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Abstract. This paper presents a general framework about what is a decision
problem. The aim is to provide a theory under which the existing methods and
algorithms can be characterised, designed, chosen or justified. The framework
shows that 5 features are necessary and sufficient in order to completely describe
the whole set of existing methods. It also explains why optimisation remains the
general approach under which decision problems are algorithmically considered.

1 Introduction

The reader should be aware that this paper does not address the title question in a com-
prehensive way. The problem of what is a decision and what is a decision problem has
been addressed in philosophy, psychology and the cognitive sciences, economy, politi-
cal science etc.. We are not going to make a survey of this literature which is out of the
scope of the paper. The reader interested in these aspects can have a look to a number
of fundamental texts such as [10], [12], [16], [24], [26], [28], [30], [35].

Our proposition is instead pretty technical and formal. Operational Research and
Decision Analysis are seen as part of a more general Decision Aiding Methodology
(see [32]) aiming to help real decision makers to understand, formulate and model their
problems and possibly reach a reasonable solution (if any). We are concerned by that
type of activities occurring in a decision aiding situation where a “client” (very broadly
defined) asks for some advice or help to an “analyst”, such an advice being expected
to come under form of a formal model allowing some form of rationality. We call such
activities a “decision aiding process” (see [31]). At a certain point of that process the
analyst will have to formulate a “decision problem” requiring some computing to be
performed by some algorithms providing a result which is expected to be used in order
to present a recommendation relevant to the decision maker’s “decision problem”.

Our focus is exactly here: what is a decision problem for the analyst? The proposal
of the paper is to suggest a general framework under within which it is possible to iden-
tify all possible models, algorithms, procedures which routinely analysts use in their job
as well as to allow to invent ones (if possible). The paper introduces two hypotheses:
- It is possible to establish a common framework under which any formal decision prob-
lem can be formulated, enabling to construct wide classes of methods characterised by
common features.
- From an algorithmic point of view any decision problem can be reduced to an optimi-
sation problem.



In the following section we introduce notation. Then in section 3 we show what
the primitives of a decision problem are. Then in section 4 we describe the five char-
acteristic features under which methods can be described. Section 5 introduces some
methodology principles, while section 6 discusses the two running examples of the pa-
per. Further research challenges are introduced within the conclusion.

2 Concepts and Notation

In the following A will always represent the set of “alternatives” considered either
within a model or by a method. Although in practice such a set is never readily available,
but constructed, for the purpose of this paper we are going to consider it as “given”.

Along the paper we are going to use extensively preference relations. The basic
relation we will adopt will be � (possibly indexed �i) which will read as “at least
as good as” (� will represent the asymmetric part of �, while ∼ will represent the
symmetric part). We will only make the hypothesis that this is a reflexive binary relation.
The interested reader can see more about preference structures in [21] or [27] from
which we adopt definitions and notation. We are now able to make our first claim.

Claim 1 A decision problem for the analyst consists in finding an appropriate parti-
tioning of the set A, relevant for the decision maker’s concerns.

The presentation of any algorithm or method discussed in this paper will be based
on separating the “primitives” (what is the strictly necessary information required to
be provided by the decision maker in order to allow some reasonable advice) and the
“output” (what is the information the algorithm or method provides to the user). The
reader should note that we distinguish between primitives and “input” to the algorithm.
The reason is that the input to a precise existing algorithm or method is in reality con-
structed out of the primitives. Let’s summarise. Our hypothesis is that the modelling
process, that is the dialogue between the client and the analyst, follows (roughly) a se-
quence starting with the client providing ground information, which through learning
protocols is transformed in primitives and these through modelling tools are transformed
to the input to some method. For the description of these concepts see figure 1.
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Fig. 1. The modelling process

Ground Information contains the problem description and for the purposes of this
paper we will focus to what we call “preference statements”: pieces of client’s state-
ments (in his own language), expressing values, opinions and likelihoods. In other terms
it is how the client see his/her problem. Learning Protocols are procedures allowing to
identify preference statements within the client’s discourse and to translate them in or-
dering relations. In order to do so we need to establish the sets on which such relations



apply. As it will become clear in section 4 such protocols are aimed at establishing the
set A, the problem statement and the preference relations upon A. Primitives are the
ordering relations “learned” using the protocols and we will discuss them extensively
in the next section. Modelling Tools are the usual analytic tools an analyst uses in or-
der to transform primitives in decision aiding models. Examples include the procedures
allowing to construct a value function, a set of constraints, a probability distribution
etc.. The Input is the information modelled in such a way that a decision aiding method
can be applied. For instance in a linear programming method the input are the decision
variables, the constraints and the objective function. In the following we present two
running examples explaining some of the concepts introduced in each section.

Example 1.1 Ground information. The client is a horse races gambler. He is consid-
ering the next bet to make. In order to assess the “value” of each possible bet the client
considers three different information: the quality of the horse, the quality of the jockey
who runs it and the weather conditions. The client wants to rank all possible bets.

Example 2.1 Ground information. A hospital is considering the recrutement of
nurses for three of their departments: General Medicine (GM), Oncology (ON), Chil-
dren (CH). The hirings are managed by two: the general manager and the surgeon gen-
eral. Candidates fill an application form and go through an interview. Practically the
result is a report where the two managers consider three information: the age, the spe-
cialisation (if any) and the motivations of the candidate.

In both cases the learning protocols are procedures through which the analyst will
try to gather the preferences of the client(s). Which horses (s)he prefers? With which
jockey? Under which weather conditions? What is a good nurse for a given department?
How specialisations compare with respect to the requirements of each department? How
age influences the fitting of a candidate to a given department?

3 Primitives and Problems

What type of information can generally affect a decision? Since the origins (see for
instance [7], [23]) most of the decision analysis literature will classify such information
in three categories: values, opinions and likelihoods.

1. Values (related to attributes). Values should represent “what matters for the de-
cision maker” (for a nice discussion see [13]). Under a more formal perspective we
consider that the set A can be described against a set of attributes D, each attribute
being equipped with a scale from a set of scales E. Following measurement theory (see
[25]) such scales can be nominal, ordinal, ratio or interval ones. However, this is just
descriptive information about A (x is 10cm long, y is yellow etc.). In order to be able
to talk about values affecting decisions we need further information coming under form
of preferential statements (“I prefer long tables to short ones”, “ I do not like yellow
shoes”), possibly of more complex content (“I prefer a train travel to Paris to a flight at
Amsterdam”, “my preference of apples against oranges is stronger than my preference
of peaches against apricots”).We distinguish two types of sentences:
- comparative ones, where an elements of A are compared among them (under one ore
more attributes) in order to express a preference;



- absolute ones, where an element of A is directly assessed against some “value struc-
ture” (under one ore more attributes).

2. Opinions (related to stakeholders). Decisions can be affected by the judgements
and opinions of many stakeholders. In this case preference statements are going to be
associated to “opinions”. It is reasonable however, to distinguish once again among:
- comparative opinions (stakeholder i prefers x to y), where preferences are expressed
among elements of the set A;
- absolute opinions (stakeholder i considers x as “worthy”), where preferences are ex-
pressed under form of value assessments.

3. Likelihoods (related to scenarios). When we express preferences it is likely that
these depend from uncertain future conditions. Although the intuitive temptation is to
use estimates (it is likely to rain) or quantifications of uncertainty (the probability of
raining is p), if we focus on decision situations the primitives we need to consider will
once again be preference statements of the type “under scenario j, I prefer x to y” or of
the type “under scenario j, x is unworthy”.

The reader will note that we do not include among the primitives the concept of
relative importance of the dimensions under which preferences are expressed. The rea-
son is simple: relative importance is a derivable information. Consider the case where
x �I y and y �J x for some I, J ⊂ H (x, y being elements of A and H being the set of
criteria). If we add the information that “globally” x � y (which is once again a prim-
itive) we can derive that I � J (� representing an ordering relation upon the power
set of H:�⊂ 2H × 2H ). This will be true if I and J are sets of values, but also if they
are opinions or likelihoods. Of course a decision maker may wish to make direct state-
ments comparing two dimensions (I is more likely to occur than J), but there are two
reasons for which it is better to avoid it. The first has to do with the fact that there is no
general model for “relative importance”, this depending on how primitive preferences
are considered at the global level (see [17]). The second is that these are second order
comparisons allowing for more cognitive biases and potential inconsistencies. Indeed
more often than less decision makers are ready to change their statements about relative
importance as soon as they realise the impact they may have on first order preference
statements (that is comparing elements of A).

From the above discussion and in order to model “absolute statements” we need
to introduce, besides the set A (of potential decisions), a set B being a collection of
“norms” or “standards” or “thresholds” representing an external (with respect to A)
value structure. In other terms if we want to claim that x is “nice” (under a certain point
of view) we need to establish somewhere (not in A) what “nice” means and compare x
to that norm. Under such a perspective:

Definition 1.
- Comparative preference statements come under form of x �i y x, y ∈ A, i being any
among attributes, stakeholders or scenarios (thus ∀i �i⊆ A×A).
- Absolute preference statements come under form of x �i b x ∈ A b ∈ B, i being any
among attributes, stakeholders or scenarios (thus ∀i �i⊆ A×B ∪B ×A).

From the above presentation we can establish our second general claim.



Claim 2 Decisions are based on primitives which always come under form of compar-
ative or absolute preference statements.

Remark 1. We use the term preference statement in a very broad way. However, the
formalism adopted should not conduct to confusion. Preference statements can be mod-
elled either under form of asymmetric ordering relations (x is strictly before y) or un-
der form of symmetric ordering relations such as similarities or nearness relations (x is
similar or near to y) and these can be learned directly from the client. The use of the �
relation is a comfortable way to combine such relations in a unique definition.

We continue with our running examples.
Example 1.2 Primitives. The alternatives considered by the client are the “bets” (a

combination of a horse with its jockey). This is a finite enumeration of the participants
to the next race. The client provides different types of preference statements (examples):
- horse x is better than horse y;
- jockey i is better than jockey j;
- horse w run by jockey j is better than horse z run by jockey i;
- if it rains horse y is better than horse w.

Such sentences need to be interpreted. For instance should we understand the first
sentence as “horse x being better than horse y independently from the jockeys they
run them and the weather conditions?” Or should we understand it as “considering
the same jockey and the same weather conditions then horse x is better than horse
y?” The difference can be important. In the first case we consider that ∀j ∈ J, t ∈
T 〈xjt〉 � 〈yjt〉 where J is the set of jockeys and T is the set of weather conditions.
This will imply for instance that 〈x,Paul, rain〉 � 〈y, John, dry〉. In the second case such
a comparison is not allowed. We can only write formulas of the type 〈x,Paul, rain〉 �
〈y,Paul, rain〉 (ceteris paribus comparisons).

Example 2.2 Primitives. The set A is composed by those candidates who filled the
application form and got the interview. However, this is an assignment problem where
we also need to specify the classes where the elements of A are assigned. These are
four: the three hospital departments and the rejected. The type of preference statements
we need here are of the type: “being young is ideal for the Childrens’ Department”, “not
having a specialisation is very bad for Oncology”, “being motivated and specialised are
the candidates we are looking for”, these being more or less nuanced among the two
managers (who may possibly disagree on some of them).

However, once again these need to be better understood. For instance we need to
establish what “young” means (we need a threshold for that). Perhaps too young is
not that ideal, that implying measuring an absolute distance from some ideal ”young
nurse age”. We also need to understand if not having a specialisation is an eliminating
handicap for the candidate or if it is a general negative assessment becoming more
important for the special case of Oncology. On the other hand the reader will note that
at this stage we do not need to compare candidates among them.

The reader will note that in the case of the horse races we are using comparative
preference statements (a horse is better than another), while in the case of the nurses we
are using absolute preference statements (a nurse feature fits, more or less, the require-
ments of a given department).



Using claim 2 and definition 1 we can summarise the possible primitive information
used in a decision problem as in figure 2. As we move away the origin along any of the
axes we start considering multiple values (opinions, likelihoods).

Definition 2. We call optimisation problem any decision problem considering a unique
dimension under which primitives are expressed (point O of figure 2).

Values

Likelihoods

Opinions

•
C

•RC•
R

•A

•RA

• AC

• M
•O -

6

�
�
�

�
�
��	

�

�

�

�

�

�

Fig. 2. The archetype problems

Figure 2 establishes eight archetype “problems” represented by the eight points:
O,A, C,R,AC,RC,RA andM. We call:

O: an optimisation problem (see more details in section 4);
A: an agreement problem, since different opinions need to be taken into account;
C: a compromise problem, since different values need to be considered;
R: a robustness problem, since a solution needs to be considered worthy under differ-

ent likelihoods;
AC: an agreed compromise (a combination of A and C);
RC: a robust compromise (a combination ofR and C);
RA: a robust agreement (a combination ofR and A);
M: a “mess”, because the problem starts to become really messy ...

However, the above eight archetype problems do not stand alone. Behind a compro-
mise problem other compromises may need to be considered in a hierarchy of criteria.
Behind an agreement problem other agreement problems may have to be solved along a
hierarchy of delegates, community representatives and other organisational structures.
Behind a robustness problem many states of the nature may have to be considered in a
hierarchy of likelihoods establishing complex scenarios. And, any combination of the
above may in reality occur as complex as possible (see figure 3).

What can we observe in analysing these archetypal decision problems? Despite
the different semantics behind values, opinions and likelihoods, the underlying formal



structure is always the same. We have one common primitive: preference statements
which we represent through preference relations. And we have one principal task: move
along the hierarchy, from the leaves of the most elementary preference statements up
to the root where “x � y all relevant information being considered” (x, y being either
both in A or one in A and the other in B). This allows to introduce our third claim.

Claim 3 A decision problem can be represented as a sequence of preference aggrega-
tions along an hierarchy of opinions, values and likelihoods, combined arbitrarily.
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Fig. 3. Many decision problems hierarchically related

Example 3.1 Consider the case where a committee is assessing a number of devel-
opment projects for an urban area. The outcomes of these projects depend on a number
of uncertain issues due to the unstable economic situation of the whole region. At this
stage we have many levels of the dimensions hierarchy: the different members of the
committee and the different scenarios considered as “realistic” for the region, the set
of attributes describing the projects. We consider as first level of our hierarchy the sce-
narios and as second level the committee members. We can expect that each committee
members will assess the projects on a number of attributes (such as cost, sustainabil-
ity, environmental impact etc.). It is reasonable to consider that some of such attributes
decompose further in other attributes (such as direct costs, maintenance costs, financial
costs etc.). This situation is captured by figure 3.

4 Main Features

In the following we present the 5 features which constitute the key parameters designing
the whole set of conceivable formal decision problems. For the time being only one
feature (the problem statement) will be discussed in an extensive way, the other four
being essentially sketched.

4.1 The set of alternatives

A can be of different types:
- a countable enumeration of objects, A = {a1 · · · an};



- a subset of all possible combinations of the attribute scales in the attributes space,
A ⊆ E1 × · · ·Em;
- a combinatorial structure resulting from the product of a set of discrete decision vari-
ables (possibly 0 or 1), A ⊆ X1 × · · ·Xm, Xi ⊆ Z or Xi = {0, 1};
- a vector space resulting from the product of a set of real valued decision variables,
A ⊆ X1 × · · ·Xm, Xi ⊆ R.

4.2 The Problem Statements

Partitioning a set A consists in establishing a set of “equivalence classes” to which
associate the elements of A. We can distinguish two different cases:

1. The first case concerns the fact that such classes can be ordered or not. Typical
examples in the first case are classes of merit, the equivalence classes of a weak order
etc.. Typical examples of the second case are problems of medical diagnosis, failure
detection, pattern recognition etc..

2. The second case concerns the fact that such classes can be pre-defined with re-
spect to some norm, standard, profile etc. or not. Typical examples of the first case
include assigning elements of A to given ratings or patterns. Typical examples of the
second case are clustering a population for some attribute or ranking it.

We summarise the above cases in table 1.

Pre-defined wrt NOT pre-defined
some external standard

Ordered Rating Ranking
Not Ordered Assignment Clustering

Table 1. Basic Problem Statements

A special cases within the above problem statements is the one where the number
of classes are just two, one being the complement of the other.
Let’s discuss more in details the above problem statements.

1. Ranking. The primitive in this case will be a binary relation on A: �⊆ A×A to
be read “at least as good as”. The expected result is a partitioning of A in equivalence
classes [A]1, · · · [A]n such that:
• ∃ <⊂ A×A
• < = � ∪ ≈
• [A] is the set of equivalence classes constructed by ≈
• �⊂ [A]× [A], � being a strict partial order such that:
• [A]j � [A]i ⇔ j > i and
• ∀x ∈ [A]j , y ∈ [A]i : x � y and
• ∀x, y ∈ [A]j x ≈ y

Discussion. The reader will note that the ordering relation among the equivalence
classes is not the primitive relation comparing the elements of A. Generally speaking
� is not an ordering relation since preferences can be partial and or inconsistent. If
we have to proceed with some operational procedure we need to transform the prefer-
ence relation � to an ordering relation <. We may impose that �⊂<, but this is not



mandatory (for instance in case of inconsistent preference statements we may want to
drop some primitive comparisons). As already mentioned � is not necessary a com-
plete relation. In case we impose completeness (� becoming a total order) we get that
[A]1 = supA(�) (n being the number of equivalence classes in which A is partitioned).

What is a choice problem? We consider as choice the particular case where A is
partitioned in two classes [A]1 � [A]2. We can generalise this observation claiming
that any ranking problem partitions A in a set of classes, the first being the “optimal
elements”, then the second one being the “second optimal ones” and so on. The current
literature considers as optimisation the special case where:
�=< and < is a weak order on A such that ∃f : A 7→ R : x < y ⇔ f(x) ≥ f(y).
Under such a hypothesis it is clear that [A]1 = maxA f(x). However, we do not really
need the function f in order to “optimise”. Generalising the concept of optimisation
we can always construct an algorithm such that [A]1 = supA(<). Extending further
this reasoning the whole set of equivalence classes can be constructed as result of some
optimisation: [A]n+1 = supA\[A]n(<) etc..

2. Clustering The primitive in this case is a binary relations on A: ≈⊆ A×A to be
read “similar to”. The expected result is a partitioning of A in [A]1, · · · [A]n such that:
∀x, y ∈ [A]j x ≈ y and ∀x ∈ [A]j , y ∈ [A]i : ¬(x ≈ y).

Discussion. In case≈ is an equivalence relations then the partitioning of A results in
constructing the indiscernibility relation on A ([22]). However, this is not generally the
case. Elements of A are more or less similar between them. (or differently similar, see
[34]). Under such a perspective we consider that instead of a single similarity relation
we have a set of nested similarity relations ≈l and [A]j = supA(≈l). In other terms
we try to maximise similarity within classes (clusters) and minimise similarity among
classes (clusters). If ≈l are nested similarity relations with nice properties then we can
establish metrics (see [11]:
• s(x, y): how similar is x to y?
• d(x, y): how distant is x from y?
Then, establishing the equivalence class of any element y ∈ A,
[A]y = {x|maxA F (s(x, y))}, F being a measure (a fitting function) of the overall
similarity of the elements of [A] with respect to y, we can construct the clusters [A]j .
Meyer and Olteanu generalised this idea (see [18]) for general preference structures.

Remark 2. The reader should note that both ranking and clustering problem statements
boil down in solving some mathematical optimisation problem. This should not be sur-
prising: in absence of any external information and being allowed only to compare
elements of A among them, the only mathematical notion we have, in order to clearly
separate classes between them, is the one of “optimality”.

3. Rating The primitive here is a binary relation from the set A to the set B:�⊆ A×B∪
B×A to be read “at least as good as”, B being the set of external “norms” characterising
the ordered classes C1 B · · · B Cn. The expected result is to assign each element of A
in a Cj such that: x ∈ Cj ⇔ x < pj , pj+1, · · · pn and p1 · · · pj−1 < x.

Discussion. As in the ranking problem statement we need to differentiate between
the primitive preference relation � and the operational result represented by the order-
ing relation <. By transitivity of < it is clear that if element x is in Cj and element



y is in Cj+1, x � y, while if both elements are assigned in the same class x ∼ y
(� ∪ ∼=<). However, the reader should remember that classes are pre-established.

Suppose now that the relation < is a weak order such that we can establish a function
f : A ∪ B 7→ R such that x < pj ⇔ f(x) ≥ f(pj). The problem of assigning the
elements of A to the ordered classes represented by the “norms” pj turns to be a classical
constraint satisfaction problem: Cj = {x : f(x) ≥ f(pj) and f(pj−1) ≥ f(x)}. We
can generalise this concept dropping the function and claim that the rating problem can
be considered a generalised constraint satisfaction problem.

4. Assignment The primitive is a binary relation on A: ≈⊆ A×B ∪B ×A
to be read “similar to”, B being the set of external “norms” characterising the classes
C1 · · ·Cn (the difference with the rating problem statement being the fact that these
classes are not ordered among them). The result is to assign each element of A in a Cj

such that: x ∈ Cj ⇔ x ≈ pj , where pj is the norm characterising class Cj .
Discussion. Assigning objects to unordered classes could be seen as a constraint

satisfaction problem where constraints are expressed as equalities (Cj = {x : f(x) =
f(pj)}), where f is a function representing a metric of similarity.

Concluding: the problem statements we present here can be handled either as an
optimisation problem or as a constraint satisfaction one. Considering that any constraint
satisfaction problem can be transformed in an optimisation one we can state one of our
principal claims, based on the hypothesis that our problem statements are exhaustive of
all possible decision problems (partitionings).

Claim 4 From an algorithmic point of view any decision problem is an optimisation
problem.

Remark 3. The reader should not make confusion with the notion of decision problem
typical in the algorithmic complexity literature ([8]). On the other hand we want to
emphasise that what we are talking here concerns how algorithmically primitives get
transformed in ordering relations such that can be used for recommending something
or being used for further aggregations.

4.3 Independence

As already mentioned primitives come under form of statements of the type “x is at
least as good as y, under I”, x, y being mono or multi-dimensional objects and I being
a subset among values, likelihoods and opinions. However, despite its intuitive meaning,
such a sentence can still be interpreted in different ways. We are going to distinguish
two principal interpretations:
- “x is at least as good as y, under I”, independently on what happens to H \I (H being
the set of criteria);
- “x is at least as good as y, under I”, provided a condition holds in some J ⊆ H \ I .

These two interpretations lead to completely different problem formulations and
consequently to different methods and resolution algorithms. Preferential independence
(the first interpretation) allows to envisage a linear (additive) model representing pref-
erences. Conditional preferences lead to more complex preference structures implying
non linear aggregation functions ([9], [14], [29]) or specialised algorithms ([3], [4]).



4.4 Differences of Preferences

Let’s recall once again our primitives and let’s consider the sentence “x is strictly better
than y and these are both better than z (under I)”. We know we can represent this
sentence giving numerical values to x, y, z (for instance x = 3, y = 2, z = 1 and
adopt the natural ordering of the numbers. However we could choose the numerical
representation x = 100, y = 10, z = 1 and it would be the same. Preferences are orders
and the numbers we use only carry ordinal information.

The point is that in many cases we could either have richer information (we know for
instance that x is twice more heavy than y) or we would like to have richer information
of the type “x is much more better than y”. We need to reason in terms of “differences
of preferences” and their representation. In other terms we need primitives of the type:
“xy is not less than zw” where xy (sw) represents the difference of preference between
x and y (z and w). It is interesting to note that primitives of this type can be used
also in order to express ordinal preferences, while the opposite is not true. Under such
a perspective we can claim that primitives should always be considered as sentences
about differences of preferences, the ordinal case being a special one. The interested
reader can see more in the literature about conjoint measurement (see [15]) and how
this helped in reframing multidimensional preferences (see [1], [2], [17]).

4.5 Positive and Negative Reasons

Consider a preference statement of the type: “I do not like x”, or “any candidate, but
not x”. Such statements can be considered as explicit “negative preferential statements”
to be considered independently from the “positive ones” (which are the usual ones).
The idea here is that there are cases where decision makers need to express negative
judgements and values which are not complementary to the positive ones (such as a
veto on a specific dimension). Such statements have been explicitly considered in the
literature both in decision theory (see [6], [20], [33]) and in argumentation theory (see
[19]). When such situations occur we need to develop specific procedures adding thus
a further dimension of characterisation of the decision problem at hand.

5 Methodology

Let’s summarise in order to outline how our framework can be used for methodolog-
ical purposes. We have a set A, information describing the set A against a number of
attributes and preference statements (these being values, opinions or likelihoods) com-
paring either the elements of A among them or the elements of A to elements of a set
B (the set of norms). We aim at partitioning A appropriately.

The first problem we have is reducing the problem to an “optimisation problem”:
that is, obtaining one-dimensional preference statements. In other terms we are trying
to aggregate preference statements expressed on several different dimensions to a single
one. For the time we consider that transforming some attributes to “constraints” (thus
bounding the space of feasible solutions) has already been considered in establishing
the set A. How do the different parameters described in section 4 influence the design
(or the choice) of an appropriate solution method?



Allowing to have explicit measures of differences of preferences allows to handle
richer preferential information, such that we can consider to obtain at the aggregated
level preference statements sufficiently rich to satisfy nice properties (for instance ob-
taining directly an ordering relation). In case we need to work with purely ordinal infor-
mation we should expect the negative consequences of Arrow’s impossibility theorem
(see the discussion in [5]). In case preferential independence holds we are in the “easy
case”: given a set of primitives holding at the same level of the hierarchy of dimen-
sions (see figure 3) these can be aggregated (possibly through a linear model) to the
parent node. In case independence does not hold we have two options: either we need
explicitly non linear models accounting for the observed dependencies or we need to
reformulate the modelling dimensions (these options being not exclusive). This second
case may result in aggregating more levels of the hierarchy in a single step.

The presence of explicit negative preference statements (not complementary to the
positive ones) will result in duplicating the decision model creating an hierarchy of
“negative reasons” (to be associated to the hierarchy of “positive reasons”). It will also
require to establish how and when these two sources of information should merge.

The second problem we need to handle is to obtain, out of the one-dimension prim-
itives computed in the previous step, an ordering relation allowing the partitioning of
the set A (the recommendation to hand to the decision maker). It is clear that the type of
problem statement adopted strongly influences how this step will be considered since it
establishes both the type of primitives we need to construct and the type of algorithm to
be used. Before concluding this discussion we note that the properties of the set A will
also influence the design or the choice of the method for obvious algorithmic reasons.

At this stage is easy to show that the five features we introduced in this paper (prop-
erties of the set A (and B), problem statement, preferential independence, difference of
preferences, explicit negative preference statements) are necessary in order to clearly
establish, design and axiomatically characterise any model, algorithm and method aim-
ing at handling a decision problem (on set A). Our claim, not demonstrated here, is that
these features are also sufficient. We thus get:

Claim 5 The properties of the set A, the type of problem statement, the holding or not of
preferential independence, the explicit use of differences of preferences, the explicit use
of negative preference statements, are the necessary and sufficient features for choosing,
designing, justifying and axiomatically characterising any decision problem and the
associated resolution methods and algorithms.

Discussion. The reader should recall that the use of the “learning protocols” pro-
vides the analyst with some first basic information: the set A, the problem statement and
the preferences about A. Without these information we cannot really make any tentative
to formalise a decision problem of a client. However, there are many methods through
which this information can be handled. In order to choose among them, to explain and
justify them besides maintaining an axiomatic coherence) we need to know more about
the preferences: whether preferential independence is met, whether differences of pref-
erences hold or not and whether explicit negative statements are done. For instance the
use of linear programming will make sense in a situation where the set A is a subset of a
vector space, the problem statement is a ranking one (and more precisely a choice) and



the preferences among the elements of A are such to allow a numerical representation
which is also an interval scale of ”profits” (or costs), which means that differences of
preferences hold, and this is additive, which means that preferential independence also
holds, while there is no use of explicit negative statements.

6 Horse races and Nurses

Let’s finalise the discussion of the two running examples.
Example 1.3 Modelling. Having established the correct primitives representing the

client’s preference statements we can check whether preferential independence is met
and how differences of preferences are measured. If the preferences among horses are
independent from the preferences among jockeys and among weather conditions then
we can clearly look for a linear aggregation of such values (in case differences of prefer-
ences are meaningful) and even allow to compute a relative importance for each weather
condition under form of probabilities. This will allow to use expected utility theory.

Discussion. The problem presented is a “robust compromise”. A compromise be-
cause we need to take into account two different type of values (the quality of the horse
and the quality of the jockey) and a robustness problem because we need to take into
account three different likelihoods: raining, humid weather, dry weather. The expected
utility problem formulation will hold under very specific conditions. In case these do
not hold we can look for alternative ones (using CP nets [3], [4] or fuzzy integrals [9]).

Example 2.3 Modelling. Each candidate is described against three attributes which
are very different: age is a continuous numerical scale (probably discretised), speciali-
sation is a nominal scale (which specialisation, if any, has the candidate), motivation is
(probably) an ordinal scale reporting the judgement of the expert who did the interview.
On the other hand the classes also need to be described against the same attributes either
providing the “ideal” values for each class (for instance the “ideal nurse” for the Chil-
drens’ Department is 30 year old) or the “minimal” ones (not more than 35 years old).
Then we need to establish how the candidates compare to such classes. For instance we
need to value the distance between two ages or between two specialisations. The reader
should remember that such models might be different among the two managers. Should
we be able to measure these differences and should these be commensurable among
them, then we can envisage to write a value model (possibly additive) assessing the
“fitting” of each candidate for each category. Otherwise we could opt for some ordinal
model using some majority principle (of the type: if two criteria agree that candidate x
fits to class a then assign him/her there). However, the presence of negative assessments
play an important role here, since they may exclude a candidate from a certain class in-
dependently from any other assessment (if the candidate does not have a specialisation
in oncology cannot work in Oncology).

Discussion. The situation is a an Agreed Compromise since we need to find a com-
promise among the three fitness criteria and an agreement among the two managers.
There are two paths leading to the final assignment. The first (more cooperative) con-
sists in finding an agreement between the two managers for each criterion separately
and then find a compromise using the agreed assessments. The second (more negotia-
tion oriented) consists in finding the assignments for each manager and then try to find



an agreement for the cases where these are different (possibly all of them). The reader
will note that there is no reason for which these two paths lead to the same result.

7 Discussion and Conclusion

In this paper we introduced a general framework describing the whole set of methods
and decision problems an analyst may have to design in order a problem provided by
a client. We have shown that decision problems can be generally seen as optimisation
problems after a complex hierarchy of values, opinions and likelihoods gets transformed
to a single dimension through a sequence of “preference aggregations”. In order to con-
struct this general framework we make use of what we call primitives (the strictly neces-
sary information to be provided in order to model meaningfully the decision problem).
Then we described five main features which characterises any method aiming at mod-
elling and solving the decision problem. Our general claim is that these five features (the
type of the set A, the problem statement, the holding of preferential independence, how
differences of preferences are considered, the presence of explicit negative reasons) are
necessary and sufficient in order to choose, design, justify and characterise any deci-
sion support procedure. Further research includes on the one hand showing how formal
argumentation theory can help in explaining and justifying methods design and their
outcomes and on the other hand exploring how formal model reformulation techniques
can help finding the most appropriate algorithm to adopt for resolution purposes.
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