � 0:995 �

0:933 � 0:998 = 0:909, �ve element is fa1; a4; a7; a10; a12g with degree 0.670 , etc.

In practice, the user can be interested only in a part of these subsets which gives him

a possibility to approximate the set � with high enough degrees. So, (s)he could express

(her)his level of acceptance using a threshold �. Such a threshold should represent the

minimum value of the degree for any subset in order to be an approximation of the given

set. This value generally, depends on the speci�city of the analysed problem and the

experience of the user.

It is possible to choose a set Z as a lower (upper) approximation of set � as follows:
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Step 1 take all objects z for which �(�(z)!�) = 1 (�(�(z)\�) = 1); intuitively these are

objects which have ��B
(z) = 1 and ��B (z) = 1;

Step 2 then add objects in a way such that �(�(z)!�) > k (�(�(z) \ �) > k), (for

decreasing values of k, let us say 0.99, 0.98 etc.), thus obtaining a family of sets with

decreasing lower (upper) approximability ��B
(Z) (��B (Z));

Step 3 �x a minimum level � enabling to accept a set Z as a B-lower (upper) approximation

of � and choose the maximal set Z such that ��B
(Z) � � (��B (Z) � �).

Let us also comment that in some situations, the user may be interested in choosing

only one subset from the family of subsets having degree over the acceptance threshold �.

For instance, in step 3 the user can choose for the lower approximation, the largest set of

objects Z having degree ��B
(Z) � �.

The concept of reduct can also be generalised in the valued tolerance case. Given

the decision table (A;C) and the partition Y = �1;�2; : : :�n, the subset of attributes

B0 � B � C is a reduct i� it does not reduce the degree of lower approximation obtained

with B, i.e. if Z1; Z2; : : : ; Zn is a family of lower approximations of �1;�2; : : :�n then

8i=1;:::;nZi ��iB
(Zi) � ��iB0

(Zi).

6.2 Decision rules induction

In order to induce decision rules from the decision table we may accept rules with a

\credibility degree" derived from the fact that objects may be similar to the condition

part of the rule only to a certain degree, besides the fact that the implication in the

decision part is also uncertain. We give the following representation for a rule �i:

�i =def

^

cj2B

(cj(ai) = v) ! (d = w)

where: B � C is a subset of condition attributes used in the condition part or rule �i, v

is the value of condition attribute cj , w is the value of decision attribute d.

We may use the valued relation sB(x; �i) in order to indicate that element x \supports"

rule �i or that, x is similar to some extend to the condition part of rule �i on attributes

B. The relation s is a valued tolerance relation de�ned exactly as relation R. We denote

as S(�i) = fx : sB(x; �i) > 0g and as W = fx : d(x) = wg. In a case of crisp relation �i is

a decision rule i�:

8 x 2 S(�i) : �B(x) �W

Shifting in the valued case we compute a credibility degree for any rule �i calculating the

truth value of the previous formula which can be rewritten as:

8 x; y s(x; �i)!(R(x; y)!W (y)). We get:

�(�i) = Tx2S(�i)(I(sB(x; �i); Ty2�B(x)(I(��B(x)(y); �W (y)))))

where: ��B(x)(y) = RB(x; y) and �W (y) 2 f0; 1g.
Finally it is necessary to check whether B is a non-redundant set of conditions for

rule �i, i.e. to look if it is possible to satisfy the condition: 9 B̂ � B : �(�B̂
i

) � �(�B
i

).
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We can equivalently state that if there is no B̂ satisfying the condition then B is a \non

redundant" set of attributes for rule �i.

While inducing decision rules we need to pay attention to a number of observations:

1. When choosing objects as candidates for inducing a decision rule for a class � it is

natural to choose objects with the maximal lower approximability of set �.

2. However, in presence of unknown values, such lower approximability should be

computed considering only attributes where the candidate object is completely de-

scribed (see also Proposition 5.1). Further on, search for non-redundant sets of

conditions can be performed in a similar way as in local reducts approach (see

[Skowron, 1993, Komorowski et al., 1999]).

3. Finally, the user should �x a credibility threshold � for the induced rules in order to

prevent proliferation of rules considered to be\unsafe" for the classi�cation purposes.

Of course, a sensivity analysis could be computed around such a threshold. Moreover,

notice that given a credibility threshold for the acceptance of rules, objects having

lower approximability below such threshold cannot be used as candidates to create

conditions of rules.

4. A problem remains when rules are induced from a reduced set of conditions. From

a rule �i with credibility �(�i), new rules could be still generated with shortest

condition part, but having lower credibility still over the allowed threshold.

Let us notice that the problem of inducing all rules with accepted credibility from

examples in the information table is NP-complete in the worst case (see the corresponding

problem of looking for reducts in rough sets theory [Komorowski et al., 1999]. However,

�xing suÆcient high value of credibility threshold may reduce the search space.

Continuation of Example 2.1.

Consider again the example of the incomplete information table used in this paper and let

us come back to the probabilistic form of a valued tolerance relation introduced before.

Since we have chosen for the functional representation of implication the satisfaction of

De Morgan law and for T -norms the product, we get:

�(�i) =
Y

x2S(�i)

(1 � sB(x; �i) + sB(x; �i)
Y

y2�B(x)

(1 � ��B(x)(y) + ��B(x)(y)�W (y)))

where sB(x; �i) will represent now the \support" degree of element x to the rule �i.

Let us �x the value of the acceptance threshold � equal to 0.9. According to it, for the

decision class � and all attributes C only objects a1; a4; a7; a10 could be taken into account

(see Table 2). However, if we consider only the attributes where objects are completely

de�ned we get ��c2;c4
(a4) = 0; ��c1;c4

(a7) = 0; ��c1
(a10) = 0:422) thus restricting our

interest only to element a1 with ��C
(a1)=0.98. Therefore, the only candidate for the rule

is: �1 : (c1 = 3)^(c2 = 2)^(c3 = 1)^(c4 = 0)!(d = �)
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In order to compute the credibility degree of this rule we need the values of s(x; �1)

and Iy(��(x)(y); ��(y)) which are presented in the following table:

s(x; �1) Iy(��(x)(y); ��(y))

a1 1 0:984

a11 0:0156 0

a12 0:25 0:735

The �rst column indicates the tolerance degree of each element with respect to the

condition part of the rule, while the second column indicates the cumulative implication

degree for each element in the tolerance class of the element in the line. Objects a2; : : : ; a10
have degree s(x; �i) = 0 so we can omit them since they reduce to value 1. Thus, we get

�(�1) = (1 � 1 + 1 � 0:984) � (1 � 0:156 + 0:156 � 0) � (1 � 0:25 + 0:25 � 0:735) = 0:905

However, the condition part of rule �1 is redundant as the rule could be transformed

to �1 : (c1 = 3)^(c3 = 1)^(c4 = 0)!(d = �) with degree �(�1) = 0:905.

This rule is supported by the set of objects S(�1) = fa1; a11; a12g. It is not possible to

reduce it more as it leads to a rapid decrease of the credibility degree.

In the case of set 	 we can start from considering objects a5; a6; a8; a11. Again, com-

puting �	B
(x), for B being the set of attributes where x is completely described, we

restrict our interest only to object a6. So we take it as a candidate for the rule and we

get: �2 : (c1 = 2)^(c2 = 3)^(c3 = 2)^(c4 = 1)!(d = 	) with degree �(�2) = 1:0. The

condition part is not minimal and can be transformed to the following:

�2 : (c1 = 2)^(c2 = 3)^(c4 = 1)!(d = 	) with degree �(�2) = 1:0 and supporting object

a6.

The decision rule �2 could have more reduced condition parts if one does not want to

maintain strictly �	B
(x)=1. We can relax this requirement and look for more reduced

rules if their credibility levels are not lower than a �xed threshold � . Proceeding in this

way, we can induce from the decision table more decision rules:

�02 : (c1 = 2)^(c4 = 1)!(d = 	) with �(�02) = 0:931

�03 : (c2 = 3)^(c3 = 2)^(c4 = 1)!(d = 	) with �(�03) = 0:969

where the new rules �02 and �03 are obtained relaxing credibility threshold for rule �2 to

0.9.

Then, if the user may relax the credibility threshold to 0.87, then the third rule can

be replaced by two others:

�003 : (c2 = 3)^(c4 = 1)!(d = 	) with �(�003) = 0:879

�004 : (c2 = 3)^(c3 = 2)!(d = 	) with �(�004) = 0:879

As one can notice we obtained more rules than in the approach based on a simple

tolerance relation. On the other hand, this set is more limited than in the case of absent

value semantics.

7 Computational experiments

In the valued tolerance relation approach the user can control the produced approxima-

tions and rule sets by some threshold levels. In general, such thresholds should re
ect
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(her)his knowledge of the problem and data. On the other hand, it is interesting to per-

form a computational study on some larger data sets where we can change systematically

threshold values and observe their in
uence on lower, upper approximations and decision

rules. We have undertaken such experiments.

In the case of lower and upper approximations we are using the same value of threshold

� for both approximations of each decision class at the same moment. Moreover we choose

always the largest sets of elements Z as lower approximations.

We used 4 real life public data sets coming from machine learning repository at Uni-

versity of California [Blake and Merz, 1998]. They contained missing values - some data

were slightly modi�ed to obtain non-numerical attributes. One additional real-life data

set, named nbuses, was coming from known rough sets application [S lowi�nski et al., 1996].

Finally, we created an arti�cial data set Art1 consisting of two classes with non empty

boundary region (each part having approximately the same cardinality of objects). This

data set was modi�ed by introducing 10%, 14%, 18%, 22%, 26% and 30% randomly chosen

missing values. The characteristics of used data sets are summarised in Table 3.

Number Number Number Number

Data set of examples of attributes of decision of missing

classes values

Art1 50 5 2 0%

Art2 50 5 2 10%

Art3 50 5 2 14%

Art4 50 5 2 18%

Art5 50 5 2 22%

Art6 50 5 2 26%

Art7 50 5 2 30%

nbuses 76 8 2 10%

bridges 108 8 6 6%

credit 139 9 2 1%

breast cancer 285 8 2 6%

hungarian 183 12 2 18%

Table 3. Data sets considered

Further on, we decided to performed a comparative study of using the valued tolerance

relation and tolerance relation applied to the same data. Results are summarised in the

Tables 4,5 and 6. Tables 4 and 5 show the sum of cardinalities of approximations for each

decision classes (expressed in numbers of objects).
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tolerance valued tolerance relation

Data set relation 1.0 0.9 0.8 0.7 0.6

Art1 35 35 35 35 35 35

Art2 31 31 33 33 33 36

Art3 28 28 32 33 36 36

Art4 26 26 30 32 35 35

Art5 20 20 26 31 32 34

Art6 17 17 23 27 32 33

Art7 14 14 19 24 28 30

nbuses 73 73 74 76 76 76

bridges 60 60 68 72 78 80

credit 117 117 118 120 122 122

breast cancer 250 250 261 267 270 272

hungarian 168 168 183 183 183 183

Table 4. Cardinalities of lower approximations for each decision class;

for valued tolerance relation various levels of threshold � are listed

tolerance valued tolerance relation

Data set relation 1.0 0.9 0.8 0.7 0.6

Art1 65 65 65 65 65 65

Art2 69 52 53 53 53 54

Art3 72 50 50 51 51 51

Art4 74 50 50 51 51 52

Art5 80 50 51 51 51 53

Art6 83 50 50 51 51 51

Art7 86 50 50 50 51 52

nbuses 79 76 76 76 76 76

bridges 190 133 133 134 134 134

credit 161 152 152 153 153 153

breast cancer 320 285 285 285 285 285

hungarian 198 183 183 183 183 183

Table 5. Cardinalities of upper approximations for each decision class;

for valued tolerance relation various levels of threshold � are listed
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tolerance valued tolerance relation

Data set relation 1.0 0.95 0.9 0.85 0.8 0.7

Art1 15 15 - 15 - 15 15

Art2 6 6 - 10 - 15 15

Art3 3 1 - 9 - 10 12

Art4 2 1 - 8 - 12 14

Art5 0 0 - 6 - 9 9

Art6 0 0 - 4 - 6 7

Art7 0 0 - 3 - 5 5

nbuses 96 142 228 242 251 - -

bridges 110 84 120 148 170 - -

credit 389 347 435 501 567 - -

breast cancer 791 817 875 902 934 - -

hungarian 594 562 598 653 676 - -

Table 6. Number of decision rules induced

(\-" stands for a non performed experiment)

Let us shortly summarise and comment the obtained results. Changing value of the

threshold � (the limit imposed in order to accept a set as a lower approximation) increased

the cardinalities of lower approximations while upper approximation were unchanged (or

slightly changed) in most cases. It is interesting to notice that almost for all data sets the

increases of lower approximation cardinality was greatest for high levels of the threshold

- intervals 1.0-0.9 or 1.0-0.8 depending on the data set. Moreover, the increase of the

cardinality of the lower approximation was higher for data with a large number of missing

values.

Table 6 presents results of the rule induction. For both compared approaches we

induced all rules, i.e. certain rules in the case of the tolerance relation and all rules with

credibility over the acceptance threshold � . Let us comment that in the case of data Art1-

Art7 we used values of threshold � similar to those of threshold �. For the other data,

the structure of decision rule sets was changing faster for higher values of � , so additional

threshold values 0.95 and 0.85 were added.

Decreasing the threshold � increased the number of induced rules. However, large

modi�cations of this threshold may produce too many rules, especially for real-life data.

The comparison of using tolerance and valued tolerance relation showed that results

based on the valued relation were more informative. For thresholds lower than 1.0 more

objects were assigned to lower approximations. Sums of cardinalities of upper approx-

imations created by the valued tolerance relation were always smaller than in a case of

tolerance relation. Moreover, choosing a proper acceptance level for the credibility of rules

may result in increasing the number of induced rules. It seems to be particular useful for

data sets with large number of missing values (e.g. Art3�Art7) where tolerance relation

is very restrictive. The obtained results show once again that the valued tolerance relation

is more 
exible and informative approach than the crisp tolerance approach.

8 Conclusions

Rough sets theory has been conceived under the implicit hypothesis that all objects in

a universe can be evaluated using a given set of attributes. However, in some situations
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attribute values may be unknown either because they are not available at a given time

or because de�nitely impossible to obtain. In our paper we introduce two di�erent se-

mantics in order to distinguish such situations. \Missing values" semantics implies that

not available information could always become available. In order to make \safe" classi-

�cations and rule induction we might consider that such missing values could be similar

to every possible values of the given attribute. The tolerance relation (which is re
exive

and symmetric, but not transitive) captures in a formal way such a case. \Absent values"

semantics implies that unknown attribute values are not available and cannot be used in

comparing objects. So, classi�cation and rule induction should be performed with the

existing information since the absent values could never become available. Similarity rela-

tions (which in this case are re
exive and transitive, but not symmetric) are introduced in

our paper in order to formalise such an idea. We demonstrate that our approach always

lead to more informative results than the tolerance relation based approach (although it

is less safe).

A third approach is based on the use of the valued tolerance relation. The valued

relation could appear for several reasons not only because of the non available information.

In fact, the approach presented here has a more general validity. However, in this paper we

limit ourselves to discussing case of the missing attribute values. The functional extension

of the concepts of the upper and lower approximation is introduced so that a degree of

lower (upper) approximation can be associated to any subset of the universe. Further on,

such a functional extension enables to compute a credibility degree for any induced rule.

The logical analysis and computational experiments show that with such an approach

it is possible to generate more decision rules (and/or simpler ones) than for the simple

tolerance approach. Fixing a credibility threshold, the user can prevent the proliferation

of \unsafe" decision rules.

Further research directions include, but are not limited to:

� a further analysis of rules properties and induction algorithms for the non symmetric

similarity relation based approach,

� an analysis of the non-monotonic behaviour of the classi�cation obtained for the non

symmetric similarity relation based approach (e.g. what could happen if an absent

value becomes available),

� the introduction of other examples of valued tolerance relations, besides the proba-

bility based one introduced as an example in the paper,
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