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Abstract

The paper deals with the valued comparison of intervals éaision making. In-
terval orders are classical preference structures whereamparison of intervals
is done in an ordinal way. In this paper we focus on valued @mpn where
more information, especially the distance between endtpaif intervals, is used
in order to have more sophisticated preference structuriee.generalization of
an interval order as a valued structure requires the chdide dorgan triplets.
We propose a valued outranking relation for interval congoar and show that it
satisfies different definitions of valued interval orderghgdifferent de Morgan
triplet. The decomposition of our outranking relation ipteference and indiffer-
ence provides a valued preference structure where therenefe isT-transitive
and monotone.
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1. Introduction

Most decision making problems in concrete applicationssétmted in com-
plex environments where one needs to take into considaratcmmplete or im-
precise knowledge, and/or vague preferences. When imgeava used in order
to represent such type of information, the decision makeds#o define a pref-
erence structure that allows to establish a preferencedegtwbjects represented
by intervals. In this article we propose comparison rulesraearvals in form
of valued binary relations and analyze the properties oddlelations from a
preference modeling point of view. Preference modelindd fiehere preference
relations are studied in details, is a central step for datiaiding but it is also
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commonly used in other domains such as artificial intellggereconomy, politi-
cal sciences, psychology and sociology. Interested rezmefind more details in
[3, 10, 11, 15, 16, 17] among many others.

In preference modeling, intervals are used as numericeg¢septation of some
well known preference structures such as semiordersyadterders,PQ1 inter-
val orders, pseudo orders, etc. (see [10, 16, 18]). The ricaheepresentation of
preferences is a widely studied topic since the quantiboadf preferences facil-
itates the search of the best object(s). In this article wg&ict our study to the
case of a finite set of objects knowing that the cardinalityhef object set plays
an important role on the representation. We should mentiecase of preference
structures applied on infinite sets where topological stmes are required (see
[4, 13] for relations between orders and topology and [1p2kbntinuous repre-
sentation of 10). In decision making, a numerical represtemt of a preference
structure may be used for two different purposes. Let usidenshe case of a
preorder.

Definition 1.1. (Preorder) LetR be a binary relation onA x A, thenR is a
preorder if and only if there exists a real valued functiprsuch thatvz,y €
A R(z,y) < f(z) = f(y).

Imagine now that the way in which the decision maker judgesottjects cor-
responds to the logic of a preorder. The party € A R(x,y) = f(x) > f(y)
(right implication) of the definition may be used when therp@e comparisons
on objects are known and when the decision maker needs toiaigsa humber
to each object. The pavtz,y € A f(x) > f(y) = R(z,y) (left implication)
may be used when the evaluation of each object is known and wih@nking on
objects is needed.

In our point of view, the use of intervals in the numericalreggntation of
preference structures is mostly related to the right ingpion of the characteriza-
tion. Intervals are useful since some type of intransitieit indifference (gener-
ally related to the cumulation of small indifference threlsls) may be represented
by intervals but not by single points. Concerning the lefpiization, the use of
the definition of such preference structures in order to ammntervals of re-
als is generally limited. The mean reason is the fact thaetuefinitions make
use of ordinal comparisons which means that the distandesbe the points of
intervals are not important and that we can get severalrdiftenumerical repre-
sentations. Hence when the comparison rules of semiord@nteoval orders are
used in real life problems some information is lost. Foranse, consider three
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intervalsz = [0, 6], y = [1,5] andz = [5, 10]. For interval orders, intervalsand
y are indifferent but alsa@ andz are indifferent.

The aim of our study is to propose some comparison rules fenials where
the distance between points will be significant. We want teehatuitive and eas-
ily interpretable rules (which can facilitate their accaptity by decision makers)
but we want also that the resulting valued preference oglathave some nice
properties as it is the case in crisp interval orders.

The fuzzification of interval orders is already studied inhadretical way
where the researchers analyzed different possible waysftoedthem ([5, 7]).
However a comparison rule of intervals satisfying such d&ims is not proposed
in the literature. In this article we propose valued binalations on intervals,
show that they satisfy some nice properties and that thepeagen as a fuzzifi-
cation of interval orders.

The paper is organized as follows. In the next section wedhice the basic
notations, Section 3 is devoted to the definitions of valumerval orders where
we put together some results of [5, 7]. In Section 4 we presgatued outranking
relation for the comparison of intervals and study its props. We show that our
valued relation satisfies different definitions of fuzzyeinval orders. In Section 5
we divide our outranking relation into its asymmetric anthgyetric parts in order
to differentiate the preference from the indifference analyze the properties of
these two relations. We show that our relations form a vapueterence structure
with some nice properties and we conclude the paper withd3e6t

2. Notations and definitions

In preference modeling the comparison of objects is donary relations.
In this paperA will represent a finite set of elements on which preferenta re
tions are applied. We will use capital lettePs(), R, ... to represent the relations
as subsets ofl x A, thus in crisp case the notatid®(z, y) andx Ry are used
indifferently and they show that the relatidghholds amonge andy. Given any
two binary relationsV; W on the setA we denoteV o W (z,y) if and only if
dze A: V(x,2)A\W(z,y) andV C W is the formulavz, y V (z,y)=W(x,y).

The collection of binary relations used for preference nliodgis called a
preference structureln general the classical theory of preference modeling con
siders two relations, the preference relatiét) &nd the indifference relatior).
Such a representation admits the existence of a complder@nee structure, i.e.
the decision maker is supposed to be able to compare thaatitess (for all ob-
jectz andy in A, Py or yPx or Iy holds) in an exclusive wayR N I = ().
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The collection ofP and! is called a(P, I') preference structure

Definition 2.1. ((P, I) Preference structure [18]) LeP and ] be two binary re-
lations defined ol x A, then they form &P, I') preference structure iff

P is irreflexive,l is reflexive

P is asymmetric

I is symmetric
e PN I =0 (exclusivity)
e PUITUP! = A x A (exhaustivity)\Vz,y P~ (z,y) = P(y,))

The union of preference and indifference is generally daltee outranking
relationor the characteristic relationThe affirmationz Ry holds if and only if ¢
is at least as good a8. The indifference relation (resp. the preference relgtie
the symmetric (resp. the asymmetric) partofFrom a data analysis point of view
we can consider the indifference relation as a similaritgtren and the union of
the preference relation and its inverse as a dissimilaeigtion. Hereatfter, for
sake of simplicity, we will only use the terms of preferenoe andifference

In the following we will consider objects represented unidem of intervals
of values. Given a finite set of objects we associate to each elementdivo
functions! : A — R andu : A — R wherel(x) (resp. u(z)) represents the
left (resp. the right) end-point of the interval of the oltjec hence we suppose
that for allz in A, I(z) < u(z). Given the finite structure of set, when we
compare intervals we can restrict inequalities to theicispart without loss of
any generality.

Studying valued relations needs some notions of fuzzy seiryh Small let-
tersp, ¢, r, ... are used to represent the relations as predicates holdiaggtwo
elements ofA in the fuzzy case (for instangéz, y) will represents the intensity
or the credibility of the preference af overy). We are going to use the sym-
bols of 7" and S in order to represerttnorms (triangular norm) and-conorms
(triangular conorm) respectively as continuous repredimts of conjunction and
disjunction operators in the case of continuous valuations

Definition 2.2. (Triangular norm [19]) A triangular normT" is an increasing,
associative and commutatiye, 11> — [0, 1] mapping satisfyingyz € [0, 1],
T(1,z) = x.



Definition 2.3. (Triangular conorm [19]) A triangular conornt' is an increas-
ing, associative and commutatife 1]> — [0, 1] mapping satisfyingz € [0, 1],
S(0,z) = x.

T-norms and t-conorms are used for the definition of intéirse@nd union:
the fuzzy intersectiom N7 b is the binary fuzzy relation defined by, y r» Ny
b(x,y) = T(r(x,y),b(z,y)) ; the fuzzy unionr Ug b is the binary fuzzy relation
defined bz, y r Us b(z,y) = S(r(x,y), b(x,y)).

Definition 2.4. (Negation) A negatiorV is a function from[0, 1] to [0, 1] which
satisfies the following conditions:

e N(0O)=1andN(1) =0
o Va,yr <y—> N(y) < N(z)

A continuous and strictly decreasing negation is calledrigt negation In
this paper, if nothing is precised, we will refer to the startnegation which is
Vx € [0,1], N(x) = 1 — z (for a discussion about such operators in the frame of
fuzzy sets theory see [9]).

T-norms and t-conorms are related by duality. Pairs of trsoand t-conorms
satisfy the generalisation of the De Morgan law as in thefaithg:

Definition 2.5 (De Morgan Triplets ). Let T be a t-norm, S a t-conorm and N a
strict negation. ThedT, S, N) is a De Morgan triplet iftvz, y € [0, 1]:

N(S(z,y)) = T(N(x), N(y)).

Several De Morgan Triplets have been suggested in thetlitera Zadeh
(called also Godel) and tukasiewicz triplets are the mostiumes in preference
modeling (see Table 2).

Names t-norms t-conorms
Zadeh min(x,y) max(x,y)
tukasiewicz maz(z +y—1,0) min(x +y,1)

Table 1: De Morgan triplets

Some properties may be important for the use of t-norms, weent in the
following two of them which are necessary for the analysisaltied preference
structures.



Definition 2.6. (Zero divisor [14]) An element €]0, 1] is called a zero divisor of
at-normT iff Jy €]0,1[ such thatl'(x,y) = 0. A t-norm without zero divisors
is called positive.

Definition 2.7. (Archimedean [14]) A continuous t-norm T is Archimedean iff
Vo €]0,1] T(z,z) < z.

Lukasiewicz t-norm is Archimedean and has zero-divisordathe minimum
operator is positive.

One of the main topic of preference modeling is the analylsiseproperties
of preference relations. We present in the following sonfadens of properties
in the valued case:

Definition 2.8. Considering a t-norni’ and a t-conornS, a binary valued rela-
tionrin A x Ais

o reflexive if and only i¥/z, r(z,z) =1

o irreflexive if and only iz, r(z,2) = 0

e symmetric if and only ¥z, y r(z,y) = r(y, z)

e T-asymmetric if and only Wz, y, T'(r(x,y),r(y,z)) =0

e T-antisymmetric if and only Wz, y,z # y = T(r(z,y),r(y,z)) =0
e S-strong complete if and onlyyfc, y, S(r(z,y),r(y,z)) =1

e S-completeifand only ¥z, y,x # y = S(r(z,y),r(y,z)) =1
e T-transitive if and only iz, y, z, T'(r(x, y), r(y, 2)) < r(zx, z)

Strong completeness implies the reflexivity in the crispedaswever in the
valued case one can have a strong complete relatiiich does not satisfy the
reflexivity, it is the case, for instance, if the strong coetphess is verified using
the Lukasiewicz t-conorm.

The dual of a valued relationon A is denoted by¢ and defined by/z, y €
A, r4(x,y) = N(r(y,z)). Animplication using a composition of two valued rela-
tions such asorw C g willbe represented age, y, z € A, T'(v(x,y), w(y, z)) <

q(z, 2) .



Total orders (transitive, antisymmetric and completetiets) and preorders
(reflexive, transitive and complete) are the most used prée structures in de-
cision aiding. Their definition in valued case is derivedhirtheir definition in
crisp case:

Definition 2.9. (Valued total order [11]) Considering a t-norffi and a t-conorm
S, abinary valued relatiom is a valued total order if and only ifis, T-antisymmetric,
S-strong complete and@'-transitive.

Definition 2.10. (Valued preorder [11]) Considering a t-norffi and a t-conorm
S, a binary valued relation is a valued preorder if and only if is reflexive,S-
strong complete and-transitive.

In the crisp case, in both of these structures, a small difiee between two
evaluations is interpreted as a preference for the objechfdoetter evaluation.
However, as pointed by Luce ([12]), in some situations srddlerences may
be considered as not significative for decision makers. inegdor instance, a
decision maker looking for a new car and comparing two cath wiice equal
to 2000GE for the first one and price equal to 20%@or the second one. It is
not surprising if the decision maker says that he is indgffitbetween these two
prices. Such an idea of indifference threshold can not bdlkdrby total orders
or preorders. Interval orders are used in such situatiohs. characterization of
interval orders in the valued case needs special analysidewote the following
section to this topic.

3. Fuzzy Interval orders

We start by presenting the definition of an interval orderigtkte case:

Definition 3.1. (Interval order [10]) Let R be a binary relation onA x A, then
R is an interval order if and only iR is complete and Ferrers.

Definition 3.2. (Ferrer relation [10]) Let R be a binary relation oM x A, then
R is Ferrers if and only if

Ve,y,z,w € A, (xRy A zRw) = (zRw V zRy)

A Ferrer relation can be also defined using the duak of



Proposition 3.1. ([10]) Let R be a binary relation o x A, thenR is Ferrers if
and only if
RoR'oRCR

As we mentioned in Section 2 an outranking relation can ba&led/in two
parts, the asymmetric part denoted®wand the symmetric one denoted hyThe
name of interval orders is inspired by the fact that the nucaérepresentation of
these structures makes use of intervals.

Definition 3.3. (Interval order [10]) A (P, I) preference structure on a setis
an interval order ifand only iH [, : A +— R such that:

Va: ulz)>l(x);

Va,y: Plx,y) & l(z)>u(y);

Va,y:Il(z,y) < l(z) <u(y)andl(y) < u(z).

A representation witlh andw is equivalent to the one where to each element
x of A is associated a functigy(z) (representing the utility of) and a threshold
functiont(x) where we havé(z) = g(x) andu(z) = g(x) + t(x). In this case
one will say that the objectis preferred to thé if and only if its utility is greater
than the utility ofb plus an indifference threshold.

The special case where the length of intervals are constanté the indiffer-
ence threshold is constant) correspondsseraiorder

Using the properties ad? and/, one can provide new ways to define an interval
order. In the following we present four equivalent defimsdor these structures.

Theorem 3.1.[10] Let R be the characteristic relation of a thg”, I') preference
structure on a setl, the following assertions are equivalent:

I. Ris an interval order.

ii. Vo,y,z,w € A (zRy N zRw) = (zRw V zRy).
ii. RoR‘o R C R.

iv. PoP4o P C P.

V.PoloP CP.



All the equivalences between these five conditions do nal iothe fuzzy
case ([8]). As a consequence different types of fuzzy irtlepvders may be de-
fined in the valued case. Condition (ii) is the most used onether conditions
are also suggested by different researchers as alterclafivétions. Bufardi, Van
de Walle and De Baets have analyzed relations between tlkeéséidns and de-
fined equivalence classes (see [5, 7]. Some new results @pfteach of [7] can
be found in [8]).

The names of our definitions are different from the name goyeBufardi, Van
de Walle and De Baets. We consider in the following a refleanéS-complete
(the completeness must be verified with any t-conorm) i@atati Concerning
relationsp andi, their union is also supposed to be reflexive @domplete ;p
and: form a fuzzy preference structure.

e The direct use of the definition of fuzzy Ferrers relatior){[7

— ris amin-interval orderiff Vz,y, z,t € A,
Tin(r(2,y),7(2, 1)) < Spaa(r(2, 1), 7(2, ).
— ris akukasiewicz-interval ordeiff Vx,y, z,t € A
To(r(z,y),r(2,1)) < Sp(r(z,t),r(z,y))
e The use of the fuzzy composition pfandi ([7]):

— p andi form astrong-interval ordeiiff
P OTpin L Oy P S P
— p and: form aweak-interval orderff
por, tor, p C p.
e The use of the fuzzy composition efandr< ([5]):

— risaTl; — Sp-interval orderiff
d
ror, r°or, rCr.

e The use of\-cuts ofr ([5, 7]):



— r is amin-max-interval ordeiff Vi € [0, 1],
R,,is Ferrergi.e. R, is an interval order, see Definition 3.1

WhereR}\i = {(.T,y),T'(.’L‘,y) > )\Z}’
— p andi form a\-interval orderiff Vi € [0, 1],

Py, U 1,,is Ferrers

where
P\, (z,y) <= r(z,y) > \; andr(y,z) < \; and
I)\i(x7 y) <~ mm(r(x, y)v r(ya l‘)) Z /\i-

Although these definitions are not always equivalent, tlexist some rela-
tions between them. We present in the following a generarsehshowing such
relations between different definitions. For this purpogepart together in Figure
1 different results obtained by the three authors (see )5ad add two counter
examples on these results in order to complete the scheme.

Theorem 3.2. The classes of fuzzy preference structures defined by eacbfro
Figure 1 are identical within each box. The box classes anmtigléy ordered by
inclusion from bottom to top according to the arrows. Theealz® of an arrow
means that the inclusion is not verified.

Proof : see Annexe (Section 7H

4. Comparison of intervals with a valued Ferrers relation

As we explained in the introduction, the aim of our articléagpropose some
comparison rules on intervals with some nice propertias fpoeference modeling
point of view. Moreover, we want our rules to have a semara8yeo understand
for decision makers. Hence, we begin our study by proposingesideas about
what the outranking relation must contain. We think thateéheere some positive
reasons to affirm thdhe intervalz is at least as good as the intervalf:

I. some points ofc are greater than all the points @br
li. some points ofy are smaller than all the points ofor

iii. = andy have some common points.
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1) Trin(r(z,y),r(2,1t) < Spae(r(z,t),7(2,y))
2) Tnin(p(2,y), p(2:1)) < Simaz(p(2,1),p(2,9))
3) VA R, Ferrers

4)V\ (Py, I,) Ferrers

5) por,. ior,., pCp

8)rorp, rdoTLrgr

9)por, plor, pCp

6) Tu(r(w,y),r(2,1)) < Si(r(z,t),7(2,9))

7) TL(p(xa y),p(Z, t)) < SL(p(x7 t),p(z, y))

10)P ory, ? or, pCp

Figure 1: Relations between different definitions of fuazerval orders.
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These ideas may be represented by the proportion of poitis$ysag the condi-
tions cited above :

i. the proportion of points of interval which are greater than all the points of

intervaly : min(1, max(z((?):?((g))j ),

ii. the proportion of points of intervaj which are smaller than all the points

of intervalz : min(1, max(i((z)):ll((z)) ,0)),

lii. the proportion of points of intervat which are also points of intervaf :

min(1, max(%, 0)).

wherex N y presents the differendenin(u(x), u(y)) — max(l(x),(y))).

Hence we propose to define the outranking relation, dengted ds the sum
of these three proportions.

Definition 4.1. (Outranking relation for intervals) Let be a valued binary rela-
tion on A x A then itis an outranking relation for intervals iz, y

- () o ()

o 0))

Table 2 represents the valuefr, y) with respect to different relative posi-
tions ofx andy. This table presents all the possibilities on relative {@ss in
an exhaustive way, the cases where one end-pointoéets one end-point of
correspond to two consecutive cases, for instance the gase u(z) < u(y) <
u(z) corresponds to the case 2 and 3.

We will analyse in the following different properties of We begin by show-
ing thatr is reflexive andS-strong complete.

Proposition 4.1. Letr be the valued outranking relation of Definition 4.1, then
is reflexive andb-strong complete.

Proof : see Annexe (Section 7H

Another property which is important for preference comgamiis the mono-
tonicity. This property can be obtained by imposinigp be non decreasing on the
first element and non increasing on the second one.
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r(z,y) r(y, x)
T
Y 1 0
Case 1
| T
y [ . I
I : i
' : ! 1 c/Ilyll
: c :
Case 2
— |
: Y : !
— : (a+c)/||z]| 1
. c . a .
Case 3
| > | 1 1
| . |
Case 4
——
: Y :
| z ; | 1 (a+0)/Ilyll
: c . a .
Case 5
I T |
I : ! y
| — c/|z|| 1
: c :
Case 6 ”
—
y 0 1
Case 7

Table 2: Different values of the outranking relation foreintals

Definition 4.2. A valued binary relation- defined onA x A is monotone if and
only if Va, y r(X,y) is non decreasing onand non increasing og.
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Definition 4.3. Letz, y, 2/, v’ be four intervals such thdtz') = I(z) 4 a, u(x’) =
u(z) +b,1(y) = l(y) + ¢,u(y’) = u(y) + dwith a,b,¢,d > 0. A valued binary
relationr defined om x A is monotone if and only if(z, y') < r(x,y) < r(2/,y).

Proposition 4.2. Letr be the valued outranking relation of Definition 4.1, then
IS monotone.

Proof : see Annexe (Section 7H

Since we know now thatis reflexive andS-strong complete we can try to see
if  corresponds to a valued preference structure such as \ahaédrder, valued
preorder or valued interval order. We study first of all thentisymmetricity,
necessary condition for valued total orders.

Proposition 4.3. Letr be the valued outranking relation of Definition 4.1, then
is not7T-antisymmetric (i.e. there is nenorm satisfying th&'-antisymmetricity).

Proof : see Annexe (Section 7l

Corollary 4.1. Letr be the valued outranking relation of Definition 4.1, theis
not a valued total order.

Preorders, with total orders, are one of the most used @raferrelations in
decision aiding. Their difference from total orders is thetfthat they allow the
indifference between two different objects, which is na tlase with total orders.
The remaining property far being a valued preorder is the transitivity.

Proposition 4.4. Letr be the valued outranking relation of Definition 4.1, then
is notT-transitive for anyt-normT'.

Proof : see Annexe (Section .

Corollary 4.2. Letr be the valued outranking relation of Definition 4.1, theis
not a valued preorder.
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This result is not surprising. In the crisp case, the prefegestructures having
a numerical representation by intervals, such as semrsyrieerval ordersPQ/
interval orders, pseudo orders, are not transitive. Gégelee intransitivity of
such structures is related to the intransitivity of the syatno part of the rela-
tion (the indifference) which is provided by the cumulatmirsmall indifference
thresholds (for more details, see [10, 12, 16, 18]). Howeter transitivity of
the asymmetric part of the semi orders and interval ordeng;iware the mostly
used ones, remains satisfied, this allowing the choice ob&st object without
difficulty. Semi orders and interval orders satisfy anotbeperty which is in-
teresting for decision aiding. They are Ferrers relatioAs.we showed in the
previous section, there are many ways to define a Ferrerorelia the crisp
case and unfortunately the equivalence of these definii®last in valued case.
However there are some relations between different indégpons, the definition
of min-interval order implying all the rest, except one. (uatued outranking
relation satisfies this general definition.

Proposition 4.5. Letr be the valued outranking relation of Definition 4.1, then
is a min-interval order.

Proof : see Annexe (Section M.

As a consequence our interval comparison satisfies the haggerity of the
definitions of fuzzy interval orders proposed by differeutters.

Corollary 4.3. Let r be the valued outranking relation of Definition 4.1, then
r satisfies the definitions 2, 3, 4, 6, 7, 8, 9 and 10 of Figure 1ndde is a
tukasiewicz-interval order, a weak-interval orderf/a — Sy -interval order, min-
max-interval order and\-interval order.

Proof : immediate because of Theoreml.2

5. Decomposition of the outranking relation for intervals an p and ¢

In preference modeling it is very common to separate theaoking relation
into two parts in order to differentiate the strict prefezerfirom the indifference.
The preference is defined as the asymmetric part of thearlathile the indiffer-
ence is considered as its symmetric part. In the crisp cadeawes
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{ Va,y P(z,y) <= R(x,y) andnot(R(y, x))
Va,y I(x,y) <= R(z,y) andR(y, x)

In the valued case, we replace the conjunction operator syoan :

{ Vr,y p(z,y) = T(r(z,y), N(r(y,z)))
Vr,yi(z,y) =T(r(x,y),r(y,z))

However the choice of the t-norm and the negation may havengoritant
impact and may provide different definitions (for a deep asston on the subject
see [11]).

A classical way is to consider thein operator for the indifference. The nega-
tion operation is generally defined asvV(z) = 1 — x, Vx. However, there is no
consensus on the form of preference. In the following we eliosise the same
t-norm forp andi:

Definition 5.1. Letr be the valued outranking relation of Definition 4.1, its asym
metric and symmetric parts, denoted respectively &gd: are defined as follows,

VSL’,y € A7 p(l’,y) = HliIl(T(J?,y), - T(y,ZC))
Ve,y € A, i(z,y) = min(r(z,y),r(y,z))

Table 5 presents values of p andi depending on the relative positions.of
andy. The number of cases are the same as the cases presenteldif.Tab

Case(r,y) | r(z,y) | r(y,7) | plz,y) | ply,x) | i(z,y)
1 1 0 1 0 0

u(y)—l(z) | U{z)-l(y) u(y)—I(z)

2 ( )11( ) | ) | )OZ( M=

u(x)—Il(y y)—l(x u(z)—Il(y

3 u(z)—l(x) 1 0 u(@)—=l(z) | u(x)-l(z)
4 1 1 0 0 1

u(y)—l(z) | l=x)-l(y) u(y)—I(z)

5 ( )11( T | ) | )Ol( M =i

u(x)—Il(y y)—l(x u(z)—Il(y

6 u(z)—I(z) 1 0 u(x)—l(z) | ulz)—l(x)
7 0 1 0 1 0

Table 3: Values of,, p andi depending the relative positionsofandy presented in Table 2
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Remark 5.1. Letp andi be two valued relations of Definition 5.1, then

1. pis defined as the dual of: Vz,y p(x,y) =1 —r(y, z)

2. The semantic gb is the following: there are positive reasons to affirm that
x is preferred toy if some points off are smaller than all the points af. In
factp is defined as:

I(z) - U(y)

va,y ple,y) = max(0, min(1, 2o =08

)

w

. p IS monotone.
Vo, yi(z,y) =r(z,y) +r(y,z) — 1
5. Va,y p(x,y) +i(z,y) +ply,z) =1

N

The first remark is a consequence of the fact that for eactivelposition
of x andy, r(x,y) or r(y,z) is equal to one. Concerning the second remark,
it is sufficient to analyze the values presented in Table 5rdeioto verify the
affirmation. The monotonicity op is a direct consequence of the monotonicity
of r (r(y, x) is not decreasing op and not increasing omn, see Proposition 4.2).
Remark 4 is also due to the fact that, y max(r(x,y),r(y,z)) = 1. The last
remark is a direct consequence of Remark 1 and Remark 4.

We will see now if the collection gf andi form a valued preference structure.
We begin by presenting the fuzzification of the definition afresp preference
structure (Definition 2.1).

Definition 5.2 (Fuzzy (P, I') preference structure). Letp and: two valued rela-
tion defined oM x A, then they form a fuzz\P, I') preference structure iff

(P1) pis irreflexive,i is reflexive

(P2) pis T-asymmetric

(P3) i is symmetric

(P4) T'(p,i) = 0 (exclusivity)

(P5) S(p,S(i,p~1)) = 1 (exhaustivity)

Remark 5.2. For a fuzzy(P, I') preference structure,
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1. if p is monotone then for cases 4, 6 and 7 of Table 2 the preferenselbe
zero ;

2. if p is monotone ang(x,y) = 1 for case 1 of Table 2 angd(z,y) = 0 for
case 2 of Table 2 then we obtain a crisp interval order.

Concerning the first point, the irreflexivity pfimpliesp(x, z) = 0 for case 4
and the monotonicity op implies the rest. For the second point, we gety in
case 3, 4,5, 6 or §(x,y) = 0 because of the monotonicity. By exhaustivity we
haveVz,y incase 2,3,4,50r §z,y) = 1.

For Definition 5.2 the choice of the t-norms and t-conormseig/vmportant.
Intuitively we think that for decision aiding it is not supmmg to forbid completely
the coexistence gf andp~!. For this purpose a positive (without zero divisor)
t-norm, such asin, can be used. The idea of using a valued relation is intratiuce
in order to allow the coexistence pfand: in some particular cases (for instance
if there are some common points to intervalandy but also some points afare
greater than all the points gf there are some positive reasons for indifference but
also preference). For that reason, we think that it is beidé¢to have a positive
t-norm for PropertyP4. We think that Lukasiewicz t-norms can be used for this
property. Concerning the exhaustivity, using a positigettorm such asiax may
be very imposing (it means that for each relative positioleast one relationp-
ori- must be equal to 1), the use of Lukasiewicz t-conorms maydumod choice
for this property.

Our intuitions are coherent with theoretical results. Van/lle et al. ([20])
analyzed the use of different type of t-norms and concluden paper by suggest-
ing the use of Lukasiewicz t-norms. Their analysis conagimeference struc-
tures including the incomparability but their results remwalid in the case of
fuzzy (P, I) preference structure. They showed that with positive trsoonly
crisp preference structures can be defined.

Proposition 5.1 ([20]). Consider a de Morgan tripled/ with a positive t-norm
(without zero divisor). I/ is used in all the properties of Definition 5.2 then the
valued relation® and: are all crisp.

Hence t-norms having zero divisors must be used in orderltovalalued
relations. However the following proposition shows thatgotype of t-norms
with zero divisors are not very intuitive for preference ralag since they do not
allow the use of the whole range, 1].
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Proposition 5.2 ([20]). Consider a de Morgan tripled/ with a continuous non-
Archimedean t-norm with zero divisors.Nf is used in all the properties of Defi-
nition 5.2 therdz, € [0, 1] such thatvz, y,

plr,y) <1 = pz,y) <z,
ilr,y) <1 = i(z,y) <z

In the light of these two propositions Van de Walle et al. g the use of
tukasiewicz triplet in Definition 5.2:

Definition 5.3 (Lukasiewicz (P, I') preference structure [20]). Letp andi be two
valued relations defined a# x A, then they form a tukasiewi¢?, ) preference
structure iff

P1) pisirreflexive,i is reflexive
P2) pisT-asymmetric

(P1)

(P2)

(P3) iis symmetric
(P4) Tr(p,i) =0
(P5) Sc(p, Sc(i,p™h)) =1

Proposition 5.3. Let p and be the valued relations of Definition 5.1, then they
form a LukasiewiczP, I') preference structure.

Proof : see Annexe (Section W.

However as we mentioned before we think that in some contextsly be
preferable to use th&,;, for Property 2. Hence we propose a restriction in the
definition given by Van de Walle et al.:

Definition 5.4 (Mixt Fuzzy (P, I) preference structure). Letp andi be two val-
ued relations defined oA x A, then they form a mixt Fuzzy’, I) preference
structure iff

(P1) pisirreflexive,i is reflexive
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(P2) pis T,,,-asymmetric

(P3) iis symmetric

(P4) Tr(p,i) = 0 (exclusivity)

(P5) Si(p,Si(i,p~1)) = 1 (exhaustivity)

Proposition 5.4. Let p andi be the valued relations of Definition 5.1, then they
form a mixt Fuzzy P, I') preference structure.

Proof : see Annexe (Section .

Our relationg and: show that the change of Property 2 in Definition 5.3 has
not a negative affect since the relatignand: can be valued and their evaluation
makes use of the whole range [0, 1].

Proposition 5.5. Let p and+ two valued relation of Definition 5.4, then they can
be valued and take values in the whole range [0, 1].

Proof : see Annexe (Section M.

We now know that our relations and: form a valued preference structure.
However this structure is neither a valued total order noalaad preorder since
r is notT-transitive. We mentioned in the previous section that an¢hsp case
even if interval orders are not transitive their asymmaeapact is transitive. We
have also the satisfaction of the transitivity with our \edwpreference relation.

Proposition 5.6. Letp be the valued outranking relation of Definition 5.1, then
is T,,,.,-transitive.

Proof : see Annexe (Section W.

Corollary 5.1. Let p be the valued binary relation of Definition 5.1, theris
T-transitive with any t-norm.

Proof: see Annexe (Section W
We saw thap and: have some nice properties for preference modeling. By
Corollary 4.3 we know that o, ¢ o, p C p (they correspond to a weak interval

order since). We will analyse in the fallowing if the conditipoy; . iop,, p C p
(necessary condition for strong-interval orders) is vedifivith our relations.
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Proposition 5.7. Let p and: be two valued relations of Definition 5.1, then they
do not form a strong-interval order .

Proof: see Annexe (Section W

In a more general way when some intuitive conditions are sepoto the
relations the conditiop o i o7 p C p is not verified with positive t-norms. We
will impose three intuitive conditions :

e the monotonicity of

e the fact thap(x, y) is different from zero ifi(z) > I(y) andu(z) > u(y).
This situation corresponds to the case 2 of Table 2 and we Khawif
p(z,y) = 0in Case 2 we have crisp interval orders, see point 2 of Remark
5.2

e the fact that indifference is different from zero when twadeiwvals have
some points in common

Proposition 5.8. If p is monotone angh(z,y) > 0 for case 2 of Table 2 and
i(z,y) > 0 whenz andy have some common points then; i o, p C p can not
be verified with positive t-norms.

Proof: see Annexe (Section W

6. Conclusion

In this paper we proposed a valued outranking relation terial comparison.
Our relation has the advantage of being intuitive, it sassiimportant properties
for decision making such as the monotonicity and correspdod general val-
ued Ferrers relation in the sense that it satisfies the myajoiridefinitions using
different de Morgan triplets. Our analysis allowed us tonp@ut also some ex-
isting results on the characterization of valued intervdeos. We presented the
difficulties of obtaining a unique definition for these stiwes and showed the
relations between different definitions proposed in thexditure. We then divided
our outranking relation into two in order to differentiateetpreference from the
indifference. We showed that our separation is meaningfubfeference model-
ing since it corresponds to a valued preference structtisatisfies nice proper-
ties such as the monotonicity and the transitivity of theiegdlpreference relation.
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Concluding our study we realized that one of the definitiom oflued interval
order por, . iop . p C p)isnot coherent with some intuitive conditions, hence
we do not recommend its use for decision making.

For future studies, a numerical representation of valueshval orders is not
studied in the literature. Our outranking relation can beaatiag point for this
study. On the other hand, studies similar to ours are migsingther preference
structures using interval representation. We think thatiseders,PQI interval
orders and pseudo-orders deserve also such analysis.
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7. Annexe

Proof of Theorem 3.2

We make use of some results of the papers [5, 7] and we add smmeecex-
amples in order to complete the proof.
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Equivalences:

1 <= 2: theorem 4.4 of [7],

1 < 3: proposition 4.6 of [7],

1 <= 4: theorem 6.1 of [7],

6 < 7 <= 8 <= 9: proposition 4.3 of [6] and theorem 5.2 of [7].
Implication:

1 = 6: proposition 4.3 of [7],

5 = T7: theorem 5.4 of [7],

9 = 10: theorem 5.2 of [7].

Not implication:

10 = 6: counter example 5.2 of [7],

1 = 5: remark 5.4 of [5],

5 # 2: since there is not any counter example for this case, weogsep
a simple one. Let,y, z,t be four elements off andp and: two valued binary
relations wher&'z, y i(z, y) iff N(p(x,y))andN(p(y,z)). We propose(z,y) =
0.9,p(2,t) = 0.9, p(z,t) = 0.5, p(z,y) = 0.6 andi(z,y) = i(y, z) = 0.4.

Let us remark that we considered here a Lukasiewicz prefersimucture and our
relations verify the properties of such structure. The Usadleh t-nom and t-
conorm for the definition of a fuzzy preference structurevptes crisp relations.
It is easy to see thak,,;, (p(z,y), Tmin(i(y, 2), p(2,t)) = 0.4 < p(x,t). However
Tonin(p(2,9),0(2,1))> Spaz(p(z,t), p(2,7)). So the assertioh is verified while
the assertior2 is not.

6 # 1: 5 = 6 and5 = 1 henceb = 1.

10 =% 5: since there is not any counter example for this case, weosm®p
simple one. Let, y, z, t be four elements aft andr a valued binary relation such
that: p(z,y) = 0.3, i(y,2) = 0.4, p(z,t) = 0.4 andp(z,t) = 0.2. Itis easy to
see thaTL(p<x7 y)? TL<Z(y7 Z),p(Z, t))) =0 SOTL(p<x7 y)? TL<Z(y7 Z),p(Z, t))) <
p(z,t). But on the other hand we hawein(p(x,y), min(i(y, z),p(z,t))) = 0.3
hencemin(p(z,y), min(i(y, 2), p(z,t))) £ p(x,t). So the assertiol0 is verified
while the assertiof is not.l

Proof of Proposition 4.1
- r is reflexive : immediate.
- r is S-strong complete : immediate singe, y, max(r(x,y),r(y,z)) = 1

(see Table 2).
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Proof of Proposition 4.2
r IS monotone: Consider
2’ such thatu(z’) = u(x) + a andi(z’) =

y' such that(y') = u(y) + o’ andl(y') =
We will show thatr(z, ') < r(z,y) < r(x

[(z) + bwitha,b € RT and
I(y) +V withd', b/ € RT.
"y)

-r(z,y) < r(z’,y) : We consider different relative positions:oindy shown
in Table 2.

e r andy in Case 1 r(2',y) corresponds to the case 1 at{d’, y) = 1.

e z andy in Case 2 r(z',y) corresponds to the cases 1 or 2 agd, y) = 1.

e z andy in Case 3 :r(z,y) = “O= andr(z/,y) corresponds to the

u(z)=l(z)
cases 1 or 2 or 3. I’ andy are in case 1 or case 2 thefx’,y) = 1.
If they are in case 3 then(x/,y) = HU-Ute-. Sincea,b € R* and

u(z) —U(y) < u(x) —Il(x), we haver(z,y) < r(2,y).
e z andy in Case 4 r(z',y) corresponds to the cases 1 or 2 agd, y) = 1.

e r andy in Case 5 :r(2/,y) corresponds to the cases 1 or 2 or 5. Hence,
r(o',y) = 1.

e randyin Case 6 r(z,y) = Zg; f(y) andr(z’, y) corresponds to the cases

1,2,3,4,50r6. I’ andy are in case 1, 2, 4 or case 5 then’, y) = 1. If
they are in case 3 or 6 thefiz’, y) = % Sincea,b € R* and
u(z) — l(y) < u(z) —l(x), we haver(x,y) < r(a',y).

e r andy in Case 7 r(z,y) being equal to zero;(x,y) < r(a,y).
We show that for all the initial relative positions efandy, r(z,vy) < r(2/,y).

-r(z,y') < r(z,y): We reconsider different relative positions ofandy
shown in Table 2.

e randyin Case 1or2or4or5:i(z,y) = 1.
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e randyin Case 3 r(z,y) = Zg;:f% andr(z,y’) corresponds to the cases
3or6or7. Ifxrandy’ are in case 7 thenx, y’) = 0. If they are in case 3 or
6 thenr(x,y') = %_@;():)“/) Sinced’ € Rt we haver(z,y') < r(x,y).

e z andy in Case 6 r(z,y) = Zggjgg; andr(z,y') corresponds to the cases

6 or 7. If z andy’ are in case 7 then(x,y’) = 0. If they are in case 6 then

r(z,y) = %W Sinced’ € Rt we haver(z,y') < r(z,y).

e r andy in Case 7 r(z,y’) being equal to zeroy(z, y') < r(z,y).

We show that for all the initial relative positions efandy, r(z,vy') < r(x,y).

As a conclusion is monotonell

Proof of Proposition 4.3:

We show thaBiz, y, with z # y whereT'(r(x, y), r(y, x)) # 0. Letz andy be
two intervals defined onl such that(z) = i(y) < u(y) < u(z). Then we have
r(z,y) = r(y,z) = 1 which impliesT'(r(x,y),r(y,z)) = 1. B

Proof of Proposition 4.4

r IS notT'-transitive : A counter-example proving that, y, z such that
T(r(z,y),r(y,2)) > r(z,2)

Consider three intervals, y andz with I(y) < I(z) < u(z) < I(2) < u(z) <
u(y). Then we have (z,y) = 1,0 < r(y,2) < 1 andr(z, z) = 0. On the other
hand we know thaf (r(z,v),r(y, 2)) = r(y, 2) sinceVz T'(1,z) = x. Hence
T(r(xz,y),r(y,2) =r(y,z) >r(z,z).R

Proof of Proposition 4.5
We know that- is reflexive andS-strong complete (see Proposition 4.1). We will
prove thatR is T,,.;,, — Smas-Ferrers:

Ve, y, 2, t, Toin(r(z,y),7(2,1) < Spmaz(r(z,t),7(2,v)). (1)
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The inequality is directly verified wher(z,t) = 1 orr(z,y) = 1 (cases: 1, 2,
4 and 5 of Table 2). Hence, in the following we will analyze #iations where
r(x,t) # 1 andr(z,y) # 1 (cases 3, 6, 7 of the Table 2). There are 9 situations :

;

[(z) <u(x) <l(t) <u(t) (case 7 of table 2
or
r(z,t) #1 << l(x) <l(t) < u(t) < u(zr) (case 3 of table @
or
[(z) <I(t) < u(x) < u(t) (case 6 of table 2

[(z) <u(z) <l(y) <u(y) (case 7 of table 2
or
r(z,y) #1 <= ¢ l(2) <l(y) < u(y) < u(z) (case 3 of table 2
or
[(z) < l(y) < u(z) < u(y) (case 6 of table 2

1. Case 7 of Table 2 far, t) : I(z) < u(z) < I(t) < u(t) (InequationA) and
Case 7 of Table 2 fofz, y) : I(z) < u(2) < I(y) < u(y) (InequationB)

We analyze two cases:

-r(z,y) = 0 trivial

-r(z,y) # 0 : we will show that ifr(x, y) # 0 thenr(z,t) = 0.

We haveu(z) < I(y) (Ineq. B), l(y) < u(x) (sincer(xz,y) # 0) and
u(z) < I(t) (Ineq.A). Then, we get(z) < I(t) implying r(z,t) = 0. Hence
we getmin(r(z,y),r(z,t)) = 0.

As a conclusion Inequility 1 is satisfied in this case.

2. Case 3 of Table 2 fdrr, t): I(z) < I(t) < u(t) < u(z) and
Case 3 of Table 2 fofz, y): I(2) < l(y) < u(y) < u(z)).
We analyze two cases:

-If I(t) > I(y) thenl(t) > I(y) > I(z). Thisimplies :

u(z) = 1(t)

r(z,t) = max(0, a2~ 1)

)

because
o if I(t) > u(z) thenr(z,t) = 0 (case 7 of Table 2)
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e if I(t) < u(z) then the position of the intervatsandt will be case 6 or

case 3 of Table 2, henegz, t) = 75((;):5((2

so we get

r(z :7) l r(z,t) = max
(2o0) = g AN, 1) = max(0,

which givesr(z,y) > r(z, t).
In conclusion, we geh:nm(

( ) (Z7t)) S mED((T’(SL’,t),T(Z,y)).
Similar reasoning are used in all the remaining cases fochwve will not

detail this part.

-1f 1(t) < U(y) thenl(y) > I(t) > I(x)

r(z,t) =

which givesr(z,t) > r(z,y).
In conclusion, we getmin(r(x,y),r(z,t)) < max(r(z,t),r(z,y)).

As a conclusion the Inequility 1 is satisfied in this case.

. Case 3 of Table 2 fdr, t): I(z) < I(t) < u(t) < u(z) and
Case 6 of Table 2 fofz, y): I(2) < l(y) < u(z) < u(y).

SIf U(t) > I(y) thenl(t) > I(y) > 1(2)

r(z,y) =

which givesr(z,y) > r(z,t).
In conclusion, we geh:nm(

(@,y),r(2,1)) < max(r(z,t),7(2,y)).
SIf U(t) < I(y) theni(y) > I(t) > I(x)

% andr(z,y) = max(0, M

r(z,t) =
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which givesr(z,t) > r(z,y).
In conclusion, we getmin(r(x,y),r(z,t)) < max(r(z,t),r(z,y)).

As a conclusion the Inequility 1 is satisfied in this case.

. Case 6 of Table 2 fdr, t): I(z) < I(t) < u(z) < u(t) and
Case 3 of Table 2 fofz, y): I(2) < I(y) < u(y) < u(z)

The case being symmetric to the previous one, the proof isidiate.

. Case 3 of Table 2 fdr, t) : I(z) < I(t) < u(t) < u(xz) and
Case 7 of Table 2 fofz, y): I(z) < u(z) < l(y) < u(y).

-1f 1(t) > U(y) thenl(t) > l(y) > u(z).
We have(l(t) > u(z)) — r(z,t) =0,
In conclusion we getmin(r(z, y), r(z,t)) < max(r(z,t),r(z,y)).

-1f 1(t) < l(y) thenl(y) > I(t) > I(x)
u(x) — U(t)
u(z) = I(z)

which givesr(z,t) > r(z,y).
In conclusion, we getmin(r(x,y),r(z,t)) < max(r(z,t),r(z,y)).

u(z) = I(y)
u(x) —I(x)

r(z,t) = andr(z,y) = max(0,

)

As a conclusion the Inequility 1 is satisfied in this case.

. Case 7 of Table 2 fdr, t) : I(x)
Case 3 of Table 2 fofz, y) : I(z)

< I(t) < u(t) and
I(y) < uly) <u(z).

The case being symmetric to the previous one, the proof issidiate.

. Case 6 of Table 2 fdr, t) : I(x) < I(t) < u(x) < u(t) and
Case 6 of Table 2 fofz, y) : 1(2) < I(y) < u(z) < u(y).

SIf U(t) > I(y) theni(t) > I(y) > I()

(2) = l(y)

u(z) —1
r(z,y) = W= 1(2) andr(z,t) = max(0,
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which givesr(z,y) > r(z, t).
In conclusion, we getmin(r(x,y),r(z,t)) < max(r(z,t),r(z,y)).

-1f 1(t) < I(y) thenl(y) > I(t) > I(z)
u(x) — U(t)
u(z) — l(x)

which givesr(z,t) > r(z,y).
In conclusion, we getmin(r(x,y),r(z,t)) < max(r(z,t),r(z,y)).

ulw) = ly),

riet) = w(@) — ()

andr(x,y) = max(0,

Hence, the Inequility 1 is satisfied in this case.

. Case 6 of Table 2 fdr, t) :l(z) < I(t) < u(x) < u(t) and
Case 7 of Table 2 fofz, y) : I(2) < u(z) < :

-1f 1(t) > I(y) thenl(t) > I(y) > u(z)
We havel(t) > u(z) — r(z,t) = 0.
In conclusion, we getmin(r(x,y),r(z,t)) < max(r(z,t),r(z,y)).

-1f 1(t) < U(y) thenl(y) > I(t) > I(x)
u(z) = 1(t)
u(zx) — U(x)

which givesr(z,t) > r(z,y).
In conclusion, we getmin(r(x,y),r(z,t)) < max(r(z,t),r(z,y)).

ulw) = ly),

ret) = w(z) —1(2)

andr(x,y) = max(0,

Hence, the Inequility 1 is satisfied in this case.

. Case 7 of Table 2 fqfr, t) : I(x)
Case 6 of Table 2 fofz, y) : I(z)

< <1
<U(y) <u(z) <u(y)

The case being symmetric to the previous one, the proof isidiate.
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Thus,Vz, y, z,t min(r(z,y),r(z,t)) < max(r(z,t),r(z,y)).1

Proof of Proposition 5.3

p is irreflexive,i is reflexive : obvious.

p is Tr-asymmetric : we show that is T-asymmetric with any t-norm.
Vz,y, p(x,y) or p(y, ) is equal to zero hencer,y, T'(p(z,y), p(y, ) =
0.

i IS symmetric : obvious

Tr(p,i) = 0. We showed thatz,y p(xz,y) = 1 — r(y,z) andi(x,y) =

r(z,y)+r(y,r)—1. Hence Ty (p(x,y),i(v,y)) = max(p(x,y) +i(z,y) —
1,0) = max(r(x,y) —1,0) =0

St(p, Sp(i,p~t)) = 1. Point 5 of Remark 5.1 shows thdt, y p(z,y) +
’l(SC”y) —|—p(’y,$) =L HenCESL(p, SL(ivp_l)) =11

Proof of Proposition 5.4

Immediate since we showed in the proof of Property 5.3j&i-asymmetric
with any t-normll

Proof of Proposition 5.5

Immediate since our relatiopsand: satisfy the conditionil

Proof of Proposition 5.6

pis T -transitive : we will show that'z, y, z T, (p(2, ), p(y, 2)) < p(z, 2).
The inequality is directly verified whep(x,y) = 0 or p(y,z) = 0 (cases:
3, 4, 6 and 7 of Table 2). Hence, in the following we will anaythe situations
wherep(z,y) # 0 andp(y, z) # 0 (cases 1, 2 and 5 of the Table 2). There are 9
situations :
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( I(y) < u(y) < I(z) < u(x) (case 1 of table @

or

plz,y) #0 <= < l(y) <l(z) <ul(y) < u(z) (case 2 of table 2
or

| l(y) < l(z) < u(z) < u(y) (case 5 of table @

(1(2) < u(z) <l(y) < u(y) (case 1 of table R
or
py,2) 20 <= ¢ (2) < l(y) < u(z) < u(y) (case 2 of table 2
or
L 1(2) <I(y) <u(y) <u(z) (case 5 of table @

. Case 1 of Table 2 fdr, y) : I(y) < u(y) < l(z) < u(z) and
Case 1 of Table 2 fofy, z) : 1(2) < u(z) < l(y) < u(y).

We have directlyu(z) < () which impliesp(z, z) =1
. Case 1 of Table 2 for, y) : I(y) < u(y) < l(z) < u(z) and
Case 2 of Table 2 fofy, z) : I(z) < l(y) < u(z) < u(y)).

We have directlyu(z) < () which impliesp(z, z) =1
. Case 1 of Table 2 faw, y) : I(y) < u(y) < l(z) < u(x) and
Case 5 of Table 2 fofy, 2) : I(z) < l(y) < u(y) < u(2)).

Uy)—l(= : I(z
p(y, z) = 2= andp(z, 2) = min(L2= 1)

which givesp(z, z) > p(y, z). In factp(z, y) can bein case 1, 2 or 5. In case
1 we havep(z, z) = 1 and in case 2 or 5 we haygz, ) = X2 we yse

similar reasoning in all the fallowing cases where we do moal this part.

),p(y,2)) < plz,2).
<l(z) < u(y) < u(zr) and
<u(z) <l(y) <uly).

In conclusion, we getmin(p(z,
. Case 2 of Table 2 fdi, y) : I(y
I(z

Case 1 of Table 2 fofy, z) :

We have directlyu(z) < [(x) which impliesp(z, z) = 1
. Case 2 of Table 2 fdr, y) : I(y) < I(z) < u(y) < u(z) and
Case 2 of Table 2 fofy, 2) : 1(2) < I(y) < u(z) < u(y).

y
)
)
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p(y,z) = i((zi))_—lz((?) andp(z, z) = mm( 2)-U(z) 1)
which givesp(z, z) > p(y, ).
In conclusion, we getmin(p(z, y), p(y, z)) < p(z, 2).
6. Case 2 of Table 2 fdz, y) : [
l

Case 5 of Table 2 fofy, z) :

~—
5
=
—~
~
=
8
[
L
—
183
—
—_
~—

Py, 2) = 14 andp(z, »
which givesp(z, z) > p(y, )

In conclusion, we getmin(p(z,y), p(y, z)) < p(z, 2).

7. Case 5 of Table 2 fatr, y) :

l

Case 1 of Table 2 fofy, 2) :

We have directlyu(z) < () which impliesp(z, z) =1

8. Case 5 of Table 2 faw, y) : I(y) < l(z) < u(z) < u(y) and
Case 2 of Table 2 fofy, 2) : 1(z) < I(y) < u(z) < u(y).
ply,z) = l((y)) ll((’?) andp(z, z
which givesp(z, z) > p(y, )
In conclusion, we getmin(p

~—
5
=
~—~
N
—~
IS
—
—_
~—

(z,9),p(y,2)) < plz, 2).
9. Case 5 of Table 2 fw, y) : I(y) < l(z) < u(z) < u(y) and
Case 5 of Table 2 fofy, ) : I(z) < l(y) < u(y) < u(z)
_ Wy)-iz) Wz)—l(z)
Py, 2) = yimc andp(, 2) = LG

which givesp(z, z) > p(y, 2).
In conclusion, we getmin(p(z,y), p(y, z)) < p(z, 2).

Thus,Vz,y, 2 min(p(z,y), p(y, 2)) < p(z,2).M

Proof of Corollary 5.1

The proof is immediate since the Zadeh t-noffj £,) is the pointwise largest
t-norm, i.e. for any t-nornT" andVva, b € [0, 1] T(a,b) < T,in(a,b). B

Proof of Proposition 5.7
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Here is a counter-example that proyesy, , i o7, . p € p: Letz, y z andt
be four intervals such that

iou(x) > u(y) > u(z) > u(t)

i 1(z) > 1(t) > l(z) > U(y)

i, 1(z) > u(t)

Then we have(z,y) > 0 (case 2 of Table 2)y, z) > 0 (case 3 of Table 2)
andp(z,t) = 1 (case 1 of Table 2), thus

(porg,.. iop)(x,z) = min(p(z,y),i(y, 2),p(2,t)) > 0 (case 3 of Table 2), but

p(z,t) =0, thus

min{p(z,y), min(i(y, z), p(z, 1))} > p(z,t). W

Proof of Proposition 5.8

Let x, y z andt be four intervals such that
ly) <lz) <l(t) <l(z) <u(y) <ulr) <u(t) <u(z)

then we have(z,y) > 0 andp(z,t) > 0 since they are in case 2 of Table 2.
i(y,z) > 0 since(y, z) are in case 6. Ang(z,t) = 0 sincep is monotone and
andt are in case 6 of Table 2 (see Remark 5.2). H&ngéz, v), T'(i(y, 2), p(z,t))) <
0 can not be verified with positive t-norms.
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