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Abstract

In this paper we present a general framework for the comman$ intervals when pref-
erence relations have to established. The use of intenvalsdier to take into account im-
precision and/or uncertainty in handling preferences i kvown in the literature, but a
general theory on how such models behave is lacking. In therpse generalise the con-
cept of interval (allowing the presence of more than two {®inWe then introduce the
structure of the framework based on the concept of relatbsitipn and component set.
We provide an exhaustive study of 2-point and 3-point irgkneomparison and show the
way to generalise such results to n-points intervals.
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1 Introduction

Dealing with preferences is an important issue in many figldsiding Computer
Science and Artificial Intelligence (see [6], [8], [12]). eneral, preferences are
represented by binary relations defined on a4¢finite or infinite) of alterna-
tives to be compared or evaluated. The classical theory efence modelling
considers two relations, strict prefereneeand indifference (for a more general
presentation on preference modelling see [21], [24]). Sudpresentation admits
the existence of a complete preference strucileghe decision maker is supposed
to be able to compare any pair alternatives (for all objeghdb in A, aPb or bPa

or alb holds). Other types of preference structures have beemestudthe liter-
ature, either partial ones [9], [10], [32] and/or admittimgre relations [7], [23],
[25], [36], [31], [33], [34].

In this paper we focus on complete preference structuresetkfin a finite set

A admitting two binary relationg’ and /. P is assumed to be an asymmetric re-
lation and! is defined as the symmetric complementfaf The union of P and
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I is denoted byR (by construction® is complete and reflexive and the relation
P NI is empty) and the affirmationRb holds if and only if ‘ is at least as good
asb”. Among others, completeness is a crucial property in otdewbtain a nu-
merical representation of the preference structure. Ity &@loiting preferences
requires naturally a model and a majority of existing modeésquantitative ones,
the quantification of preferences rendering easier theekdar optimal or near-
optimal decisions. In this perspective, a number of contrdns in decision theory
are based on the representational theory of measuremangliped by Scott and
Suppes ([26]) and presented in details in the three-volwehkysKrantz et al. [14],
Suppes et al. [29] and Luce et al. [16]. Generally speakipgesentation theorems
represent a crucial aspect in handling preferences. Cemsiceccommender system
trying to understand the preference structure of a useugfira number of prefer-
ential statements. If the user claims thas indifferent tob and this indifferent te,
buta is better than, then we know that we need to use a numerical representation
using intervals instead of single numbers in order to hasdtdh preferences. On
the other hand consider an agent who is trying to comparetshjéhose values (on
some attribute) are expressed impreciselis between 10 and 12,is between 11
and 14 ¢ is between 13 and 15. How do we compare such objects? Thepeedre
erence structures (in this case interval orders) who altoestablish a preference
amonga, b andc.

Linear orders and weak orders are well known complete strest A linear order
consists of an arrangement of objects from the best one tadingt one without
any ex aequo while a weak order defines the indifferenceioalas an equivalence
relation (reflexive, symmetric and transitive). A weak ordeindeed a total or-
der of the equivalence (indifference) classesioSuch preference structures have
a limited representation capacity. In particular, a welbwn problem with linear
orders or weak orders is that the associated indifferenaBae is necessarily tran-
sitive and such a property may be violated in the presenclresholds as in the
famous example given by Luce [15] on a cup of coffee. Difféeistructures have
been introduced for handling such cases. Indeed, in camtrése strict preference
relation, the indifference relation induced by such stites is not necessarily tran-
sitive. Semiorders may form the simplest class of such &iras and they appear
as a special case of interval orders. The axiomatic anabfsihat we call now
interval orders has been given by Wiener [37], then the tex@mtiorders” has been
introduced by Luce [15] and many results about their repriad®ns are available
in the literature (for more details see [10], [22]). Fishib(11]) has distinguished
nine nonequivalent ordered sets defined as a generaligatisamiorders (using
preference structures allowing only strict preference iaddference). These are
interval orders, split semiorders, split interval ordeéoterance orders, bitolerance
orders, unit tolerance orders, bisemiorders, semitigastders and subsemitran-
sitive orders.

The use of simple numbers appears insufficient for the reptason of ordered
sets having a non transitive indifference relation. Fotanse, the numerical repre-



sentation of an interval order makes use of intervals in atlvayeach alternative
is represented by an interval (with a uniform length in theecaf semiorders)
and is said preferred to another alternative if and onlysifassociated interval is
completely to the right of the other’s interval. It is knowmat a majority of the

structures belonging to the classification given by Fishi§{ir1]) has a numerical
representation using intervals.

However, the literature lacks a systematic study of sualcsires. Indeed as soon
as we allow to compare “intervals” we can accept severatifit ways to do so.
Just consider the case of the well known model of intervagovehere strict pref-
erence corresponds to the case where an interval is “coafyptetthe right” (in the
sense of the reals) of the other one. We could also considsriespreference the
case where an interval is just to the right of the other onpitleesaving a non empty
intersection. The problem becomes more complicated if weitzthe existence of
“intermediate points” within an interval. The number of pilde comparisons in-
creases dramatically and we would like to have a generaldnark within which
studying them. In this paper we propose such a general frankear the study of
preference structures to be used when we compare inte®a@®bjective is to pro-
pose a systematic analysis of such structures and theirmzaheepresentations.
We generalise the concept of interval allowing, besidedwleextreme points of
an interval, the existence of a certain number of interntedaints. We call such
intervalsn-point intervals. The comparison rules on these interva@sapposed to
satisfy some hypotheses that we define at the beginning aitody.

The paper is organised as follows: Section 2 introducescbasions, Section 3

presents hypotheses on the comparison rules and numepcakentations that we
can create in our framework. Section 4 shows some generdigeslated to our

study. Section 5 makes an exhaustive study of 2-point iaterwhile Section 6

does the same for 3-point intervals. Section 7 concludepdper.

2 Relative positions

Consider a finite set of alternativeswhere each alternative of A is associated
a n-tuple of points of the real lin@&; thesen points are distinct and ranked in
increasing order w.r.t.the natural order on the reals. Su@presentation can also
be seen as an interval with— 2 interior points. Therefore we call these objéetts
point intervals”. If not otherwise mentioned, we use the same notation, &jlgic

or y, for designating an alternative or its associated inteak-point intervalz

is specified by a vector of elements{fi(z),-- -, fu(2)), with fi(z) < fii1(z),
forall z in Aandiin {1,...,n — 1}. Note that numberg;(x) are not necessarily
equally spaced. Figure 1 shows the graphical representattiann-point interval.

Since our interest focuses on the possible preferencetstescarising from the
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Fig. 1.n-point interval representation

comparison ofi-point intervals, the position of one interval with respcanother
is especially important. In case twepoint intervalsz and y have no point in
common, their relative position can be described by a tatdé¢oon2n points @
points forz + n points fory) as in the following example.

Example 1 Letx andy be two 3-pointintervals such that= (f,(x), fo(x), f3(x)),
y = (f1i(y), f2(v), f3(y)) with their relative position represented schematically in
Figure 2. The relative position of andy is described by the total orderf; (y) <

fo(y) < fi(z) < f3(y) < fa(z) < fa(2).

fle> fQJl’) fséﬂf)
flzy) f2ly) f3iy)

Fig. 2. Relative position of andy

A convenient manner of representing the relative positiomvo n-point intervals
is obtained using the-tuple of numbers(z,y) defined below.

Definition 1 (Relative position) The relative positiorp(z, y) is ann-tuple (¢ (z,y),-
o oi(my), - en(x,y)) Whereyp;(x, y) encodes the number of values of index
Jj such thatf;(z) < f;(y).

Intuitively, o(z,y) can be seen as representing to what extent the relativequosit
of = andy is close to the case of two disjoint intervals. Indeed, irecas:, y) is
the null vector,x lies entirely to the right of;: no point ofy is to the right of any
point of z. The latter case is of particular interest as will becomarchy the end
of this section. Numbep;(x, y) represents the number of points of interyahat
fi(z) must become greater than in order to reach the disjoint case.

For instance, the relative positions of thgoint intervals shown in figure 2, are:

(p(l‘ﬂy) = (17070)
oy, x) = (3,3,2).

(1)

Clearly, if we assume that andy have no points in common (i.¢;(z) # f;(y)
for all ¢, 5), giving eitherp(z, y) or o(x, y) allows us to reconstruct the weak order
on the2n points representing andy. Havingy(x,y) = (1,0,0) means that only



fi(z) lies to the left of some point representipgthe other two points of being
greater than all the points representing

It is readily seen that any vecte(z, y) = (p1(z,y), -, @i(x,y), -+, en(z,y))
with 0 < ¢;(z,y) < nandy;(z,y) > ¢11(z,y) corresponds to the relative
position of feasible:-point intervals on the real line. Indeed we have that: for al
1=1,...,n

fi(z) < fi(y) if pi(z,y) =n

fuly) < fi(x) if pi(z,y) =0 (2)

Jrgiww) W) < fi(z) < fayi-pi@y (y) Otherwise

(y
(

These simple remarks allow us to derive the following resutich we state with-
out further proof. In this result we limit ourselves to theseavhere the compared
n-point intervals have no point in common.

Proposition 1 For any vectorp(z,y) = (p1(x,y), -, 0z, y), -, pn(z,Y))
with 0 < gpl(x y) <nforalli=1,...,nandy;(z,y) > wir1(z,y) for all

1 =1,.. — 1, there is a pairzx, y of n-point intervals of the real line, with
no points |n common, such that the order on thepoints representing: and y

is uniquely determined. These two sets qoints are unique up to an increasing
transformation of the real line.

Given the relative positionp(z,y) of x with respect toy, the relative position
o(y, ) of y with respect ta: can be easily computed.

Proposition 2 Let ¢(z,y) be the relative position of the-point interval z with
respect to the n-point interva, then, foralli = 1,...,n,

{W,@ = L= Wps(oy) > (k1= D) 3R AG) = o)

iy, ) =n—|{j,¢j(x,y) > (n+1—-14)} otherwise

Proof.

We start with the proof of the second case. Using definitiamelhaveyi, ¢;(y, x) =
1L, £i(@) > £i()}, hence¥i, wi(y,x) = n — |{, f;(x) < fi(y)}|. On the other
hand, f;(z) < fily) <= (n+ 1 — ¢;(z,y)) < i (inequality 2). Replacing
fi(z) < fily) by (n +1 —14) < ¢;(z,y) in the above expression of;(y, x)
we getvi, i(y, x) = n — [{j, ¢;j(z,y) = (n +1—1)}].

In casef;(y) coincides with some point of the-point intervak, we have to add
to the previously computed value of(y, x). |

The reader can check formula 3 against Example 1 (see eguajio



The number of possible relative positionsspoint intervals grows with as stated
in the next proposition.

Proposition 3 Letz andy be twon-point intervals. The number of possible rela-
tive positionsp(z,y) is

Proof . This number is the number of linear arrangement@rodlistinct points of
the real linen of which belonging tar and the othen to y, hence the formula. This
is also the number of nondecreasing functions fidm .., n} to {0,...,n}. This
sequence of integers is known as the sequenad oéntral binomial coefficients
A000984 [27]. [

For instance, the six relative positions of 2-point intés\@an be described as fol-
lows: intervalz completely lies to the right of intervat intervalsz andy have non
empty intersection, without one being included in the otdredz lying to the right

of y; interval z is included in intervaly; and the symmetric cases of these three
situations (see Figure 8).

Table 1 shows the number of possible relative positions rigipg on number,
forn =2,3,4.

n = 2 3 4 n

(2n)!
(n)2

Relative positons 6 20 70

Table 1
Number of relative positions depending on

When alternatives are representedbgoint intervals of the real line, it is natural
to assume that some relative positions of two intervals anemepresentative of a
clear preference than others (from a cognitive and/or tinipoint of view). For
instance, in the case of two disjoint intervals, it is mokelly that we acknowledge
a strict preference than in a case where one interval isdedun the other. If the
orientation of the real axis, say from left to right, is reldto growing preference,
we will be all the more ready to say thatis preferred tay that the interval rep-
resentinge lies more to the right of the interval representindf x lies at least as
much to the right of; thenz’ lies to the right o/, we say that the relative position
o(z,y) is at least as strong agz’, y') and we denote this by(z,y) > ¢(2’,y/').

A formal definition oft> is as follows.

Definition 2 (“Stronger than” relation) Lety(z,y) andy(2’,y’) denote the rel-
ative positions of two pairs of alternatives, respectivelyy) and (z’,y’). We say
that p(z, y) is “at least as strong as’p(z’, ¢') and notep(x, y) > ¢(2’, ') if and

only if Vi € {1,...,n}, wi(z,y) < ¢i(2’,y). We denote by- the asymmetric



part of >. We say thaip(z, y) is “stronger than” p(2/, ') if and only ifp(z,y) >
e(2',y") and not(e(2',y') > p(z,y)), which is denoted by (z, y) > p(z', ).

This definition is consistent with intuition. Indeeg,(z, y) = 0 for all i means that
x lies totally to the right ofy, which is the strongest possible positionpif z, y) #
0, the smaller the value of;(x,y), the stronger the position of w.r.t. y. The
following example illustrates this further.

Example 2 Let p(z,y) and ¢(z, t) be the relative positions of the 3-points inter-
vals represented in Figure 3. We hayér,y) = (1,1,0), ¢(z,t) = (2,1,0). We
get “p(x,y) is stronger thanp(z,¢)” since1 <2, 1 < 1and0 < 0.

| .fl z)fa(z) | f3(x)
fl(:y)le(y) . f3§y)
AW R ()

Fig. 3. Example(1,1,0) > (2,1,0)

The “at least as strong dgelation > is a partial order (reflexive, antisymmetric
and transitive relation). It is not a complete relation siticere may always exist
two relative positiong andy’ for which3i, j € {1,...,n} such thatp; < ¢} and

© < 5.

It is quite natural to represent relatiénas a directed graph. We denote®@y, the
graph of all the possible relative positions of.-point intervals. InG", the nodes
represent the relative positiopsand the arcs, the relation. We denote byvG™ a
subgraph of>", Ng» the set of nodes ai™ and Ngq- the set of nodes & G™. For
the sake of getting readable graphical representationamiiporders, one often
represents the cover relation associated with a partiarofithe cover relation is
a relation on the same set of objeéfg~, but not all arcs of the graph are drawn.
There is an arc froma to b if and only if there is na: such thata > ¢ > b. This
relation contains all the information needed to reconstitue partial ordee> (add
the loops and the arcs joining the initial vertex to the finaftex of all directed
paths of the graph of the cover relation). Figure 4 represttrgt graph of the cover
relation of> for 3-point intervals G2).

If x andy are 3-point intervals without common points, the corresigmte be-
tweenp(z,y) andp(y,x) defines a symmetry of the graph in Figure 4. Using
proposition 2 we see e.g.thatz, y) = (2,0,0) corresponds te(y, x) = (3,2, 2),
o(z,y) =(2,1,0) to p(y,z) = (3,2,1) (assuming that andy have no points in
common). In general, fag-point intervals this symmetry is a transformation on the

1 By “possible” relative positions, we understand the reatpositions appearing in all
possible setgl of n-point intervals.
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Fig. 4. Graph of the cover relation of the “at least as straigelation for 3-point intervals

set of relative positions, which we cafiversion and define by adapting formula

(3):

Definition 3 For any relative positiorp in the setV-, the inverse op is denoted
by (¢)~! and is defined as follows:

(p);i'=n—|{j:¢;>n+1—1i} (4)

Proposition 4 The transformation oV that maps any relative positiop onto
its inverse() ! has the following properties:

e itisinvolutive, i.ep = ((p)~ 1)1,
¢ and antitone with respect to the partial order i.e.>¢’ implies(¢’) 1> ().

Proof. The involutive character of the transformation resultectly from the fact
thaty and(yp) ! are respectively the relative positiop&e, y) andy(y, =) for some
concreten-point intervalsr andy having no points in common. Hen¢gp) ') !
is justy(x, y) . Verifying that the transformation is antitone can be doineatly by
using formula (4). |

Partial order> defines a lattice on the set of possible relative positidgs. A
partially ordered (finite) set is a lattice if every pair oelents has a unique small-
est upper bounddin) and a unique greatest lower boumdge}. Upper and lower
bounds of a subset of relative positions are defined as fellbet, be a relative



position. We say that:

e ¢, is alower boundof the graphGG" (resp. of the subgrapiG™) if ¢, € Ng»
(resp.ps € Nsgn) and—3dp € Ngn (resp.—dp € Nggn) such thatp, > ¢;

e " is anupper boundf the graphG™ (resp. of the subgrapfiG") if ¢* € Ngn
(resp.¢* € Nggn) and—3dp € Ngn (resp.—3p € Nggn) such thatp > p*.

Notice that for every,, G™ has a unique lower bouncb{ with Vi, o, = n) and a
unique upper bounds with Vi, ¢; = 0). But a subgraph may have more than one
lower or upper bound because of the existence of incomparatides (consider
e.g. the subgraph containing nod€so0, 0), (1,0,0), (2,0,0), (1,1,0); there are
two lower bounds(2, 0,0) and(1, 1,0) and one upper boundd, 0, 0).

Considering a relative positiop, we respectively denote b+ (), D~ (¢) and
J () the set of relative positions' such thaty is at least as strong &8, which are
at least as strong as and which are incomparable o We have:

3 Preference rules for comparingn-point intervals

The main goal of this paper is to explopeeference rulesised to interpret the
relative positions ofi-point intervals in terms of preference. Létbe any finite set
of n-point intervals. Apreference ruler assigns any paifr, y) of A2 = A x Ato
one in four exclusive categories that are denotedby ',/ or J. P, P~ I and
J are just labels but we want to interpr@taspreferencei.e.w(x, y) = Pif zis
preferred tay; P! isinverse preference.e.x(z,y) = P~ if y is preferred tar; I
denotesndifferenceand./, incomparability For a given setl of n-point intervals,
we denote byP4, (P~1)4 14, J4 the following relations o (i.e. the following
subsets ofd?):

Pt ={(z,y) € An(x,y) = P}
(P~ = {(z,y) € A, m(a,y) = P~} )
" ={(ry) € An(r,y) =1}
JU = {(ry) € An(zy) = J}

Whenever there is no ambiguity, we shall abuse notation ampl sliperscript4,
writing P (resp.P~!, I, J) instead ofP#4 (resp.(P~1)4, 14, J4), hence designat-
ing the relations defined oA by generic labels.



Following [24], the tripleP4, 14, J# of relations onA is a preference structure if
P4 is an asymmetric relatiord,* a reflexive and symmetric ong? an irreflexive
and symmetric relation an@”* J(P~1)4 U 14U J4 = A2, this union being a union
of disjoint sets.

Obviously, not any rule that determines a partition3f (wheneverA is a set of
n-point intervals) can be said@eferenceule. In this paper, we are interested in
preference rules that assign pairsigboint intervals taking only into account their
relative positions. Moreover, we shall restrict ourseteaompletereference rules

m, for which there is no incomparability/(= (). Hence the resulting preference
structure(P, I) is complete, i.ePAJ(P~1)AUI* = A% We emphasise that this
implies that the whol€P, I) structure is determined as soon as we know the sole
strict preference relatio®; indeed,[* = A%\ PAJ(P~1)4. The next definition
lists the properties that we shall impose to preferencesinléhe rest of this study.

Definition 4 A (complete) preference rule far-point intervals,r, is a function
defined on any Cartesian produdt, whereA is a finite set of:-point intervals,
which assigns a label from the sgP, P~1, '} to any pair(z,y) € A?, respecting
the following requirements:

Axiom 1 For all finite sets of:-point intervalsA and B, and for allz,y € A and
z,t € B, if p(x,y) = ¢(z,t), thenm(z,y) = m(z,1).

Axiom2 For all z,y,z,t € A, if p(2,y) > p(z,y) and 7(z,y) = P, then
(2, y') = P.

Axiom 1 tells that the assignment of a péir, y) to one of the relation®, (P~1), I
only depends on the relative positigiiz, y) of = w.r.t. y. This isa fortiori true
whenA = B. Axiom 1 allows us to talk about relative positions withoetarring

to any particular set of-point intervals A. The second axiom clearly interprets as
a monotonicity condition w.r.t. relation “at least as sfy@s” on relative positions.

In view of axioms 1 and 2, aompletepreference rule is entirely determined if
we know the set of relative positions that lead to the assegrirof labelP to a
pair (z,y) (independently of the set which z andy are elements of). Indeed,
letting ®(P) be the set of such positions, we haver,y) = P~! if and only if
m(y,xz) = P,i.e.p(y,z) € ®(P). We may thus define the set of relative positions
o(P~1) leading torr(z,y) = P~! as the set of positions(x,y) such that their
inversep(y, x) belongs tod(P). Since, by definitions assigns a label to all pairs
(x,y), we haver(z,y) = I ifand only if o(z,y) € ®(I), whichis the complement
of ®(P)J®(P1) in the setNg- of all relative positions.

The set of relative position$(P) associated with a complete preference rule

has the following properties; reciprocally, these prapsertharacterize those sets
of relative positions that are associated with strict pegiee by some complete
preference rule.

10



Proposition 5 Let &(P) be the set of relative positions corresponding to prefer-
ence for a given complete preference rald-or all ¢ in &(P), we have:

(1) ¢ in Ngrn andy’ &> ¢ imply ¢’ € &(P);
(2) (p) ! € O(P).

Conversely, if a seb C Ng» enjoys the two above properties it is the $&tP)
associated with the complete preference ruldefined as follows: for alh-point
intervalsz, v,

m(z,y) =P & p(r,y) € ®
m(r,y) = (P)' & ¢(y,z) € ® (6)
m(z,y) =1 & (v, y) ¢ ®and p(y,z) € .

Proof. The first property is a direct consequence of the definitionand of axioms
1 and 2. The second results from the asymmetry of relaticend the fact that
any pairy, (p)~! € Ng» describes the relative positions of a pajr of n-point
intervals. For proving the converse statement, it is easg&thatr as defined by
(6) unambiguously assigns one label in the{det(P)~!, I'} to any pair ofn-point
intervalsz, y. In particular, property 2 guarantees that no gairy) will receive
both labelsP and (P)~!. Indeed, ifp(z,y) = ¢ andz andy have no points in
common—which can be assumed without loss of generality=<tiig, =) = ()7 1).
By definition,r satisfies axiom 1. Property 1 ensures that it also fulfill®ex? B

The asymmetry of relatio®® can also be put in relation with the description of
n-point intervals as-tuples of real numbers.

Proposition 6 Let 7 be a complete preference rule. If for somgoint intervals
x,y we havef;(z) < f;(y) forall i = 1,..., n, then we may not have(z,y) = P.

Proof. If f;(z) < fi(y)foralli =1,...,n,thenp(y, x) > ¢(z,y). Using axiom 2,
m(x,y) = P impliesw(y,x) = P, which means thatz, y) both belongs ta® and
P~!1. This contradicts the definition of. |

The conclusion of proposition 6 gives credit to a naturagriptetation ofn-point
intervals w.r.t. preference: if none of thepoints of z is better placed than the
corresponding point af, we cannot reasonably say thais preferred tqy.

3.1 Preference rules with a single weakest relative pasitio

In view of proposition 5, any complete preference ral®n n-point intervals is
determined by a set of relative positio$P) that contains all relative positions

11



stronger than any of its elements. As a consequence the stezi&ments of such a
set play an important role since all the other elements ofétean be determined
from these ones. Let us consider two examples3fpoint intervals (the set of all

relative positions foB-point intervals is represented on figure 4). They differtoy t

number of lower bounds ik (P).

Example 3 Let &(P) be the set of all relative positions at least as strongras
(2,1,0). Then®(P) = {(2,1,0),(2,0,0),(1,1,0),(1,0,0),(0,0,0)} because of
axiom 2. It is easy to see that the corresponding preferente assigns a pair
(x,y) of 3-point intervals toP if and only if f1(z) > fi(y), fo(z) > fa(y) and

f3(x) > fs(y).

Example 4 Define®(P) as the set of all relative positions at least as strong as
¢ =(2,0,0)0r ¢ = (1,1,0). Note that these relative positions cannot be compared
using relation>. Then®(P) = {(2,0,0),(1,1,0),(1,0,0),(0,0,0)} because of
axiom 2. The corresponding preference rule assigns a (aiy) of 3-point inter-
vals to P if and only if at least one of the following conjunctions ohddions is
fulfilled:

filx) = fi(y) fi(z) = fa(y)
and or and (7
fo(@) = f3(y) f3(@) = f3(y).

These examples illustrate two typical cases. In the firsé,cB6P) has a single
lower bound as in the former example (the unique lower bos(®l i, 0)); we call
the corresponding decision rulssnple The second situation occurs wheiP)
has more than one lower bound, as in the latter example (erlbounds(2, 0, 0)
and(1, 1,0)); the corresponding preference rules are cattmdpoundWith simple
preference rules, as in example 3, the conditiong;én) and f;(y) ensuring that
m(x,y) = P can be expressed as a single system of inequality constréamt
compound rules, as in example 4, the conditions will be aiddjon of systems
of inequality constraints (such as (7)). For the readenseaience, we state below
the definition of a simple rule.

Definition 5 A (complete) preference ruleas defined in definition 4 isimpleif
there is a unique relative positiop such that for alln-point intervalsz andy, we
haver(z,y) = P if and only if their relative positionp(z, y) is at least as strong
aso.

In the sequel, we concentrate simplepreference rules for the following reason.
In sections 5 and 6, we shall study systematically the peefar structuregP, 1)
that are obtained when using simple preference rules ingbescof 2 and-point
intervals. Compound preference rules will just yield dmgjtions of the types of
preferences structures obtained with simple rules. Fdamte in example 4, the
preference structur®, I associated with the rule is such thais the union of the
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following two strict preference relations:

e the strict preference relatioR, o o) associated with the simple preference rule
T(2,0,0) defined byry 2.0.0)(z,y) = Pifand only if o(z,y) > (2,0,0)

e the strict preference relatioR, ; ;) associated with the simple preference rule
T(1,1,0) defined byrs (11,0 (2, y) = Pifand only if p(z,y) > (1,1,0);

the indifference relation is the symmetric complement d@?, i.e. z andy are
indifferent is and only if neither. is preferred tay nory is preferred tar.

Which relative positions can be considered the weakestiposif a setd(P) as-
sociated with a simple preference rule? A necessary anaigufficondition is es-
tablished in the following lemma.

Lemma 1 The set of relative positions that are not weaker than a gredative
positiony is the setb(P) associated with some simple decision rulé and only
if

Not[(n,n —1,n—2,...,1) > ¢]. (8)

Proof. Assume on the contrary thtn, n — 1,n — 2,...,1) > ¢]. Using the defi-
nition of the inverse transformation of the set of relatiwsitions and its antitone
character (proposition 4), we obtain:

() '>(nn—1,n-2,...,1)"'=(mn-1,n-2,n—3,...,0).

Since(n—1,n—2,n—3,...,0)>(n,n—1,n—2,...,1) and using the transitivity
of >, we get(¢)~! > ¢ which contradicts proposition 5.2. The condition is thus
necessary.

For proving sufficiency, we assume thais such thalNot[(n,n—1,n—2,...,1)>
] and we prove thad = {¢’ such thaty' > ¢} is the set of relatlve posmons lead-
ing to strict preference for some simple preference rulés @mounts to proving
that® enjoys properties 1 and 2 in proposition 5. The former prigpsrobvious
by construction. Let us prove that for all € @, (¢')~! ¢ ®. We start by proving
that (¢)~! ¢ ®. By hypothesis (8), there is< n such thatp; < n — i + 1. Due
to the fact thatp; > ¢, for all j, we havel{j : ¢; > n—i+ 1} <i-— 1.
Hence,(¢');' =n—|{j:¢; >n+1—i}| >n—i+1> ¢, which implies
Not[(¢)~! > ¢]. Let us finally consider any’ € ®. By proposition 4, we know
thaty' > ¢ implies (o)~ > (¢’) 1. Assuming(¢’) ! € ® would imply (¢)~! € @,
which has just been shown to be untrue. |

We now introduce notation specific to simple rules, for whieh strict preference
relation is determined by their unique weakest relativatfpos Let o be a rela-
tive position such thaNot[(n,n — 1,n — 2,...,1) > ¢]. We denote byr, the
corresponding simple preference rule, andiythe set of relative positions that
are at least as strong as For ease of further reference, we give a direct formal
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definition of the preference structure arising from a singpiference rule, without
referring explicitly to this rule; we emphasise here thatiehs that are defined on
the set ofz-point intervals as a result of using the decision rule. Ftiois\point, we
shall use the notatioR,(x, y) (resp./,(z, y)) as an alias forrs,(z,y) = P (resp.

(2, y) = I).

Definition 6 Lety = (¢1,...,p,) be a vector of relative positions iNg» such
that Nof(n,n — 1,n — 2,...,1) > ¢]. Letx andy be any pair ofn-point inter-
vals. Relations’, and I, associated withp (i.e. ¢ represents the weakest relative
position such thaP holds) are defined as follows:

Py(2,y) <= v(z,y) > ¢,
I (z,y) <= —P,(x,y) N P,(y, x).

3.2 Compact description of a preference structure

In this section, we come back to the construction of systeénmequalities express-
ing thatP,(z, y) according to a simple preference rule with weakest positidve
have already obtained such descriptions for examples 3.and 4

Let us consider the strict preference relation, represantgigure 5, having (2,0,0)
as its weakest relative position. Applying formula (2), weress the conditions for
having P2 0,0)(x, y) by means of the following inequalitieg; (y) < fi(x), f3(y) <
f2(x) and f3(y) < fs3(x). Note that the third inequality is redundant. In order to
avoid such redundancies and hence dispose of a compacgawidsuch inequal-
ities, we introduce a new object that we call titemponent set”of ann-tuple ¢
and that we denote byp,,.

fi(z) fa(@)  fa(@)

) fo(y)  f3(y)
Fig. 5. Py 0 () = () € 1(0,0,0) U (1,0,0) U (2,0,0))

For the example in figure 5, we havép, 00 = {(1,1)(3,2)}. The pair(1,1)
corresponds to inequalitff (y) < fi(z), while (3, 2) corresponds t@;(y) < fa(z).
Hence the representation convention is as follows: a (gair) in Cp,, represents
inequality f;(y) < fi(z). In the example, we do not need to include pair3)
corresponding to the redundant equatjg(y) < f3(z).

In general, starting with a vectar of relative positions, we have thatz,y) > ¢
if and only if for all ¢, f,,_.,(y) < fi(z); each such inequality is codéd — ;. ).
From all these pairs we may remove those for which theresexist i with ¢;; <
;. Indeed, the inequality correspondingte- ¢, i’ yields f,,_, (y) < f»(x) and
we havefy () < fi(x) and fo—, (y) < fa—g, ().
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The definition ofCp,, below guarantees that the encoded systems of constragnts ar
non redundant.

Definition 7 Lety = (¢4, ..., ¢,) be a relative position inVs- such that condi-
tion (8) is fulfilled. Thecomponent seCp,, associated withy is the set of pairs
(n — ¢;,j) such that there is ng’ < j with ;7 < ;.

The component sétp,, encodes the minimal information needed to determine the
preference structure?,, 1,,). In particular, the strict preference relatiét is de-
termined as follows:

Vr,y, Py(v,y) <= V(i,j) € Cpy, fiy) < fi(2). (9)

The indifference relatiod,, is obtained by expressing that(x, y) if and only if
—P,(x,y) and—P,(y, x), i.e.

Va,y, I,(z,y) <=3(i,j) € Cpy, fily) > fi(z),and
(k1) € Cpy, frlx) > fily).

Condition (8) determines the relative positions that gateesimple preference
rules. This condition translates into the following prdyesf Cp,,.

(10)

Proposition 7 Let o = (¢4, ..., ,) be a relative position inVg- such that con-
dition (8) is fulfilled. In the component sétp,, associated withp, there is at least
one pair(i, j) with (i > 7).

Proof. On the contrary assume that for all pairsj) in Cp, we havei < j.
Consider a pair (x,y) ok-point intervals such that:

filz) < fily) < f2(z) < fo(y) <. fa(@) < fi(y) < [ ()
< fr(y) < ... < ful2) < fuly).

Forallk = 2,...n we havef,(y) < fi+1(x) which impliesf;(y) < f;(z) for all
(i, 7) in Cp,, henceP,(z,y). The relative position of w.r.t. y is characterized by
¢ =(n,n—1,...,1).SinceP,(z,y), we havey’ = (n,n—1,...,1)>¢ violating
(8). |

3.3 Constructing all simple preference rules

In this section, we present an algorithm yielding all polesgets of relative posi-
tions which may determine a strict preference relatibassociated with a simple
preference rule (definition 5). For this purpose we consdeh relative positiop

in turn; if ¢ can be the weakest relative position leading to strict pesfee (i.e. if it
satisfies condition (8)), we build a set of nod€s.-, which consists of all relative
positions at least as strong @as
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Algorithm Unique Cuts:
L = 0;
For all nodesp in the graphG™ do
if Ji,0; <n—1i+ 1then
Nsgn =D~ ={(p) = ¢": ¢' &> p};
L:=LU{Nsgn};

end if;
od;
Return L;

Each iteration of this algorithm provides a subgrafghf* of the graph™ with just

one upper boundv, p; = 0) and just one lower bound. As a consequence each
relative position becomes a lower bound af@” once and only once except those
that do not satisfy (8). In Figure 6 we show the result of thgoathm when the
lower bound isP; ; ).

Fig. 6. The preference structure resulting when the lowentdas (3,1,0)

It is easy to compute the number of different sets of relgivgitions (equal to the
number of possibl&éG™) that our algorithm calculates whenis known.

Proposition 8 Let sm be the number of sets of relative positions having a single
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weakest element, containing all positions at least as gtemiany of their elements
and never containing a position and its inverse. We have:

<2n>
sm =
n+1

Proof. Numbersm is equal to the number all relative positionswpoint intervals
as computed in proposition 3 minus the number of relativetipos that cannot
be the weakest element of a g@f, i.e. ¢'s such that(n,n — 1,...,1) > ¢, i.e.
n—i+1 < g foralli = {1,...,n}. Rephrasing these conditions in terms of
inequalities involvingf;(z) and f;(y), we get, using (2)f;(z) < fi(y) for all 7.
Hence, we have to compute the number of relative positiomspdint intervalse

andy such thatf;(z) < f:(y). Since there is no loss of generality in assuming strict
inequalities in the latter, this is the Catalan number= #1(2:) IndeedC,, is
known to be, among many other characterizations (see [&f&)number of Dyck
words of lengthen, i.e. the number of sequencesroiX’s andn Y’s such that no
initial segment of the sequence has more Y’s than X’'s. Theesppndence with

our case is clear. Consequently, we have:

~ (2n)! 1 (2n\ [ 2n
= (n!)? _n+1<n> B <n+1>'

This number is also the number of simple preference rules-paint intervals.

3.4 The case where n-point intervals have points in common

At this point let us make a comment on the reason why we havwereess that

then-point intervals under consideration have no points in camnThe reason is
not that the latter case is not interesting. In the framevadlemporal reasoning,
for instance, Allen [3,4] has investigated relations betwéme intervals, which
distinguish the cases where intervals start at the same fimngh at the same time
or both. His work has generated a large literature (see &5{). [

In contrast, in preference modeling, the case whefe) = f;(y) for somes, j

is not dealt with separately. It leads either to prefererf€edqr non preference in
a systematic way. In view of our definition of relative pawits (definition 1), we
assimilate the casg(z) = f;(vy) to the casdf;(x) < f;(y). Hence, while assigning
a pair of n-point intervals toP or to Not P, we make no distinction between a
pair (z,y) such thatf;(x) = f;(y) and a pair(2’,y) in which f,(2') = fi(2)
for all k # ¢ and f;(2’) = fi(z) — ¢, providede is positive but small enough to
guarantee thaf,(z) > f,(y) implies fi.(«’) > fi(y) for all k, (. In other words, we
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may always break equalities in such a way that we get a pairmdint intervals
with no points in common, which receives the same assignifientNot P as the
original pair. Figure 7 shows an example for= 3 in which f;(z) = f3(y) and
fa(2") < fs(y). For all preference rule, we haver(z,y) = P if and only if
m(a',y) = P.

fi(@) - fa(ah) | f3(@)

fi(), (@) fa(a)
I I 1

—t—

fi(y) fa(y)  fs(y)
Fig. 7.7(xz,y) = P & n(a',y) =P

Note that it is perfectly possible to adopt the reverse cotiwa in the definition of
relative positions, hence assimilatifigz) = f;(y) to the casef;(z) > f;(y). In
such a case we would make no distinction between a(pair) such thatf;(z) =
fi(y) and a paifz’, y) in which f,(«') = fi(x) forall k # i andf;(z') = fi(z+¢),
providede is positive but small enough to guarantee tligts) < f,(y) implies
fr(@) < fi(y) for all k,l. The important thing is that the rule is systematically
applied.

4 General results

In this section, we characterize the simple preferencesrimducing preference
structureg P, I,,) that enjoy some classical properties such as transitivipyef-
erence and indifference, Ferrers property, etc. Note tlashall not refer to any
specific setd of n-point intervals in the sequel. When we say tlfatis transi-
tive for some simple preference rule, we mean that the agldtj, induced by this
rule on any set ofi-point intervals is systematically transitive. Clearky & simple
preference rule that does not guarantee thas transitive, it may happen that it is
for some specific sets of-point intervals but not for all (consider e.g. the case in
which A contains only one-point interval; in this casef, is trivially transitive).
We emphasize that the propertiesiofand],, listed below are valid for all sets of
n-pointintervals. Our first result is concerned with the siéinity of the preference
relation. We start with a lemma.

Lemma 2 Letp be the relative position associated with a simple prefesemte.
If C'p,, contains the pai(i, j), then

(1) pj=n—i
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(3) the relative positiony’ defined by:

o) =n—i
Oh=n—i+1 Vk<j (11)
v, =0 VI > j

is such thaty’ > .
Proof. 1. The first assertion is a direct consequence of definition 7.

2. We havep;_; > n —i. Assume thatp,_; = n — 4. This would contradict the
definition of C'p,, since there would exigt = j — 1 with ¢, = ;.

3. Inview of 1 and 2, we have, = ¢;, ¢} < ¢ for all & < j and, obviously,
o) < g foralll > j, hencey' > . [

Proposition 9 Let P, be the preference relation obtained by applying a simple
decision rule as described in definition 6 afg, be the corresponding component
set as described in definition 7, is guaranteed to be transitive (on all setsrof
point intervals) if and only i¥/(i, j) € Cp,, i > 7,

Proof.

< Suppose thaP,(z,y) andP,(y, z) hold, then we get(i, j) € Cp,, fi(y) <
fi(z) and fi(z) < f;(y). Sincei > j, we havef;(y) < f;(y) hence¥(i,j) €
Cpe. [fi(z) < fily) < fily) < fj(x).This impliesP,(z, ).

= We will prove that:
3(i,7) € Cp, i < j = 3x,y,2, Py(x,y) N Py(y, z) anthP,(z, 2).

Assume first that < 7 and; < n. Considem-point intervalsr, y, z satisfying the
following constraints:

fl(Z) < .. -fi—l(z) < fl(y) < ... < fz(y) < fl(l') <... < fZ(ZL') <.. fJ(ZL‘)

< filz) <. ful2) < fim(y) <o < fuly) <. < fim(x) <0< fulo).
(12)

We haveP,(z,y). Indeedyy(z,y) = n —iforall k& < j andy(z,y) = 0 for
all I > j. Using ¢ in lemma 2, yieldsp(z,y) > ¢’ > ¢, henceP,(z,y). We
show similarly thatP,(y, z) sinceyp(y, z) = ¢'. However,z Pz does not hold since

fi(2) > fi(z).

We now examine the cases in which conditidns: i and; < n may fail to be
fulfilled. The positions oft, y, z as described in (12) can easily be adapted:

(1 =1) : there is nof,(z) beforef;(y), which is the only one beforé (z);
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(7 =n): all fp(z) lie betweenf;(y) andf;(z).
In both these cases, the same conclusions as in the genseadaxabe drawn. B

Most preference structures induced by simple decisiorsude a transitive pref-
erence relation. However, we do not exclude rules that tedlais property as in
the case of°< (3, ) (for more details see Section 6). It is indeed possible te con
sider preferences in which the asymmetric part would notdresitive. Theangent
circle "order” is an example of such a structure. It describes the ordertaniht
tersection structure of circles of different diametergatigent to an horizontal line
of the plane (see [2]).

We now present a characterization of decision rules thatagiee the transitivity
of the indifference relatiod,,.

Proposition 10 Let I, be the indifference relation obtained by applying a simple
decision rule as described in definition 6 afig, be the corresponding component
set./, is guaranteed to be transitive on all setsrepoint intervals if and only if

Jie{1,...,n}, Cp, = {(i,7)} (13)

Proof. <« Suppose thaCp, = {(i,7)}. ThenVz,y, I (z,y) < fi(y) >
fi(z) A fi(z) > fi(y), which is equivalent td,(z,y) <= fi(y) = fi(z). Since
equality is transitive/,, is transitive.

= We prove this result by contradiction. We suppose @yat # {(i,4)} and we
analyze two different cases.

1) € Cpy,t # 5. In this case, using (10), we haygy) > f;(x)Afi(x) >

1.3(:
(y) = I,(z,y). Letx,y, z be threen-point intervals such that

fi
fi(2) < fi(y) < fi(z) < fulz) < filz) < fi(2z) < fi(y) < fi(2),

with (i, j) € Cp,. I,(z, y) holds sincef;(y) < fi(z) andf;(z) < fi(y), L,(y, 2)
holds sincef;(z) < fi(y) andf;(y) < fi(z) andP,(z, z) holds sincep;(z, z) =
0 for all <. Thereforel,, is not transitive.

2. Y(i,j) € Cp,,i = jand|Cp,| > 1. Let(4,7) and(j, ) be two different
pairs belonging t@p,, with ¢ < j. Then using (10)f;(y) > fi(x) A fi(z) >
[i(y) = I,(x,y). For a positive reall/ large enough (e.g\/ > 4), letz,y, z
be threen-point intervals such that
e r:vVte{l,...;i—1}, 1 < fi(x) < M; fi(x) =3M+1;Vt € {i+1,...,5—

1}, 4M < fi(x) < 5M; fi(x) = TM +2andvt € {j +1,...,n}, 8M <
o y:Vte{l,....i—1}, fily) <3M +3;Vte {i,...,j}, 3SM+3 < filly) <
T+ l;andvt e {j+1,...,n}, TM + 1 < fi(y);
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o 22Vt € {1,...,i — 1}, 2M < fi(z) < 3M,; fi(2) = 3M + 2; Vt €
{i4+1,...,5 =1}, 6M < fi(2) < TM; fi(z) = TM + 3 andVt € {j +
1,...,n}, 10M < fi(z) < 11M.

I,(z,y) holds sincef;(x) =3M +1 <3M +3 < f;(y) andf;(y) < TM +1 <

TM + 2 = f;(z); I,(y, 2) holds sincef;(y) < TM +1 < TM + 3 = f;(2)

andf;(z) = 3M +2 < 3M + 3 < fi(y); P,(z,x) since by constructioii &

{0,...,n}, fi(z) < fi(2). Thereforel, is not transitive. |

This result shows that within our framework, the structuremg defined by com-

paring the positions of two different points of the real linave an intransitive

indifference relation. Such a result is not surprising sitiee numerical represen-
tation of a large number of preference structures knownenitarature as having

intransitive indifference uses intervals. This is the casi semiorders, interval

orders, splitinterval orders, etc (see below for defingjon

Propositions 9 and 10 show how weak orders are obtained iframuework.

Definition 8 A binary relationP U I is a weak order if and only iP is transitive,
I is reflexive and transitive angt U [ is complete.

We have the reflexivity of , and the completeness 6%, U I, by construction.
Corollary 1 Let P, and I, be respectively the preference and the indifference re-
lation obtained by applying a simple decision rule as ddsexliin definition 6. Let

Cp, be the component set associated to the decision fylel I, is a weak order
if and only if

Jie {1,...,n}, Cp, = {(3,4)} (14)

Such a result allows for the existence of different ruledilegto weak orders when
n-points intervals are used. The following assertion islgasirified.

Proposition 11 Letm be the number of differegtwhenn-point intervals are used
such thatP, U I, is a weak order, then

m=n. (15)
For instance, with 2-point intervals there exist two waysdbtaining weak orders:
Cp, = {1,1} andCp, = {2, 2} (for more details see Section 5).
Another class of ordered sets is that of interval orders foictvindifference is not
transitive. A couple of relation&”, I) (forming a preference structure) has to fulfill

the Ferrers property (see [24]) in order to be an intervaéord

Definition 9 A binary relationR has the Ferrers property, and we all it a Ferrers
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relation, if and only if

Vo,y,z,t € A, R(x,y) AN R(z,t) = R(x,t) V R(z,y) (16)
One can also give an alternative characterization of a Feredation using its sep-
aration on symmetric and asymmetric relation:

Theorem 1 Let R be a binary relation and® (respectivelyl) the asymmetric (resp.
the symmetric) part ok, then the two following sentences are equivalent:

I. Ris a Ferrers relation
i. Vo,y,z,t € A, P(x,y)NI(y,z)\NP(z,t) = P(z,t) (we denoteitby’.].P C
P).

The asymmetric part of a Ferrers relation is transitive.

Proposition 12 Let R be a Ferrers relation and® (respectivelyl) the asymmetric
(resp. the symmetric) part @t, then relationP is transitive.

Proof.
Since the identity relation is included inwe havevz, y, z € A, P(z,y)AI(y,y)A
P(y,t) = P(x, z2) [ |

The following result provides a characterization of a Fernelation within our
framework.

Proposition 13 Let P, and I, be binary relations obtained by applying a simple
decision rule as described in definition 6 afig, be the corresponding component
set.P, U I, is guaranteed to be a Ferrers relation on all sets:gpoint intervals if
and only if

|Cp,| =1 (17)

Proof.
The proof of this result follows from lemmas 3 and 4 below:

If |Cp,| =1thenP,.1,.P, C P,. seelemma3

If P,.1,.P, C P,then|Cp,| = 1: see lemma 4.

Lemma 3 Let P, and I, be binary relations obtained by applying a simple deci-
sion rule as described in definition 6 adat,, be the corresponding component set
then

if |[Cp,| = 1thenP,.1,.P, C P,. (18)
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Proof.:
If |Cp| = {i,j} thenVz,y P, (z,y) <= fi(y) < fi(x) andl (z,y) <= (fi(y) >
fi@) A (fi(z) = fi(y))-

Letx,y, 2, t be fourn-point intervals withP,(z, y), I,(y, z) andP,(z, t) then:
Po(z,y) < fily) < fi(z),

Iy, 2) <= (fily) = [i(2)) A (fi(2) = f5(y),

Po(z,1) <= fi(t) < fi(2).

These inequalities yieldf;(¢) < f;(z) < fi(y) < f;(x), hence we obtairf;(t) <
[;(z) which is equivalent t®, (z, t).

As a conclusion we haveP,(z,y) A I,(y, z) A P,(z,t)) = P,(x,t). This com-
pletes the proof. [ |

Lemma 4 Let P, and I, be binary relations obtained by applying a simple deci-
sion rule as described in definition 6 ait,, be the corresponding component set
then

if |Cp,| > 2 thennot (P,.1,.P, C P,). (19)

Proof.:
Let P, be a binary relation defined as :

Va,y Po(r,y) <= Nijecp, [i(y) < fi(x) where|Cp,| > 2.
We analyze two cases(s, j) € Cp,, ¢ < j and¥(i,j) € Cp,, i > j.

-1f 3(4, 5) € Cp,, such thati < j then the preference relatiar, is not transitive
(see proposition 9). Using Proposition 12 we conclude that /., is not Ferrers.

-If (i, j) € Cp,, i > j: using (10), we have
Vo,y L(v,y) <=\ (fily) = fu(2) A filz) > fi()).

(ivj)v(lvm)ECpHO

Since|Cp,| = 2, 3(i,j), (I,m) € Cp, where(i,j) # (I,m), fi(z) = fm(y) A
fily) = fi(z) = Ly(z,y).
We suppose here that we have i < m < [ (the proof of the casg < m < i <,
being similar, is omitted). For a positive re@l large enough, leiw, x, y, z be four
n-point intervals such that
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w:Vt e {1,...,i}, M < fi(w) < 2M;Vt € {i+1,...,n}, 5M < fi(w) <
6.0,

zvte{l,...,m—1}, 0 < fi(z) < M;Vt € {m,...,n}, AM < fi(x) < 5M;
y:vt e {1,...,n}, 3M < fi(y) < 4M,

22Vt e {l,...,n}, 2M < fi(z) < 3M.

These four intervals satisfy the following relations:

o P,(w,z): Indeedy;(w,z) =n—mforallt <iandy,(w,z) = 0forallt > i.
Usingy' in lemma 2, yieldsp(w, z) &> ¢’ & ¢, henceP,(w, x).

o I (z,y)sincef,(y) < filr) BM < fn(y) < 4M,4M < fi(z) < 5M) and
fi(@) < fily) (0 < fi(z) < M,3M < fi(y) < 4M).

o P,(y,z)sincevt € {1,n}, f.(2) < fi(y);

o —P,(w,z)sincef,,(z) < fi(w) @M < fn(2) < 3M,5M < fi(w) < 6M) and
fi(w) < fi(=) (M < fi(w) < 2M,2M < fi(z) < 3M). n

We are able now to characterize an interval order. First,egall the definition of
an interval order.

Definition 10 A binary relationP U I is an interval order if and only if? U [ is
reflexive, complete and Ferrers.

Corollary 2 Let P, and ], be respectively the preference and the indifference re-
lation obtained by applying a simple decision rule as ddsaxliin definition 6. Let
Cp,, be the component set associated to the decision Fulel I, is guaranteed to

be an interval order if and only if

[Cp,| =1 (20)

As in the case of weak orders, depending on the vajw@en interval order can have
more than one representation.

Proposition 14 The numbern of relative positionsy yielding a preference struc-
ture P, U I, that is an interval order is
n(n —1)

Proof. If |Cp,| =1 (|Cp,| = {3,7}) theni < j (see Proposition 7). Sina€p,,
can be any paifi, j) with ¢ < j, the numbenmn of suchCp,, is the number of
manners of selecting two numbers from a set olumbers, i.em = 21 =

In the next two sections we analyze simple preference rhlasdan be applied
when 2-point and 3-point intervals are used. Section 5 i®tevto 2-point in-
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tervals and Section 6 to 3-point intervals. In each sectienawalyze in turn all

simple preference rules satisfying our axioms, descrikectirresponding prefer-
ence structure and formulate comments. As will be shown esoew preference
structures, such as triangle orders, bi-weak orders vattappear in these sections
and will receive a characterization in our framework.

5 2-pointintervals

In this section we present a complete analysis of 2-poietwats within our frame-
work. With 2-point intervals there are 6 relative positigase Proposition 3), pre-
sented in Figure 8. Figure 9 shows the graph of the coverioalaf > between
these six relative positions.

filz) ; ()
Py (,y) : fi my)
Pay(@,y) : 3 Ey) fz(ly)
Poo)(z,y) : # mw
Puen): v
Pooy(@:y) - fléy) fz(ly)
oot T

Fig. 8. Relative positions df-point intervals

From these six relative positions folt, satisfy our axiomatisation (see Proposi-
tion 8): Po,0), P1,0), P1,1) and P2 0). These ones correspond to three different well
known preference structures: interval orders, weak oraedsi-linear orders.

Weak orders are very commonly used structures. Their Garsation in term of
necessary and sufficient properties of preference andeénelifce relations is given
in Definition 8. Their classical numerical representaticakas use of simple num-
bers:P U I on A is aweak orderif and only if there exists a real-valued function
f defined onA such thatvz,y € A, *Py <= f(x) > f(y). Their difference
from linear orders (total orders) comes from the fact thaakverders may have
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Fig. 9. Graph of the cover relation &f for 2-point intervals

equivalence classes (two different objects may be coreides indifferent) which

is forbidden in the case of linear orders. Note that in oumaork where each
object of A is represented by am-point interval, the characterisation of weak or-
ders is as in the followingvy, (VA, P, U I, on A is aweak ordej if and only

if 3 € {1,...,n}, Cp, = {(i,7)} (see Corollary 1). This result shows that
when 2-point intervals are used, there are two differentgamson rules provid-
ing a weak order, the corresponding component sets bgjng,) = {1,1} and
Cpi0) = {2,2}. The first one consists in comparing the minimum values of ob-
jects; the second one the maximum values of objects.

Bi-weak orders are also known structures. They are defin¢ldeamtersection of
two weak orders and are equivalent to bilinear orders (ttezested reader may find
more details in [11]). Their classical numerical charastgron is the following :
P U I on A is abi-weak orderif and only if there exist two real-valued functions
fiand f5 defined onA such that

fi(x) > fi(y)
fo(x) > foly)

The reader will note that in such a definition the two funcsignand f, do not nec-

essary represent an interval since they are not ordered@wetdknow their rela-

tive position). Such an ambiguity can be easily resolvedkb&o an old theorem of
Dushnik and Miller ([9]). We present in the following the @mval characterisation
of such structures, an interested reader may find more sl@tdil9].

Ve,y € A, vPy <

Theorem 2 [9] A relation P U I on a finite setA is a biweak order if and only if
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there exist two real-valued functiorfs and f, on A such that

fa(x) > fa(y),
fi(x) > fi(y),

Vr,y € A, zPy <=
vz, fa(z) > fi(z).

This comparison rule is the one representedpy; oy = {(1,1),(2,2)}. It means
that when 2 point-intervals are used, the objeist preferred to objegj if and only

if its minimum value is greater than the minimum valueyoénd its maximum
value is greater than the maximum valueyof he following result generalises the
characterisation of bi-weak orders in the case-pbint intervals (such a result will
be useful for the following section).

Proposition 15 Let P, and I, be respectively the preference and the indifference
relation obtained by applying a simple decision rule as diésd in definition 6.
LetCp, be the component set associated to the decision fylel I, is a bi-weak
orderifand only if3i, j € {1,...,n}, Cp, = {(i,7),(4,4)}

Proof: obvious.

Proposition 16 Let m be the number of differe®’p,, characterising a bi-weak
order as in Proposition 15 whem-point intervals are used. Then

m = (Z) (22)

Hence, when 2-point intervals are used in our frameworkottig comparison rule
providing necessarily a bi-weak orderd®,, = {(1,1), (2,2)}.

Proof: obvious.

Interval orders were introduced in preference modellingrmiter to have a repre-
sentation in presence of a threshold: objeas preferred to objecy if and only
if the evaluation ofr is greater than the evaluation gfplus a threshold. The in-
troduction of such thresholds violates transitivity of thdifference relation. The
characterisation of interval orders by necessary and mirifiproperties is given
in Definition 10. We present here their numerical represemtaP U I on A is an
interval orderif there exists two real-valued functiorfsand f,, defined onA such

vxvy € Au .I‘Py <~ fl('r) > f?(y)
YV € A, fg(l’) > f1($>

that

We showed in Section 4 thatp, (VA, P, U I, on A is aninterval ordey) if and
only if |Cp,| = 1 (see Proposition 13). There are three comparison rulesfydati
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this affirmation:Cpq 1y = {1,1}, Cpe,0) = {2,2} andCpoy = {2,1}. The first
two ones are weak orders which are special cases of intadato(interval orders
with a threshold equal to 0) and the last one is a proper iatemder,i.e. if this
comparison rule is used one can always find a set of objectshwinot a weak
order but an interval order.

Summarising, when 2-point intervals are used, it is possibotefine four different
comparison rules satisfying our axioms and from these falasrthree different
preference structures may be obtained which are weak ofiersak orders and
interval orders (see Table 2).

Preference Structure (P, I,) interval representation

Interval Orders Cpo,oy) = {(1,2)}
C ={(2,2
Weak Orders Peo = 1(2:2))
Cpany ={(1,1)}
Bi-Weak Orders Cpaoy) = {(1,1),(2,2)}

Table 2
Preference structures wifhpoint interval representation

6 3-pointintervals

In this section we present a complete analysis of 3-poietwatls within our frame-
work (a brief presentation of these results can be found0f) [2Vith 3-point in-
tervals there are 20 relative positions (see Propositiat)h are presented in two
separated figures (figures 10, 11). The separation is doneay #hat thekth rela-
tive position of the figure 11 corresponds to the converskefth relative position
of the figure 10 (when the two compared 3-point intervals dbhawe any point
in common) and each relative position is stronger than conmgarable with the
relative positions which are presented above it. Figure 8daation 2 presents the
graph of the cover relation of between these twenty relative positions.

From these twenty relative positions only fifteé) satisfy our axiomatisation
(see Proposition 8Y%,0,0), F(1,0,0): P1,1,0)» P2,0,0)» Pr1,1,1) P2,1,00 P2,2,00 P2,1,1),
P(27271), P(27272), P(37070), P(37170), P(37270), P(37171) andP(3,370). These ones Correspond
to seven different preference structures: weak ordergjelaik orders, three-weak
orders, interval orders, split interval orders, trianglders and structures with in-
transitive strict preference.

As in the previous section, we will analyse one by one thegersstructures: we
will introduce first of all their definition and their classichumerical represen-
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fi(@) fo(f) f3(x)

Poogy(@y) | | I

fi(y) fly)  f3(y)
Poon(zy): | | I

fi(y) f2(y) f3(y)
Poany(zy) | | I

hy) f2(y) ()
P(32,2,0) (z,y) : | | |

fi(y) L) f3(y)
Poaoy(zy): | | I

fi) f2(y) f3(y)
P(31,1,1)($a y): | I I

fi(y) fa(y) faly)
P(32,o,0) (z,y) : | | I

fi(y) fo(y)  f3(y)
Pg(l,l,O) (z,y): | | |

fily) fa(y) (1)
Pg,o,O) (z,y): | | |

fily) faly) f3(y)
P(%,O,O) (z,y) I | |

fity) foly)  fs(y)

Fig. 10. Relative positions &f-points intervals: part 1

tation, then show their characterization within our framekvand conclude with
some remarks.

The definition, the classical numerical representationthedharacterisation in our
framework of weak orders, bi-weak orders and interval r@ee already given in
Section 5.
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P(%,O,O) (z,y) :

P(%,Lo) (z,y) :

P(%z,o) (z,y) :

P(%,l,l)(xv y)

P(%Q,l) (z,y) :

P(%,:S,O) (z,y) :

P(%,zg) (z,y) :

P(%,:S,l)('ra y)

P(%,:S,Q) (.I‘, y) :

P(%,s,a) (z,y) :

S

(z) fa(r) f3(z)
1
() fa(y) f3(y)
| | |
fiy) f2(y) f3(y
| | |
f1(y) f2(y) f3(y
— |
fi(y) f2(v) f3(y)
| | |
fi(y) f2(y) f3(y)
L
Ti)fa(y) fs(y
| | |
f1(y) f2(y) f3(y)
— |
fl(y)fQ(y fg(y)
| | |
fi(y) f2(y) f3(y)

L) fly) )

Fig. 11. Relative positions &f-points intervals: part 2

6.1 Weak, Bi-weak and Interval Orders

When 3-point intervals are used, three different companstes provide weak or-
ders, these are given 6yps 30y = {(3,3)}, Cpii1) = {(2,2)} andCpa 02 =
{(1,1)}. They consist respectively in comparing objects with respetheir max-
imum (resp. their median, their minimum) values.
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Bi-weak orders are represented by three comparison rules B¥point intervals
are USEde(;g?LQ) = {(2, 2), (3, 3)}, Cp(27171) = {(1, 1), (2, 2)} and Cp(27270) =
{(1,1), (3,3)}. For instance the first one consists in saying that objésprefered
to objecty if and only if the median value of is greater than the median value of
y and the maximum value af is greater than the maximum value;of

When objects are presented by three ordered points threpacson rules pro-
vide interval orders (except the ones which provide weakisavhich are special
cases of interval orders)ip 00 = {(3,1)}, Cpio0 = {(3,2)} andCpa 1,1y =
{(2,1)}. It is easy to notice that all comparisons of type “objeds prefered to
objecty if and only if theith evaluation ofr is greater than thg¢th evaluation ofy
(j being greater thai) ” (i.e., comparing the minimum value afwith the medium
or maximum value of; or comparing the medium value efwith the maximum
value ofy) produce an interval order.

6.2 3-Weak Orders

Three-weak orders generalise bi-weak orders (for mordlglsie [18]). They are
defined as the intersection of three weak orders. TheiriclEssumeric represen-
tation makes use of three functions as followss I on A is a3-weak ordeif there
exist three real-valued functiorfs, f> and f; defined onA such that

@) > fi(y),
Ve,y € A, 2Py < fa(x) > fo(y), (23)

fa(x) > f3(y).

As in the case of bi-weak orders, such a representation duasenessary results
to an interval since the order betwefrix), fo(z) and f3(z) is not fixed. Naturally,
one can find easily an interval representation for such stres (this can be seen
as a generalisation of the theorem of Dushnik and Miller.[9])

Proposition 17 P U I on a finite setA is a three-week order if and only if there
exist three real-valued functionfs, f> and f; on A such that

fs(@) > f3(y),
Vi,y € A, xPy <= { fo(x) > faly),

filz) > fily),
Va, f3(z) > f2(z) > fi(z).

(24)
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Proof.

- (24 = 23): Obvious.

- (23 = 24): Supposing that there exist 3 real-valued functigng € {1, 2, 3}),
defined on A, such that/z,y € A, zPy < Vi € {1,2,3}, fi(z) > fi(y), we
will show that one can always firtlreal-valued functiong; (i € {1, 2, 3}) defined
on A satisfying (24).

We define a constant/ such thatM/ = max; max,ca |fi(x)| (A is a finite set)
and we define&/x € A, fl(x) = fi(z) +1i x (2M). It is easy to see thaf(z) >
fily) <= fi(z) > fi(y).

For the second inequality of the proposition, we h#ilg (z) — f/(x) = fiy1(x) —
filz)+2|M|and2|M| > fi11(x) — fi(x) by definition. Hence we obtaivz, Vi €
{1.2}, fin(z) = fi(z). o

Hence when each object is represented by three orderedptiiate is one com-
parison rule providing a 3-weak orde€p(»1,0) = {(1,1), (2,2),(3,3)}.

The following result generalises the characterisation-ofedk orders in the case
of n-point intervals.

Proposition 18 Let P, and I, be respectively the preference and the indifference
relation obtained by applying a simple decision rule as diéscd in definition 6.
Let Cp, be the component set associated to the decision Rjel I, is a three-
weak order) ifand only ili, j,k € {1,...,n}, Cp, = {(4,7), (j, 7). (k,k)}

Proof: obvious.

Figure 12 illustrates the presentation of a 3-weak order.

Three-weak order

Fig. 12.d-weak order

Proposition 19 Let m be the number of differer®’p, characterizing a3-weak
order as in Proposition 18 whem-point intervals are used, then

m = (’;) (25)
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Proof. Obvious. [

6.3 Triangle Orders

Triangle orders are defined as the intersection of a weak argkan interval order.
Their classical numeric representation is as in the folhguvP U I on a finite set
Ais atriangle order if and only if there exigtreal-valued functiong; (i € {1,2})
defined on4 and one nonnegative functigron the setd such that

Vo, y € A, 2Py <= {fl(x) > h), (26)

fo(x) > foly) +q(y).

Using a similar approach to the case3efveak orders, one can propose easily an
interval representation for triangle orders.

Proposition 20 P U I on a finite setA is a triangle order if and only if there exist
3 real-valued functiong; (i € {1, 2, 3}) defined on A, such that

filz) > fi(y),
fa(x) > fs(y), (27)
Vo, Vi € {1,2}, fixi(z) > fi(x).

Ve,y € A, vPy <— {

Proof.

-(27 = 26): Suppose that there exi8treal-valued functiond; (: € {1,2,3})
defined onA satisfying the assertion 27. One can always defireal-valued func-
tions f/ (i € {1,2}) and one nonnegative functigron the setd such that/z € A,
fi(z) = fi(z), fi(x) = fo(x) andg(x) = f3(x) — f2(x). These functions satisfy
the assertion 26.

-(26 = 27): Suppose that there exigtreal-valued functiong; (i € {1,2}) and
one nonnegative functiogpon the setA satisfying the assertion 26. Let us define
three real-valued function§ (i € {1, 2,3}) defined on A, such thatz,

- fli(x) = filx) +i|M|, Vi € {1,2},
- fa(x) = fa(x) + 2| M] + ()
where M = 2 x max; max,(f;(x)). HenceVx,y, (fi(z) > fi(y) and fo(z) >

f2(y) + q(y)) is equivalent to {;(z) > fi(y) and f3(z) > f3(v))-
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The last inequality of 27 is also satisfied since

-Va, fi(z) — fi(x) = fa(x) — fi(z) + |M| and by definition ofM/, Vz, fo(x) —
filz) < |M;

-V, fi(x) — fi(z) = ¢(x) andg is a nonnegative function. |

Such a representation is an interval one since the pointsrdezed, moreover it is
a geometrical one : placing the minimum values of objectsrmmlme (real axis)
and the median and the maximum values on another one, eastt gbjs a triangle
representation as in Figure 13. When the orientation oethes lines are from left
to right a triangle order consists in saying that objeds$ preferred to objecy if
and only if its associated triangle is completely on the trighthe triangle ofy.
Figure 13 illustrates such a preference relation.

fi Z/) fi 913)

f(y) f3(y)fa(z) f3(@)
TPy
Fig. 13. Triangle Order

Remark that our proposition provides triangles orientetthéoleft. However, other
representations where triangles are oriented to the rigitpcovide identical or-
dered sets.

Proposition 21 P U I on a finite setA is a triangle order if and only if there exist
3 real-valued functiong; (i € {1, 2, 3}) defined on A, such that

f3(x) > f3(y),
filz) > fa(y), (28)
\V/ZL', Vi € {1,2}, fi-l—l(l‘) Z fl(l')

Vr,y € A, tPy <= {

Proof. Similar to the proof of Proposition 20. |

Note that even if the comparis@rp,, = {2, 2} provides a weak order and the com-
parisonC'p,, = {1, 3} provides an interval order, their intersection gives aarivl
order (note that interval orders are special cases of tieamglers) which corre-
sponds to the comparison rulép, = {1,3} sinceVz,y, (f3(y) < fi(z)) =
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(f2(y) < fo(x)). This special case shows that one can notldgve= {(i, ), (j, k)},
with j > ¢ > k since the coupléi, i) is redundant with the couplg, k).

Propositions 20 and 21 show that when 3-point intervals seel two comparison
rules provide triangle order€ip, 10 = {(2,1), (3,3)} andCp2,00) = {(1,1), (3,2)}.
Such representations can be easily generalized in the taspaint intervals:

Proposition 22 Let P, and I, be respectively the preference and the indifference
relation obtained by applying a simple decision rule as diésd in definition 6.
LetCp, be the component set associated to the decision fulel I, is a triangle
order) if and only if 3(¢, j, k), Cp, = {(i,1), (j, k)}, wherej >k >iori>j >

k.

Proof. Obvious.l

Proposition 23 Let m be the number of differer’p,, characterizing a triangle
order as in Proposition 22 whem-point intervals are used, then

. n(n? —33n +2) (29)

Proof. Recall that a triangle order is an intersection of a wealkoathd an interval
order. Let us fix to; the point establishing the weak order part as in Proposition
22. Then the points related to the interval order pgiti) € Cp,,) can be either to
the right of this point (there are — i points to the right of), in this case we have
=== possibilities forj andk (see Proposition 14) or to the left ofthere

arei — 1 points to the left of) and in this case we haé~L=2) possibilities for

j andk. Summing this value for ailwe gety, ("=20—=1) 4 (G21622)) Thig

2
is equal tO% Yo (n2 —n+2)—2n+2)i+ 22 Using>", (22) _ n(n+1)6(2n+1)’

. 2_
we obtain"—=2"+2), ]

6.4 Split Interval Orders

Split interval orders are especially studied in mathersafjit3], [17], [30]) and
allow the representation of sophisticated preferencesirfumerical representa-
tion is the following: P U I is a split interval order if and only if there exist three
real-valued functiong;, f> and f; defined onA such that
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Va,y € A, xPy < filz) > fa(y),
faz) > f3(y), (30)
Vo € A, fs(x) > foz) > fi(x)

Some instances of the preference and indifference rekatba split interval order
are illustrated in figure 14. This example is proposed bylstishin his paper [11].

fi(y) f3(y)
filz) )
a po—
b ——e—
C o1 € pso—]
d be—ro

xPy, aPbPcPe, dPcPe andl otherwise

Fig. 14. Split Interval Order

Hence when 3-point intervals are used there is one companisde satisfying for-
mula 30:Cp, = {(3,2), (2, 1)} associated to the preferenég ;. More gener-
ally, whenn-point intervals are used, we get the following characatias.

Proposition 24 Let P, and I, be respectively the preference and the indifference
relation obtained by applying a simple decision rule as diéga in definition 6.
Let Cp, be the component set associated to the decision Rle. I, is a split
interval order if and only i8(<, j, k), Cp, = {(i, j), (J, k)}, wherei > j > k.

Proof. Obvious. [ |

Proposition 25 Let m be the number of differerd’p,, characterising a triangle
order as in Proposition 24 whem-point intervals are used, then

o n(n — 1(2(71 —2) (31)

Proof. Once again we fix the pointof Proposition 24. Then there ape/— ' ¢
possibilities forj andk. Summing for all the positions afwe get>""—2 > " ¢.
Thisis equal t ?;12(2(71_2_1)) which gives(n—l)(n;2)(n—1) o (n—2)(n—1)6(2(n—2)+1) .
Hence we obtain-

n(nflg(n72) . m
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6.5 Intransitive Preferences

We have analysed for the moment thirteen comparison rulesmgrthne fifteen al-
lowed in our framework; the two remaining ones arg, = {(3,3),(2,1)} and
Cp, = {(1,1),(2,3)}. Such rules provide intransitive preference relationg (se
Proposition 9). These rules seem to be constructed as #rsaation of two rules,
the first one providing a weak ordei3(3) € Cp, or (1,1) € Cp), and the second
one (2,1) € Cp, or (2,3) € Cp) providing the non transitivity of the preference
relation. Remark that the second rule can not be used alghevaiur framework
since it violates the asymmetry of the preference relatiwen if preference struc-
tures having a non transitive strict preference seem makghey are used in some
special domains (for instance in biology when cellules anagared or in chem-
istry when the connection between molecules are analy$éeé)comparison rule
consisting in associating a circle representation to edpdcband saying that an
objectis preferred to another one if and only if the circleresenting the first object
is completely to the right of the circle representing theoseloone (circles may have
different diameters) provides structures with non travespreference relation ([1],
[2]). More generally, whem-point intervals are used, the comparison rules simi-
lar to these two ones have the following componentSet; = {(4,7)(k, )} with
1>k >1lori <k < I[. The number of comparison rules having such component
set whenn-point intervals are used g, (“=20==1) | (G=16=2)) which is
n(n?—3n+2

equivalent tof) (the computation of this number is similar to the case of

triangle orders, see proof of Proposition 23).

Table 3 summarises the different comparison rules that eapplied when 3-point
intervals are used.

Some preference structures are special cases of othefonestance weak orders
may be seen as interval orders with a threshold equal to Cetinth a perspective
each weak order can be seen as an interval order but not thraigofhus, we can
consider an inclusion relation between different strueguin Figure 15 each box
represents one preference structure, these boxes ar@lpantdered by inclusion
from top to bottom according to the arrows. Such inclusiaeseither obvious or
known from the literature ([5], [11]). However, a completady of this relation is
beyond the scope of this paper and will be left for future work

7 Conclusion

Handling imprecise, inaccurate and uncertain informaigoa common problem
both in human reasoning and in automatic devices aiming@iating decision

processes and more generally when information is manguil&ne way to take
into account such type of information is under form of inedswvho are expected to
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Preference Structure

(P,, I,) interval representation

Cp@azo = 1{(3,3)}
Weak Orders Cpsan = 1(2,2)}
Cpaa2 =1{(1,1)}
Cp(3 1,0) — {(25 2)5 (35 3)}
Bi-weak Orders Cpeany =1{(1,1),(2,2)}
Cp(2 2,0) — {(17 1)7 (37 3)}
Three-Weak Orders Cpea,0) = {(1,1),(2,2),(3,3)}
Cpo0,0) = {3, 1)}
Interval Orders Cp@Eo0) =1(3,2)}
Cpaany =1{(2,1)}
Split Interval Orders Cpap0 =13,2),(2, 1)}
C ={(2,1),(3,3
Triangle Orders P10 {@1,6,3))
Cp(? 0,0) — {(15 1)5 (35 2)}
C ={(3,3),(1,2
Structures with nontransitive preference P(,20) 13,3),(1,2)}
Cp(? 2,1) — {(15 1)5 (25 3)}

Table 3

Preference structures wilapoint interval representation

represent the lower and upper bound of the possible valuavafiable, a time or
space interval, a gap, an error. Intervals allow also towap limited discrimina-
tion power such that in order to distinguish two objects wed® use a threshold

(when measuring a certain feature).

Although the concept of “interval” is naturally associatedh an interval of the
reals, defined by the two extreme values, there exist sitostivhere more than
two values are associated with the same object. For instaomtgider a variable
value, its greatest ptessddue, but also the
Or consider the case avtiex two extremes
of the interval are imprecisely known: we have a lower and ppeu bound for
the minimum value and a lower and an upper bound for the maxirf@uvalues).
In order to study systematically the problem of how to coregatervals we first
generalize the concept itself of interval as a vectar ofdered real numbers, what

where we know its lowest possible

one more likely to occur (3 values).

we call a n-points interval”.

In this paper we propose a general framework about intep@igparison aiming
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Weak orders.

Bi-weak orders Interval orders.
Three-weak orders Triangle orders Split interval orders

Fig. 15. Inclusions between structures obtained by corspaniules on 2 and 3-point inter-
vals

at producing a classic preference model. The problem hasspwects.

1. On the one hand we want to know all different ways to compapeints inter-
vals in order to obtain &P, I') preference structure?(being asymmetric] being
symmetric, and both forming a partition df x A).

2. On the other hand we want know, given a set of preferendenséants of an
agent, to what type of preference structure do these camelsand in case it turns
out that intervals have to be used in order to obtain a nuleBpresentation, what
type of intervals should be considered?

In the paper we first consider the problem of coding the commparinformation
in a compact way. It turns out that all the information we neethe “relative po-
sition” of two intervals (intuitively showing how “far” istte actual position of the
two intervals w.r.t.to complete disjunction: one intereampletely on the right of
the other). Such a difference can be captured by a binayaelat least as strong
as” providing a partial order among all possible relatiosipons with complete
disjunction as the maximal element. This binary relatiofings a complete and
distributive lattice on the set of all relative positionse\Wso show that it is pos-
sible to code the information about relative positions inoenpact way through
the “component set” associated with each relative posiyamere all redundant
information is discarded).
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Having defined the tools allowing to conduct a study of inkds\comparison we
impose the necessary requirements in order to identifyimvitine lattice of rela-
tive positions all possible relations establishii#g I) preference structures. These
correspond to sub-lattices which have a unique lower botheupper bound be-
ing always the strongest position: complete disjunctidhp particular structure of
the lattice is such that the relatidn corresponds to the lower bound of the sub-
lattice, the inverse relatioR ! corresponds to the upper bound of the symmetric
complement of the sublatticé being the rest.

With such definitions it has been possible to conduct an estheustudy of 2-
points and 3-points intervals comparison, summarizedloheEa2 and 3. It turns out
that the comparison of 2-points intervals allow to estéb8different preference
structures: 2 types of weak orders, a bi-weak order and anvaitorder. The use
of 3-points intervals allows to establish 7 types of prafieeestructures: 3 types
of weak orders, 3 types of bi-weak orders, 3 types of inteovdkers, a 3-weak
order, a split-interval order, a triangle order and 2 typemansitive preference
structures. In the paper we show the equivalences betwearstral definitions of
such preferences structures, their numerical represemtand the properties they
characterize them. Such results confirm the descriptiveep@# our framework
which allows to provide a complete characterization fofgn@nce structures until
today never studied, in common with other structures wethvkmin the literature
(for instance we are able to interpret within the same fraark\riangle orders and
weak orders).

The paper opens the way to several research directionsoGdlyithe major issue

is the to generalize the findings for genenipoints intervals identifying the reg-
ularities and invariants within our framework. Anothereasch direction consists
in associating to the-points intervals comparison preference structures withem

than two relations of the typéP; - - - P,,, I) where P, are asymmetric relation and
I is symmetric and they all form a partition df x A. A more specific research di-
rection concerns the study of 3-points intervals and moeeipely the completion

of Figure 15. It is worth to note that when using 3-pointsiméds we start getting

structures whose numerical representation needs pogsilalygle orders) or nec-

essary (intransitive structures) more complex geomeiads (such as triangles
or circles).

We consider that the general framework we introduced ingher is sufficiently
wide to allow a systematic study of any type of intervals cangon, a major prob-
lem in different areas including decision theory, compweience and artificial
intelligence and beyond.
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