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Abstract This chapter provides the reader with a presentation of preference mod-
elling fundamental notions as well as some recent results in this field.
Preference modelling is an inevitable step in a variety of fields: econ-
omy, sociology, psychology, mathematical programming, even medicine,
archaeology, and obviously decision analysis. Our notation and some
basic definitions, such as those of binary relation, properties and or-
dered sets, are presented at the beginning of the chapter. We start
by discussing different reasons for constructing a model or preference.
We then go through a number of issues that influence the construc-
tion of preference models. Different formalisations besides classical logic
such as fuzzy sets and non-classical logics become necessary. We then
present different types of preference structures reflecting the behavior of
a decision-maker: classical, extended and valued ones. It is relevant to
have a numerical representation of preferences: functional representa-
tions, value functions. The concepts of thresholds and minimal represen-
tation are also introduced in this section. In section 7, we briefly explore
the concept of deontic logic (logic of preference) and other formalisms
associated with “compact representation of preferences” introduced for
special purposes. We end the chapter with some concluding remarks.

Keywords: Preference modelling, decision aiding, uncertainty, fuzzy sets, non clas-
sical logic, ordered relations, binary relations.
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1. Introduction

The purpose of this chapter is to present fundamental notions of prefer-
ence modelling as well as some recent results in this field. Basic refer-
ences on this issue can be considered: [4, 75, 78, 82, 110, 118, 161, 165,
167, 184, 188].

The chapter is organized as follows: The purpose for which formal
models of preference and more generally of objects comparison are stud-
ied, is introduced in section 1. In section 2, we analyse the information
used when such models are established and introduce different sources
and types of uncertainty. Our notation and some basic definitions, such
as those of binary relation, properties and ordered sets, are presented
in section 3. Besides classical logic, different formalisms can be used
in order to establish a preference model, such as fuzzy sets and non-
classical logics. These are discussed in section 4. In section 5, we then
present different types of preference structures reflecting the behavior
of a decision-maker: classical, extended and valued ones. It appears
relevant to have a numerical representation of preferences: functional
representations, value functions and intervals. These are discussed in
section 6. The concepts of thresholds and minimal representation are
also introduced in this section. Finally, after briefly exploring the con-
cept of deontic logic (logic of preference) and other related issued in
section 7, we end the chapter with some concluding remarks

2. Purpose

Preference modelling is an inevitable step in a variety of fields. Scien-
tists build models in order to better understand and to better represent
a given situation; such models may also be used for more or less oper-
ational purposes (see [30]). It is often the case that it is necessary to
compare objects in such models, basically in order to either establish
if there is an order between the objects or to establish whether such
objects are “near”. Objects can be everything, from candidates to time
intervals, from computer codes to medical patterns, from prospects (lot-
teries) to production systems. This is the reason why preference mod-
elling is used in a great variety of fields such as economy [9, 10, 11, 50],
sociology, psychology [37, 42, 45, 112, 111], political science [13, 179], ar-
tificial intelligence [65], computer science [82, 177, 188], temporal logic
(see [5]) and the interval satisfiability problem [92, 150], mathemati-
cal programming [157, 158], electronic business, medicine and biology
[22, 38, 108, 114, 138], archaeology [102], and obviously decision analy-
sis.
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In this chapter, we are going to focus on preference modelling for
decision aiding purposes, although the results have a much wider validity.

Throughout this chapter, we consider the case of somebody (possibly
a decision-maker) who tries to compare objects taking into account dif-
ferent points of view. We denote the set of alternatives A1, to be labelled
a, b, c, ... and the set of points of view J , labelled j = 1, 2, ...,m. In this
framework, a data gj(a) corresponds to the evaluation of the alternative
a from the point of view j ∈ J .

As already mentioned, comparing two objects can be seen as looking
for one of the two following possible situations:

Object a is “before” object b, where “before” implies some kind of
order between a and b, such an order referring either to a direct
preference (a is preferred to b) or being induced from a measure-
ment and its associated scale (a occurs before b, a is longer, bigger,
more reliable, than b);

Object a is “near” object b, where “near” can be considered ei-
ther as indifference (object a or object b will do equally well for
some purpose), or as a similarity, or again could be induced by a
measurement (a occurs simultaneously with b, they have the same
length, weight, reliability).

The two above-mentioned “attitudes” (see [142]) are not exclusive.
They just stand to show what type of problems we focus on. From
a decision aiding point of view we traditionally focus on the first sit-
uation. Ordering relations is the natural basis for solving ranking or
choice problems. The second situation is traditionally associated with
problems where the aim is to be able to put together objects sharing a
common feature in order to form “homogeneous” classes or categories
(a classification problem).

The first case we focus on is the ordering relation: given the set A,
establishing how each element of A compares to each other element of A

from a “preference” point of view enables to obtain an order which might
be used to make either a choice on the set A (identify the best) or to
rank the set A. Of course, we have to consider whether it is possible to
establish such an ordering relation and of what type (certain, uncertain,
strong, weak etc.) for all pairs of elements of A. We also have to establish
what “not preference” represents (indifference, incomparability etc.). In
the following sections (namely in section 5), we are going to see that
different options are available, leading to different so called preference
structures.

In the second case we focus on the “nearness” relation since the is-
sue here is to put together objects which ultimately are expected to be
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“near” (whatever the concept of “near” might represent). In such a
case, there is also the problem how to consider objects which are “not
near”. Typical situations in this case include the problems of grouping,
discriminating and assigning [98]. A further distinction in such problems
concerns the fact that the categories with which the objects might be
associated could already exist or not and the fact that such categories
might be ordered or not. Putting objects into non pre-existing non or-
dered categories is the typical classification problem, conversely, assign-
ing objects to pre-existing ordered categories is known as the “sorting”
problem [149, 154, 220].

It should be noted that although preference relations have been natu-
rally associated to ranking and choice problem statements, such a sepa-
ration can be argued. For instance, there are sorting procedures (which
can be seen as classification problems) that use preference relations in-
stead of “nearness” ones [126, 136, 215]. The reason is the following: in
order to establish that two objects belong to the same category we usu-
ally either try to check whether the two objects are “near” or whether
they are near a “typical” object of the category (see for instance [154]).
If, however, a category is described, not through its typical objects, but
through its boundaries, then, in order to establish if an object belongs
to such a category it might make sense to check whether such an ob-
ject performs “better” than the “minimum”, or “least” boundary of the
category and that will introduce the use of a preference relation.

Recently Ngo The [142] claimed that decision aiding should not ex-
clusively focus on preference relations, but also on “nearness relations”,
since quite often the problem statement to work with in a problem formu-
lation is that of classification (on the existence of different problem state-
ments and their meaning the reader is referred to [172, 173, 52, 204]).

3. Nature of Information

As already mentioned, the purpose of our analysis is to present the
literature associated with objects comparison for either a preference or
a nearness relation. Nevertheless, such an operation is not always as
intuitive as it might appear. Building up a model from reality is always
an abstraction (see [28]). This can always be affected by the presence
of uncertainty due to our imperfect knowledge of the world, our limited
capability of observation and/or discrimination, the inevitable errors
occurring in any human activity etc. [170]. We call such an uncertainty
exogenous. Besides, such an activity might generate uncertainty since
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it creates an approximation of reality, thus concealing some features of
reality. We call this an endogenous uncertainty (see [190]).

As pointed out by Vincke [205] preference modelling can be seen as
either the result of direct comparison (asking a decision-maker to com-
pare two objects and to establish the relation between them) from which
it might be possible to infer a numerical representation, or as the result
of the induction of a preference relation from the knowledge of some
“measures” associated to the compared objects.

In the first case, uncertainty can arise from the fact that the decision-
maker might not be able to clearly state a preference relation for any pair
of actions. We do not care why this may happen, we just consider the
fact that the the decision-maker may reply when asked if “x is preferred
to y”: yes, no, I do not know, yes and no, I am not sure, it might be, it
is more preference than indifference, but ... etc.. The problem in such
cases is how to take such replies into account when defining a model of
preferences.

In the second case, we may have different situations such as: incom-
plete information (missing values for some objects), uncertain informa-
tion (the value of an object lies within an interval to which an uncertainty
distribution might be associated, but the precise value is unknown), am-
biguous information (contradictory statements about the present state
of an object). The problem here is how to establish a preference model
on the basis of such information and to what extent the uncertainty as-
sociated with the original information will be propagated to the model
and how.

Such uncertainties can be handled through the use of various for-
malisms (see section 4 of this chapter). Two basic approaches can be
distinguished (see also [71]).

1 Handling uncertain information and statements. In such a case,
we consider that the concepts used in order to model preferences
are well-known and that we could possibly be able to establish a
preference relation without any uncertainty, but we consider this
difficult to do in the present situation with the available infor-
mation. A typical example is the following: we know that x is
preferred to y if the price of x is lower than the price of y, but
we know very little about the prices of x and y. In such cases
we might use an uncertainty distribution (classical probability, ill-
known probabilities, possibility distributions, see [43, 70, 75, 107])
in order to associate a numerical uncertainty with each statement.

2 Handling ambiguous concepts and linguistic variables. With such
a perspective we consider that sentences such as “x is preferred
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to y” are ill-defined, since the concept of preference itself is ill-
defined, independently from the available information. A typical
example is a sentence of the type: “the largest the difference of
price between x and y is, the strongest the preference is”. Here
we might know the prices of x and y perfectly, but the concept
of preference is defined through a continuous valuation. In such
cases, we might use a multi-valued logic such that any preferential
sentence obtains a truth value representing the “intensity of truth”
of such a sentence. This should not be confused with the concept
of “preference intensity”, since such a concept is based on the idea
of “measuring” preferences (as we do with temperature or with
weight) and there is no “truth” dimension (see [117, 118, 164, 165]).
On the other hand such a subtle theoretical distinction can be
transparent in most practical cases since often happens that similar
techniques are used under different approaches.

4. Notation and Basic Definitions

The notion of binary relation appears for the first time in De Mor-
gan’s study [51] and is defined as a set of ordered pairs in Peirce’s
works [151, 152, 153]. Some of the first work dedicated to the study
of preference relations can be found in [72] and in [178] (more in gen-
eral the concept of models of arbitrary relations will be introduced in
[185, 186]). Throughout this chapter, we adopt Roubens’ and Vincke’s
notation [167].

Definition 4.1 (Binary Relation). Let A be a finite set of elements
(a, b, c, ..., n), a binary relation R on the set A is a subset of the cartesian
product A×A, that is, a set of ordered pairs (a, b) such that a and b are
in A: R ⊆ A × A.

For an ordered pair (a, b) which belongs to R, we indifferently use the
notations:

(a, b) ∈ R or aRb or R(a, b).

Let R and T be two binary relations on the same set A. Some set
operations are:

The Inclusion: R ⊆ T iff aRb −→ aTb

The Union: a(R ∪ T )b iff aRb or(inclusive) aTb

The Intersection: a(R ∩ T )b iff aRb and aTb

The Relative Product: a(R.T )b iff ∃c ∈ A : aRc and cT b

(aR2b iff aR.Rb).
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When such concepts apply we respectively denote (Ra), (Rs), (R̂)
the asymmetric, the symmetric and the complementary part of binary
relation R:

aRab iff aRb and not(bRa)

aRsb iff aRb and bRa

aR̂b iff not(aRb) and not(bRa).

The complement (Rc), the converse (the dual)(R) and the co-dual
(Rcd) of R are respectively defined as follows:

aRcb iff not(aRb)

aRb iff bRa

aRcdb iff not(bRa).

The relation R is called

reflexive, if aRa, ∀a ∈ A

irreflexive, if aRca, ∀a ∈ A

symmetric, if aRb −→ bRa, ∀a, b ∈ A

antisymmetric, if (aRb, bRa) −→ a = b, ∀a, b ∈ A

asymmetric, if aRb −→ bRca, ∀a, b ∈ A

complete, if (aRb or bRa), ∀a 6= b ∈ A

strongly complete, if aRb or bRa, ∀a, b ∈ A

transitive, if aRb, bRc) −→ aRc, ∀a, b, c ∈ A

negatively transitive, if (aRcb, bRcc) −→ aRcc, ∀a, b, c ∈ A

negatively transitive, if aRb −→ (aRc or cRb), ∀a, b, c ∈ A

semitransitive, if (aRb, bRc) −→ (aRd or dRc), ∀a, b, c, d ∈ A

Ferrers relation, if (aRb, cRd) −→ (aRd or cRb), ∀a, b, c, d ∈ A

The equivalence relation E associated with the relation R is a reflex-
ive, symmetric and transitive relation, defined by:

aEb iff ∀a ∈ A

{

aRc ⇐⇒ bRc

cRa ⇐⇒ cRb.

A binary relation R may be represented by a direct graph (A,R)
where the nodes represent the elements of A, and the arcs, the relation
R. Another way to represent a binary relation is to use a matrix MR;
the element MR

ab of the matrix (the intersection of the line associated to
a and the column associated to b) is 1 if aRb and 0 if not(aRb).

Example 4.1. Let R be a binary relation defined on a set A, such that
the set A and the relation R are defined as follows: A = {a, b, c, d} and
R = {(a, b), (b, d), (b, c), (c, a), (c, d), (d, b)}.
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Figure 1.1. Graphical representation of R.

a b c d

a 0 1 0 0

b 0 0 1 1

c 1 0 0 1

d 0 1 0 0

Figure 1.2. Matrix representation of R.

The graphical and matrix representation of R are given in figures 1.1
and 1.2.

5. Languages

Preference models are formal representations of comparisons of objects.
As such they have to be established through the use of a formal and
abstract language capturing both the structure of the world being de-
scribed and the manipulations of it. It seems natural to consider formal
logic as such a language. However, as already mentioned in the previous
sections, the real world might be such that classical formal logic might
appear too rigid to allow the definition of useful and expressive models.
For this purpose, in this section, we introduce some further formalisms
which extend the expressiveness of classical logic, while keeping most of
its calculus properties.

5.1. Classical Logic

The interested reader can use two references: [128, 200] as introduc-
tory books to the use and the semantics of classical logic. All classic
books mentioned in this chapter, implicitly or explicitly use classical
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logic, since binary relations are just sets and the calculus of sets is al-
gebraically equivalent to truth calculus. Indeed the semantics of logical
formulas as established by Tarski [185, 186], show the equivalence be-
tween membership of an element to a set and truth of the associate
sentence.

Building a binary preference relation, a valuation of any proposition
takes the values {0, 1}:

µ(aRb) = 1 iff aRb is true

µ(aRb) = 0 iff aRb is false.

The reader will note that all notations introduced in the previous
section are based on the above concept. He/she should also note that
when we write “a preference relation P is a subset of A×A”, we introduce
a formal structure where the universe of discourse is A×A and P is the
model of the sentence “x in relation P with y”, that is, P is the set of
all elements of A × A (ordered pairs of x and y) for which the sentence
is true.

The above semantic can be in sharp contrast with decision analysis ex-
perience. For this purpose we will briefly introduce two more semantics:
fuzzy sets and four-valued logic.

5.2. Fuzzy Sets

In this section, we provide a survey of basic notions of fuzzy set theory.
We present definitions of connectives and several valued binary relation
properties in order to be able to use this theory in the field of decision
analysis. Basic references for this section include, [70, 85, 182, 219].

Fuzzy sets were first introduced by Zadeh [217, 218]. The concept
and the associated logics were further developed by other researchers:
[67, 93, 115, 116, 130, 131, 139, 144],

Fuzzy measures can be introduced for two different uses: either they
can represent a concept imprecisely known (although well defined) or
a concept which is vaguely perceived such as in the case of a linguistic
variable. In the first case they represent possible values, while in the
second they are better understood as a continuous truth valuation (in
the interval [0, 1]). To be more precise:

in the first case we associate a possibility distribution (an ordinal
distribution of uncertainty) to classical logic formulas;

in the second case we have a multi-valued logic where the semantics
allow values in the entire interval [0, 1].

A fuzzy set can be associated either with the set of alternatives con-
sidered in a decision aiding model (consider the case where objects are
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represented by fuzzy numbers) or with the preference relations. In deci-
sion analysis we may consider four possibilities2:

Alternatives with crisp values and crisp preference relations

Alternatives with crisp values and fuzzy preference relations

Alternatives with fuzzy values and crisp preference relations (de-
fuzzification , [124] with gravity center, [214] with means interval)

Alternatives with fuzzy values and fuzzy preference relations (pos-
sibility graphs, [69] four fuzzy dominance index, [168]); but in this
chapter we are going to focus on fuzzy preference relations.

In the following we introduce the definitions required for the rest of
the chapter.

Definition 5.1 (Fuzzy Set). A fuzzy set (or a fuzzy subset) F on a
set Ω is defined by the result of an application:

µF : Ω −→ [0, 1]

where ∀x ∈ Ω, µ(x) is the membership degree of x to F .

Definition 5.2 (Negation). A function n : [0, 1] −→ [0, 1] is a negation
if and only if it is non-increasing and:

n(0) = 1 and n(1) = 0.

If the negation n is strictly decreasing and continuous then it is called
strict.

In the following we investigate the two basic classes of operators, the
operators for the intersection (triangular norms called t-norms) and the
union (triangular conorms called t-conorms or s-norms) of fuzzy sets:

Definition 5.3 (t-norm). A function T : [0, 1]2 −→ [0, 1] is a triangu-
lar norm (t-norm), if and only if it satisfies the four conditions:

Equivalence Condition: T (1, x) = x ∀x ∈ [0, 1]

T is commutative: T (x, y) = T (y, x) ∀x, y ∈ [0, 1]

T is nondecreasing in both elements: T (x, y) ≤ T (u, v) for all 0 ≤ x ≤
u ≤ 1 and 0 ≤ y ≤ v ≤ 1

T is associative: T (x, T (y, z)) = T (T (x, y), z) ∀x, y, z ∈ [0, 1].

The function T defines a general class of intersection operators for
fuzzy sets.
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Definition 5.4 (t-conorm). A function S : [0, 1]2 −→ [0, 1] is a (t-
conorm), if and only if it satisfies the four conditions:

Equivalence Condition: S(0, x) = x ∀x ∈ [0, 1]

S is commutative: S(x, y) = S(y, x) ∀x, y ∈ [0, 1]

S is nondecreasing in both elements: S(x, y) ≤ S(u, v) for all 0 ≤ x ≤
u ≤ 1 and 0 ≤ y ≤ v ≤ 1

S is associative: S(x, S(y, z)) = S(S(x, y), z) ∀x, y, z ∈ [0, 1].

T-norms and t-conorms are related by duality. For suitable negation
operators3 pairs of t-norms and t-conorms satisfy the generalisation of
the De Morgan law:

Definition 5.5 (De Morgan Triplets). Suppose that T is a t-norm, S
is a t-conorm and n is a strict negation. 〈T, S, n〉 is a De Morgan triple
if and only if:

n(S(x, y)) = T (n(x), n(y)).

Such a definition extends De Morgan’s law to the case of fuzzy sets.
There exist different proposed De Morgan triplets: [60, 68, 90, 176, 210,
213, 216].

The more frequent t-norms and t-conorms and negations are presented
in table 1.1.

Table 1.1. Principal t-norms, t-conorms and negations.

Names t-norms t-conorms

Zadeh min(x, y) max(x, y)
probabilistic x ∗ y x + y − xy
Lukasiewicz max(x + y − 1, 0) min(x + y, 1)
Hamacher(γ > 0) (xy)/ (x + y + xy − (1 − γ)xy)/

(γ + (1 − γ)(x + y − xy)) (1 − (1 − γ)xy)

Yager(p > 0) max(1 − ((1 − x)p + (1 − y)p)1/p, 0) min((xp + yp)1/p, 1)
Weber(λ > −1) max((x + y − 1 + λxy)/(1 + λ), 0)) min(x + y + λxy,1)
drastic x if y = 1 x if y = 0

y if x = 1 y if x = 0
0 ifnot 1 ifnot

We make use of De Morgan’s triplet 〈T, S, n〉 in order to extend the
definitions of the operators and properties introduced above in crisp
cases. First, we give the definitions of operators of implication IT and
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equivalence ET :

IT (x, y) = sup{z ∈ [0, 1] : T (x, z) ≤ y}

ET (x, y) = T (IT (x, y), IT (y, x).

Since preference modelling makes use of binary relations, we extend
the definitions of binary relation properties to the valued case. For the
sake of simplicity µ(R(x, y)) will be denoted R(x, y): a valued binary
relation R(x, y) is (∀a, b, c, d ∈ A)

reflexive, if R(a, a) = 1
irreflexive, if R(a, a) = 0
symmetric, if R(a, b) = R(b, a)
T -antisymmetric, if a 6= b −→ T (R(a, b), R(b, a)) = 0
T -asymmetric, if T (R(a, b), R(b, a)) = 0
S-complete, if a 6= b −→ S(R(a, b), R(b, a)) = 1
S-strongly complete, if S(R(a, b), R(b, a))1
T -transitive, if T (R(a, c), R(c, b)) ≤ R(a, b)
negatively S-transitive, if R(a, b) ≤ S(R(a, c), R(c, b))
T -S-semitransitive, if T (R(a, d), R(d, b)) ≤ S(R(a, c), R(c, b))
T -S-Ferrers relation, if T (R(a, b), R(c, d)) ≤ S(R(a, d), R(c, b)).

Different instances of De Morgan triplets will provide different defini-
tions for each property.

The equivalence relation is one of the most-used relations in decision
analysis and is defined in fuzzy set theory as follows:

Definition 5.6 (Equivalence Relation). A function E : [0, 1]2 −→
[0, 1] is an equivalence if and only if it satisfies:

E(x, y) = E(y, x)∀x, y ∈ [0, 1]

E(0, 1) = E(1, 0) = 0

E(x, x) = 1∀x ∈ [0, 1]

x ≤ x′ ≤ y′ ≤ y =⇒ E(x, y) ≤ E(x′, y′).

In section 5.3 and chapter 11, some results obtained by the use of
fuzzy set theory are represented.

5.3. Four-valued Logics

When we compare objects, it might be the case that it is not possible
to establish precisely whether a certain relation holds or not. The prob-
lem is that such a hesitation can be due either to incomplete informa-
tion (missing values, unknown replies, unwillingness to reply etc.) or to
contradictory information (conflicting evaluation dimensions, conflicting
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reasons for and against the relation, inconsistent replies etc.). For in-
stance, consider the query “is Anaxagoras intelligent?” If you know who
Anaxagoras is you may reply “yes” (you came to know that he is a Greek
philosopher) or “no” (you discover he is a dog). But if you know nothing
you will reply “I do not know” due to your ignorance (on this particular
issue). If on the other hand you came to know both that Anaxagoras is
a philosopher and a dog you might again reply “I do not know”, not due
to ignorance, but to inconsistent information. Such different reasons for
hesitation can be captured through four-valued logics allowing for differ-
ent truth values for four above-mentioned cases. Such logics were first
studied in [66] and introduced in the literature in [17] and [18]. Further
literature on such logics can be found in [8, 23, 73, 84, 88, 113, 187, 191].

In the case of preference modelling, the use of such logics was first
suggested in [189] and [54]. Such logics extend the semantics of classical
logic through two hypotheses:

the complement of a first order formula does not necessarily coin-
cide with its negation;

truth values are only partially ordered (in a bilattice), thus allow-
ing the definition of a boolean algebra on the set of truth values.

The result is that using such logics, it is possible to formally charac-
terise different states of hesitation when preferences are modelled (see
[194, 195]. Furthermore, using sucha formalism, it becomes possible
to generalise the concordance/discordance principle (used in several de-
cision aiding methods) as shown in [192] and several characterisation
problems can be solved (see for instance [196]). Recently (see [89, 159])
it has been suggested to use the extension of such logics for continuous
valuations.

6. Preference Structures

Definition 6.1 (Preference Structure). A preference structure is a
collection of binary relations defined on the set A and such that:

for each couple a, b in A; at least one relation is satisfied

for each couple a, b in A; if one relation is satisfied, another one
cannot be satisfied.

In other terms a preference structure defines a partition4 of the set
A × A. In general it is recommended to have two other hypotheses
with this definition (also denoted as fundamental relational system of
preferences):
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Each preference relation in a preference structure is uniquely char-
acterized by its properties (symmetry, transitivity, etc.).

For each preference structure, there exists a unique relation from
which the different relations composing the preference structure
can be deduced. Any preference structure on the set A can thus
be characterised by a unique binary relation R in the sense that
the collection of the binary relations are be defined through the
combinations of the epistemic states of this characteristic relation5.

6.1. 〈P, I〉 Structures

The most traditional preference model considers that the decision-maker
confronted with a pair of distinct elements of a set A, either:

clearly prefers one element to the other, or

feels indifferent about them.

The subset of ordered pairs (a, b) belonging to A × A such that the
statement “a is preferred to b” is true, is called preference relation and
is denoted by P .

The subset of pairs (a, b) belonging to A×A such that the statement
“a and b are indifferent” is true, is called indifference relation and is
denoted by I (I being considered the complement of P∪P−1 with respect
to A × A).

In the literature, there are two different ways of defining a specific
preference structure:

the first defines it by the properties of the binary relations of the
relation set;

the second uses the properties of the characteristic relation. In the
rest of the section, we give definitions in both ways.

Definition 6.2 (〈 P, I 〉 Structure). A 〈P, I〉 structure on the set A

is a pair 〈P, I〉 of relations on A such that:

P is asymmetric,

I is reflexive, symmetric.

The characteristic relation R of a 〈P, I〉 structure can be defined as a
combination of the relations P and I as:

aRb iff a(P ∪ I)b. (1.1)
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In this case P and I can be defined from R as follows:

aPb iff aRb and bRca (1.2)

aIb iff aRb and bRa. (1.3)

The construction of orders is of a particular interest, especially in de-
cision analysis since they allow an easy operational use of such preference
structures. We begin by representing the most elementary orders (weak
order, complete order). To define such structures we add properties to
the relations P and I (namely different forms of transitivity).

Definition 6.3 (Total Order). Let R be a binary relation on the set
A, R being a characteristic relation of 〈 P, I 〉, the following definitions
are equivalent:

i. R is a total order.

ii. R is reflexive, antisymmetric, complete and transitive.

iii.







I = {(a, a),∀a ∈ A}
P is transitive
P ∪ I is reflexive and complete.

iv.







P is transitive
PI ⊂ P (or equivalently IP ⊂ P )
P ∪ I is reflexive and complete.

With this relation, we have an indifference between any two objects
only if they are identical. The total order structure consists of an ar-
rangement of objects from the best one to the worst one without any ex
aequo.

In the literature, one can find different terms associated with this
structure: total order, complete order, simple order or linear order.

Definition 6.4 (Weak Order). Let R be a binary relation on the set
A, R being a characteristic relation of 〈P, I〉, the following definitions
are equivalent:

i. R is a weak order.

ii. R is reflexive, strongly complete and transitive.

iii.







I is transitive
P is transitive
P ∪ I is reflexive and complete.
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This structure is also called complete preorder or total preorder. In
this structure, indifference is an equivalence relation. The associated
order is indeed a total order of the equivalence (indifference) classes of
A.

The first two structures consider indifference as a transitive relation.
This is empirically falsifiable. Literature studies on the intransitivity
of indifference show this; undoubtedly the most famous is that of Luce
[125], who gives the example of a cup of sweetened tea6. Before him,
[9, 74, 91, 97] and [162] already suggested this phenomenon. For his-
torical commentary on the subject, see [83]. Relaxing the property of
transitivity of indifference results in two well-known structures: semi-
orders and interval orders.

Definition 6.5 (Semiorder). Let R be a binary relation on the set A,

R being a characteristic relation of 〈P, I〉, the following definitions are
equivalent:

i. R is a semiorder.

ii. R is reflexive, complete, Ferrers relation and semitransitive.

iii.







P.I.P ⊂ P

P 2 ∩ I2 = ∅
P ∪ I is reflexive and complete.

iv.







P.I.P ⊂ P

P 2I ⊂ P (or equivalently IP 2 ⊂ P )
P ∪ I is reflexive and complete.

Definition 6.6 (Interval Order (IO)). Let R be a binary relation
on the set A, R being a characteristic relation of 〈P, I〉, the following
definitions are equivalent:

i. R is an interval order.

ii. R is reflexive, complete and Ferrers relation.

iii.

{

P.I.P ⊂ P

P ∪ I is reflexive and complete.

A detailed study of this structure can be found in [78, 132, 161]. It is
easy to see that this structure generalizes all the structures previously
introduced.

Can we relax transitivity of preference? Although it might appear
counterintuitive there is empirical evidence that such a situation can
occur: [127, 198]. Similar work can be found in: [29, 31, 32, 33, 77, 79,
80, 206].
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6.2. Extended Structures

The 〈P, I〉 structures presented in the previous section neither take into
account all the decision-maker’s attitudes, nor all possible situations. In
the literature, there are two non exclusive ways to extend such struc-
tures:

Introduction of several distinct preference relations representing
(or more) hesitation(s) between preference and indifference;

Introduction of one or more situations of incomparability.

6.2.1 Several Preference Relations. One can wish to give
more freedom to the decision-maker and allow more detailed preference
models, introducing one or more intermediate relations between indiffer-
ence and preference. Such relations might represent one or more zones
of ambiguity and/or uncertainty where it is difficult to make a distinc-
tion between preference and indifference. Another way to interpret such
“intermediate” relations is to consider them as different “degrees of pref-
erence intensity”. From a technical point of view these structures are
similar and we are not going to further discuss such semantics. We
distinguish two cases: one where only one such intermediate relation
is introduced (usually called weak preference and denoted by Q), and
another where several such intermediate relations are introduced.

1 〈P,Q, I〉 preference structures. In such structures we introduce
one more preference relation, denoted by Q which is an asymmet-
ric and irreflexive binary relation. The usual properties of prefer-
ence structures hold. Usually such structures arise from the use
of thresholds when objects with numerical values are compared or,
equivalently, when objects whose values are intervals are compared.
The reader who wants to have more information on thresholds can
go to section 6.1. where all definitions and representation theorems
are given.

〈P,Q, I〉 preference structures have been generally discussed in
[203]. Two cases are studied in the literature:

PQI interval orders and semi-orders (for their characterisa-
tion see [197]). The detection of such structures has been
shown to be a polynomial problem (see [143]).

Double threshold orders (for their characterisation see [196,
203]) and more precisely pseudo-orders (see [174, 175]).
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One of the difficulties of such structures is that it is impossible to
define P , Q and I from a single characteristic relation R as is the
case for other conventional preference structures.

2 〈P1, · · ·Pn〉 preference structures. Practically, such structures gen-
eralise the previous situation where just one intermediate relation
was considered. Again, such structures arise when multiple thresh-
olds are used in order to compare numerical values of objects. The
problem was first introduced in [47] and then extensively studied
in [57, 59, 166], see also [2, 58, 135, 199]. Typically such structures
concern the coherent representation of multiple interval orders.
The particular case of multiple semi-orders was studied in [55].

6.2.2 Incomparability. In the classical preference structures
presented in the previous section, the decision-maker is supposed to
be able to compare the alternatives (we can have aPb, bPa or aIb).
But certain situations, such as lack of information, uncertainty, am-
biguity, multi-dimensional and conflicting preferences, can create in-
comparability between alternatives. Within this framework, the partial
structures use a third symmetric and irreflexive relation J (aJb ⇐⇒
not(aPb), not(bPa), not(aIb), not(aQb), not(bQa)), called incomparabil-
ity, to deal with this kind of situation. To have a partial structure
〈P, I, J〉 or 〈P,Q, I, J〉, we add to the definitions of the preceding struc-
tures ( total order, weak order, semi-order, interval order and pseudo-
order), the relation of incomparability (J 6= ∅); and we obtain respec-
tively partial order, partial preorder (quasi-order), partial semi-order,
partial interval order and partial pseudo-order [167].

Definition 6.7 (Partial Order). Let R be a binary relation (R = P∪I)
on the set A, R being a characteristic relation of 〈P, I, J〉, the following
definitions are equivalent:

i. R is a partial order.

ii. R is reflexive, antisymmetric, transitive.

iii.















P is asymmetric, transitive
I is reflexive, symmetric
J is irreflexive and symmetric
I = {(a, a),∀a ∈ A}.

Definition 6.8 (Quasi-order). Let R be a binary relation (R = P ∪I)
on the set A, R being a characteristic relation of 〈P, I, J〉, the following
definitions are equivalent:

i. R is a quasi-order.
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ii. R is reflexive, transitive.

iii.















P is asymmetric, transitive
I is reflexive, symmetric and transitive
J is irreflexive and symmetric
(P.I ∪ I.P ) ⊂ P.

A fundamental result [72, 78] shows that every partial order (resp.
partial preorder) on a finite set can be obtained as an intersection of a
finite number of total orders (resp. total preorders, see [25]).

A further analysis of the concept of incomparability can be found in
[194] and [195]. In these papers it is shown that the number of prefer-
ence relations that can be introduced in a preference structure, so that
it can be represented through a characteristic binary relation, depends
on the semantics of the language used for modelling. In other terms,
when classical logic is used in order to model preferences, no more than
three different relations can be established (if one characteristic rela-
tion is used). The introduction of a four-valued logic allows to extend
the number of independently defined relations to 10, thus introducing
different types of incomparability (and hesitation) due to the different
combination of positive and negative reasons (see [192]). It is there-
fore possible with such a language to consider an incomparability due to
ignorance separately from one due to conflicting information.

6.3. Valued Structures

In this section, we present situations where preferences between objets
are defined by a valued preference relation such that µ(R(a, b)) repre-
sents either the intensity or the credibility of the preference of a over b7

or the proportion of people who prefer a to b or the number of times that
a is preferred to b. In this section, we make use of results cited in [85]
and [155]. To simplify the notation, the valued relation µ(R(a, b)) is de-
noted R(a, b) in the rest of this section. We begin by giving a definition
of a valued relation:

Definition 6.9 (Valued Relation). A valued relation R on the set A

is a mapping from the cartesian product A×A onto a bounded subset of
R, often the interval [0,1].

Remark 6.1. A valued relation can be interpreted as a family of crisp
nested relations. With such an interpretation, each α-cut level of a fuzzy
relation corresponds to a different crisp nested relation.

In this section, we show some results obtained by the use of fuzzy
set theory as a language which is capable to deal with uncertainty. The
seminal paper by Orlovsky [147] can be considered as the first attempt to
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use fuzzy set theory in preference modelling. Roy in [169] will also make
use of the concept of fuzzy relations in trying to establish the nature
of a pseudo-order. In his paper Orlovsky defines the strict preference
relation and the indifference relation with the use of Lukasiewicz and
min t-norms. After him, a number of researchers were interested in the
use of fuzzy sets in decision aiding, most of these works are published in
the journal Fuzzy Sets and Systems.

In the following we give some definitions of fuzzy ordered sets. We
derive the following definitions from the properties listed in section 4.2:

Definition 6.10 (Fuzzy Total Order). A binary relation R on the
set A, is a fuzzy total order iff R is antisymmetric, strongly complete
and T -transitive.

Definition 6.11 (Fuzzy Weak Order). A binary relation R on the
set A is a fuzzy weak order iff R is strongly complete and transitive.

Definition 6.12 (Fuzzy Semi-order). A binary relation R on the set
A is a fuzzy semi-order iff R is strongly complete, a Ferrers relation and
semitransitive.

Definition 6.13 (Fuzzy Interval Order (IO)). A binary relation R

on the set A is a fuzzy interval order iff R is a strongly complete Ferrers
relation.

Definition 6.14 (Fuzzy Partial Order). A binary relation R on the
set A is a fuzzy partial order iff: R is antisymmetric reflexive and T -
transitive.

Definition 6.15 (Fuzzy Partial Preorder). A binary relation R on
the set A is a fuzzy partial preorder iff R is reflexive and T -transitive.

All the definitions above are given in terms of the characteristic re-
lation R. The second step is to define valued preference relations (val-
ued strict preference, valued indifference and valued incomparability) in
terms of the characteristic relation [85, 86, 87, 148, 156]. For this, equa-
tions (1.1) - (1.3) are interpreted in terms of fuzzy logical operations:

P (a, b) = T [R(a, b), nR(b, a)] (1.4)

I(a, b) = T [R(a, b), R(b, a)] (1.5)

R(a, b) = S[P (a, b), I(a, b)]. (1.6)

However, it is impossible to obtain a result satisfying these three
equations using a De Morgan triplet. [6, 85] present this result as an
impossibility theorem that proves the non-existence of a single, consis-
tent many-valued logic as a logic of preference. A way to deal with
this contradiction is to consider some axioms to define 〈P, I, J〉. Fodor,
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Ovchinnikov, Roubens propose to define three general axioms that they
call Independence of Irrelevant Alternatives (IA), Positive Association
(PA), Symmetry (SY). With their axioms, the following propositions
hold:

Proposition 6.1 (Fuzzy Weak Order). If 〈P, I〉 is a fuzzy weak order
then

P is a fuzzy strict partial order

I is a fuzzy similarity relation (reflexive, symmetric, transitive).

Proposition 6.2 (Fuzzy Semi-order). If 〈P, I〉 is a fuzzy semi-order
then

P is a fuzzy strict partial order

I is not transitive.

Proposition 6.3 (Fuzzy Interval Order (IO)). If 〈P, I〉 is a fuzzy
interval order then

P is a fuzzy strict partial order

I is not transitive.

De Baets, Van de Walle and Kerre [48, 201, 202] define the valued
preference relations without considering a characteristic relation:

P is T − asymmetric (P ∩T P−1) = ∅)

I is reflexive and J is irreflexive (I(a, a) = 1, (a, a) = 0∀a ∈ A)

I and J are symmetric (I = I−1, J = J−1)

P ∩T I = ∅, P ∩T J = ∅, I ∩T J = ∅

P ∪T P−1 ∪T I∪T = A × A.

With a continuous t-norm and without zero divisors, these properties
are satisfied only in crisp case. To deal with this problem, we have to
consider a continuous t-norm with zero divisor.

In multiple criteria decision aiding, we can make use of fuzzy sets
in different ways. One of these helps to construct a valued preference
relation from the crisp values of alternatives on each criteria. We cite
the proposition of Perny and Roy [156] as an example here. They define
a fuzzy outranking relation R from a real valued function θ defined on
R×R, such that R(a, b)θ(g(a), g(b)) verifies the following conditions for
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all a, b in A:

∀y ∈ X, θ(x, y) is a nondecreasing function of x (1.7)

∀x ∈ X, θ(x, y) is a nonincreasing function of y (1.8)

∀z ∈ X, θ(z, z) = 1. (1.9)

The resulting relation R is a fuzzy semi-order (i.e. reflexive, complete,
semi-transitive and Ferrers fuzzy relation). Roy (1978) proposed in Elec-
tre III to define the outranking relation R characterized by a function θ

for each criterion as follows:

θ(x, y) =
p(x) − min{y − x, p(x)}

p(x) − min{y − x, q(x)}
,

where p(x) and q(x) are thresholds of the selected criteria.
We may work with alternatives representing some imprecision or am-

biguity for a criterion. In this case, we make use of fuzzy sets to de-
fine the evaluation of the alternative related to the criterion. In the
ordered pair {x, µa

j}, µa
j represents the grade of membership of x for

alternative a related to the criterion j. The fuzzy set µ is supposed
to be normal (supx(µ

a
j ) = 1) and convex (∀x, y, z ∈ R, y ∈ [x, z],

µa
j (y) ≤ min{µa

j (x), µa
j (z)}). The credibility of the preference of a over

b is obtained from the comparison of the fuzzy intervals (normal, convex
fuzzy sets) of a and b with some conditions:

The method used should be sensitive to the specific range and
shape of the grades of membership.

The method should be independent of the irrelevant alternatives.

The method should satisfy transitivity.

Fodor and Roubens [85] propose to use two procedures.
In the first one, the credibility of the preference of a over b for j is

defined as the possibility that a ≥ b:

Πj(a ≥ b) =
∨

x≥y

[

µa
j (x) ∧ µb

j(y)
]

= sup
x≥y

[

min(µa
j (x), µb

j(y))
]

. (1.10)

The credibility as defined by (1.10) is a fuzzy interval order (Πj is
reflexive, complete and a Ferrers relation) and

min (Πj(a, b),Πj(b, a)) = sup
x

min
(

µa
j (x), µb

j(x)
)

.

In the case of a symmetrical fuzzy interval (µa), the parameters of
the fuzzy interval can be defined in terms of the valuation gj(a) and
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thresholds p(gj(a) and q(gj(a). Some examples using trapezoidal fuzzy
numbers can be found in the work of Fodor and Roubens.

The second procedure proposed by Fodor and Roubens makes use of
the shapes of membership functions, satisfies the three axioms cited at
the beginning of the section and gives the credibility of preference and
indifference as follows:

Pj(a, b) = Rd
j (a, b) = 1 − Πj(b ≥ a) = Nj(a > b) (1.11)

Ij(a, b) = min[Πj(a ≥ b),Πj(b ≥ a)]. (1.12)

Where Π (the possibility degree) and N (the necessity degree) are two
dual distributions of the possibility theory that are related to each other
with the equality: Π(A) = 1−N(A) (see [71] for an axiomatic definition
of the theory of possibility).

7. Domains and Numerical Representations

In this section we present a number of results concerning the numerical
representation of the preference structures introduced in the previous
section. This is an important operational problem. Given a set A and a
set of preference relations holding between the elements of A, it is impor-
tant to know whether such preferences fit a precise preference structure
admitting a numerical representation. If this is the case, it is possible
to replace the elements of A with their numerical values and then work
with these. Otherwise, when to the set A is already associated a numeri-
cal representation (for instance a measure), it is important to test which
preference structure should be applied in order to faithfully interpret the
decision-maker’s preferences [205].

7.1. Representation Theorems

Theorem 7.1 (Total Order). Let R = 〈P, I〉 be a reflexive relation on
a finite set A, the following definitions are equivalent:

i. R is a total order structure (see 6.3).

ii. ∃ g: A 7→ R
+ satisfying for all a, b ∈ A:

{

aPb iff g(a) > g(b)
a 6= b =⇒ g(a) 6= g(b).

iii. ∃g : A 7→ R
+ satisfying for all a, b ∈ A:

{

aRb iff g(a) > g(b)
a 6= b =⇒ g(a) 6= g(b).

In the infinite not enumerable case, it can be impossible to find a
numerical representation of a total order. For a detailed discussion on
the subject, see [16]. The necessary and sufficient conditions to have a
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numerical representation for a total order are present in many works:
[36, 49, 75, 118].

Theorem 7.2 (Weak Order). Let R = 〈P, I〉 be a reflexive relation
on a finite set A, the following definitions are equivalent:

i. R is a weak order structure (see 6.4).

ii. ∃g : A 7→ R
+ satisfying for all a, b ∈ A:

{

aPb iff g(a) > g(b)
aIb iff g(a) = g(b).

iii. ∃g : A 7→ R
+ satisfying for all a, b ∈ A: aRb iff g(a) ≥ g(b).

Remark 7.1. Numerical representations of preference structures are not
unique. All monotonic strictly increasing transformations of the function
g can be interpreted as equivalent numerical representations8.

Intransitivity of indifference or the appearance of intermediate hesi-
tation relations is due to the use of thresholds that can be constant or
dependent on the value of the objects under comparison (in this case
values of the threshold might obey further coherence conditions).

Theorem 7.3 (Semi-Order). Let R = 〈P, I〉 be a binary relation on
a finite set A, the following definitions are equivalent:

1 R is a semi-order structure (see 6.5).

2 ∃g : A 7→ R
+ and a constant q ≥ 0 satisfying for all a, b ∈ A:

{

aPb iff g(a) > g(b) + q

aIb iff |g(a) − g(b| ≤ q.

3 ∃g : A 7→ R
+ and a constant q ≥ 0 satisfying for all a, b ∈ A:

aRb iff g(a) ≥ g(b) − q.

4 ∃g : A 7→ R
+ and ∃q : R 7→ R

+ satisfying for all a, b ∈ A:

{

aRb iff g(a) ≥ g(b) − q(g(b))
(g(a) > g(b)) −→ (g(a) + q(g(a)) ≥ g(b) + q(g(b))).

For the proofs of these theorems see [78, 119, 161, 178].
The threshold represents a quantity for which any difference smaller

than this one is not significant for the preference relation. As we can
see, the threshold is not necessarily constant, but if it is not, it must
satisfy the inequality which defines a coherence condition.
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Here too, the representation of a semi-order is not unique and all
monotonic increasing transformations of g appear as admissible repre-
sentations provided the condition that the function q also obeys the same
transformation9.

Theorem 7.4 (PI Interval Order). Let R = 〈P, I〉 be a binary rela-
tion on a finite set A, the following definitions are equivalent:

i. R is an interval order structure (see 6.6).

ii. ∃g : A 7→ R
+ satisfying ∀a, b ∈ A:







aPb iff g(a) > g(b) + q(b)

aIb iff
g(a) ≤ g(b) + q(b)
g(b) ≤ g(a) + q(a).

It should be noted that the main difference between an interval order
and a semi-order is the existence of a coherence condition on the value of
the threshold. One can further generalise the structure of interval order,
by defining a threshold depending on both of the two alternatives. As a
result, the asymmetric part appears without circuit: [1, 2, 3, 4, 53, 183].
For extensions on the use of thresholds see [81, 99, 134]. For the extension
of the numerical representation of interval orders in the case A is infinite
not denumerable see [36, 40, 76, 140, 146].

We can now see the representation theorems concerning preference
structures allowing an intermediate preference relation (Q). Before that,
let us mention that numerical representations with thresholds are equiv-
alent to numerical representations of intervals. It is sufficient to note
that associating a value g(x) and a strictly positive value q(g(x)) to
each element x of A is equivalent to associating two values: l(x) = g(x)
(representing the left extreme of an interval) and r(x) = g(x) + q(g(x))
(representing the right extreme of the interval to each x; obviously:
r(x) > l(x) always holds).

Theorem 7.5 (PQI Interval Orders). Let R = 〈P,Q, I〉 be a relation
on a finite set A, the following definitions are equivalent:

i. R is a PQI interval order.

ii. There exists a partial order L such that:

1) I = L ∪ R ∪ Id where Id = {(x, x), x ∈ A} and R = L−1;

2) (P ∪ Q ∪ L).P ⊂ P ;

3) P.(P ∪ Q ∪ R) ⊂ P ;
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4) (P ∪ Q ∪ L).Q ⊂ P ∪ Q ∪ L;

5) Q.(P ∪ Q ∪ R) ⊂ P ∪ Q ∪ R.

iii. ∃l, r : A 7→ R
+ satisfying:















r(a) ≥ l(a)
aPb iff l(a) > r(b)
aQb iff r(a) > r(b) ≥ l(a) ≥ l(b)
aIb iff r(a) ≥ r(b) ≥ l(a) or r(b) ≥ r(a) ≥ l(a) ≥ l(b).

For proofs, further theory on the numerical representation and algo-
rithmic issues associated with such a structure see [141, 143, 197].

Theorem 7.6 (Double Threshold Order). Let R = 〈P,Q, I〉 be a
relation on a finite set A, the following definitions are equivalent:

i. R is a double Threshold Order (see [203]).

ii.















Q.I.Q ⊂ Q ∪ P

P.I.P ⊂ P

Q.I.P ⊂ P

P.Q−1.P ⊂ P.

iii. ∃g, q, p : A 7→ R
+ satisfying:







aPb iff g(a) > g(b) + p(b))
aQb iff g(b) + p(b) ≥ g(a) > g(b) + q(b)
aIb iff g(b) + q(b) > g(a) > g(b) − q(a).

Theorem 7.7 (Pseudo-order). Let R = 〈P,Q, I〉 be a relation on a
finite set A, the following definitions are equivalent:

i. R is a pseudo-order.

ii.















R is a double threshold order
〈(P ∪ Q), I〉 is a semi-order
〈P, (Q ∪ I ∪ Q−1)〉is a semi-order
P.I.Q ⊂ P.

iii.







R is a double threshold order
g(a) > g(b) ⇐⇒ g(a) + q(a) > g(b) + q(b)

g(a) + p(a) > g(b) + p(b).

A pseudo-order is a particular case of double threshold order, such
that the thresholds fulfil a coherence condition. It should be noted how-
ever, that such a coherence is not sufficient in order to obtain two con-
stant thresholds. This is due to different ways in which the two functions



Preference Modelling 27

can be defined (see [59]). For the existence of multiple constant thresh-
olds see [55].

For partial structures of preference, the functional representations ad-
mit the same formulas, but equivalences are replaced by implications.
In the following, we present a numerical representation of a partial order
and a quasi-order examples:

Theorem 7.8 (Partial Order). If 〈P, I, J〉 presents a partial order
structure,then ∃ g: A 7→ R

+ such that:

aPb =⇒ g(a) > g(b).

Theorem 7.9 (Partial Weak Order). If 〈P, I, J〉 presents a partial
weak order structure, then ∃ g: A 7→ R

+ such that:

{

aPb =⇒ g(a) > g(b)
aIb =⇒ g(a) = g(b).

The detection of the dimension of a partial order10 is an NP-hard
problem [57, 78].

Remark 7.2. In the preference modelling used in decision aiding, there
exist two different approaches: In the first one, the evaluations of alter-
natives are known (they can be crisp or fuzzy) and we try to reach conclu-
sions about the preferences between the alternatives. For the second one,
the preferences between alternatives (pairwise comparison) are given by
an expert (or by a group of experts), and we try to define an evaluation
of the alternatives that can be useful. The first approach uses the inverse
implication of the equivalences presented above (for example for a total
order we have g(a) > g(b) −→ aPb ); and the second one the other
implication of it (for the same example, we have aPb −→ g(a) > g(b)).

Remark 7.3. There is a body of research on the approximation of a
preference structure by another one; here we cite some studies on the re-
search of a total order with a minimum distance to a tournament (com-
plete and antisymmetric relation): [14, 15, 24, 39, 106, 133, 181].

7.2. Minimal Representation

In some decision aiding situations, the only available preferential in-
formation can be the kind of preference relation holding between each
pair of alternatives. In such a case we can try to build a numerical
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representation of each alternative by choosing a particular functional
representation of the ordered set in question and associating this with
the known qualitative relations.

This section aims at studying some minimal or parsimonious repre-
sentations of ordered sets, which can be helpful for this kind of sit-
uation. Particularly, given a countable set A and a preference rela-
tion R ⊆ A × A, we are interested to find a numerical representation
f̂ ∈ F = {f : A 7→ R, f homomorph to R}, such that for all x ∈ A, f̂

is minimal.

7.2.1 Total Order, Weak Order. The way to build a minimal
representation for a total order or a weak order is obvious since the
preference and the indifference relations are transitive: The idea is to
minimize the value of the difference g(a) − g(b) for all a, b in A. To do
this we can define a unit k = mina,b∈A(g(a) − g(b)) and the minimal
evaluation m = mina∈A(g(a)). The algorithm will be:

Choose any value for k and m , e.g. k = 1, m = 0;

Find the alternative i which is dominated by all the other alterna-
tives j in A and evaluate it by g(i) = m;

For all the alternatives l for which we have lIi, note g(l) = g(i);

Find the alternative i′ which is dominated by all the alternatives
j′ in A − {i} and evaluate it by g(i′) = m + k;

For all the alternatives l′ for which we have l′Ii′, note g(l′) = g(i′);

Stop when all the alternatives are evaluated.

7.2.2 Semi-order. The first study on the minimal represen-
tation of semi-orders was done in [160] who proved its existence and
proposed an algorithm to build it. One can find more information about
this in [56, 129, 161] and [142]. Pirlot uses an equivalent definition of
the semi-order which uses a second positive constant: Total Semi-order :
A reflexive relation R = (P, I) on a finite set A is a semi-order iff there
exists a real function g, defined on A, a non negative constant q and a
positive constant ε such that ∀a, b ∈ A:

aPb iff g(a) > g(b) + q + ε

aIb iff |g(a) − g(b)| ≤ q.
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Such a triple (g, q, ε) is called an ε − representation of (P, I). Any
representation (g, q), as in the definition of semi-order given in 5.1, yields
an ε-representation where

ε = min(a,b)∈P (g(a) − g(b) − q).

Let (A,R) be an associated to the semi-order R = (P, I), we denote
G(q, ε) the valued graph obtained by giving the value (q + ε) to the arcs
P and (−q) to the arcs I.

Theorem 7.10. If R = (P, I) is a semi-order on the finite set A, there
exists an ε-representation with threshold q iff:

q

ε
≥ α = max

C

{

|C ∩ P |

|C ∩ I| − |C ∩ P |
, C circuit of (A,R)

}

where |C ∩ P | (resp. |C ∩ I|), represents the number of arcs P (resp. I)
in the circuit C of the graph (A, R).

An algorithm to find a numerical representation of a semi-order is as
follows:

Choose any value for εk, e.g. ε= 1;

Choose a large enough value of q
ε
(e.g. q

ε
= |P |;

Solve the maximal value path problem in the graph G(q, ε) (e.g.
by using the Bellman algorithm, see [122]).

Denote by gq,ε, the solution of the maximal path problem in G(q, ε);
we have:

gq,ε ≤ g(a)∀a ∈ A.

Example 7.1. We consider the example given by Pirlot and Vincke
[161]: Let S = (P, I) be a semiorder on A = {a, b, c} defined by P =
{(a, c)}.

The first inequality of 7.2.2 gives the following equations:

g(a) ≥ g(c) + q + ε

g(a) ≥ g(b) − q

g(b) ≥ g(a) − q

g(b) ≥ g(c) − q

g(c) ≥ g(b) − q.

Figure 1.3 shows the graphical representation of this semiorder.
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Figure 1.3. Graphical representation of the semiorder.

Table 1.2. Various ε-representations with ε=1.

a b c

q=1 g1=1 2 1 0

q=1 g2=1 9.5 8.5 7.5

q=2.5 g3=1 3.5 1 0

q=2.5 g4=1 10.5 8.5 7

q=2.5 g5=1 3.5 2.5 0

As the non-trivial circuit C = {(a, c), (c, b), (b, a)} is −q + ε (−q + ε =
(q+ε)+(−q)+(−q)), necessary and sufficient conditions for the existence
of an ε-representation is q ≥ ε.

The table1.2 provides an example of possible numerical representation
of this semiorder.

Definition 7.1. A representation (g∗, q∗, ε) is minimal in the set of
all non-negative ε-representations (g, q, ε) of a semiorder iff ∀a ∈ A

g∗(a) ≤ g(a).

Theorem 7.11. The representation (gq∗,ε, q
∗, ε) is minimal in the set

of all ε-representations of a semiorder R.

7.2.3 Interval Order. An interval can be represented by two
real functions l and r on the finite set A which satisfy:

(∀a ∈ A, l(a) ≤ r(a))11.

Definition 7.2. A reflexive relation R = (P ∪ I) on a finite set A is an
interval order iff there exists a pair of functions l, r: A −→ R+ and a
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positive constant ε such that ∀a, b ∈ A

{

aPb iff l(a) > r(b) + q + ε

aIb iff l(a) ≥ r(b) and l(b) ≥ r(a).

Such a triplet (l, r, ε) is called an ε-representation of the interval order
P ∪ I.

Definition 7.3. The ε-representation (l∗, r∗, ε) of the interval order P ∪
I is minimal iff for any other ε-representation (l, r, ε) we have, ∀a ∈ A,

l∗(a) ≤ l(a)

r∗(a) ≤ r(a).

Theorem 7.12. For any interval order P ∪ I, there exists a minimal
ε-representation (l∗, r∗, ε); the values of l∗ and r∗ are integral multiples
of ε.

8. Logic of Preferences

The increasing importance of preference modelling immediately inter-
ested people from other disciplines, particularly logicians and philoso-
phers. The strict relation with deontic logic (see [7]) raised some ques-
tions such as:

Does a general logic exist where any preferences can be represented
and used?

If yes, what is the language and what are the axioms?

Is it possible, via this formalisation, to give a definition of bad or
good as absolute values?

It is clear that this attempt had a clear positivist and normative ob-
jective: to define the one well-formed logic that people should follow
when expressing preferences. The first work on the subject is the one
by Halldén [95], but it is Von Wright’s book [208] that tries to give the
first axiomatisation of a logic of preferences. Inspired by this work some
important contributions have been made [41, 42, 100, 101, 103, 163].
Influence of this idea can also be found in [109] and [164], but in related
fields (statistics and value theory, respectively). The discussion appar-
ently was concluded by Von Wright [209], but Huber [104, 105] continued
on. Later on Halldin [96] and Widmeyer [211, 212] also worked on this.

The general idea can be presented as follows. At least two questions
should be clarified: preferences among what? How should preferences
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be understood? Von Wright [208] argues that preferences can be distin-
guished as extrinsic and intrinsic. The first ones are derived as a reason
from a specific purpose, while the second ones are self-referential to an
actor expressing the preferences. In this sense intrinsic preferences are
the expression of the actor’s system of values of the actor. Moreover,
preferences can be expressed for different things, the most general being
(following Von Wright) “states of affairs”. That is, the expression “a
is preferred to b” should be understood as the preference of a state (a
world) where a occurs (whatever a represents: sentences, objects, rela-
tions etc.) over a state where b occurs. On the basis of Von Wright
expressed a theory based on five axioms:

AW 1. ∀x, y p(x, y) → ¬p(y, x)

AW 2. ∀x, y, z p(x, y) ∧ p(y, z) → p(x, z)

AW 3. p(a, b) ≡ p(a ∧ ¬b,¬a ∧ b)

AW 4. p(a ∨ b, c) ≡ p(a ∧ b ∧ ¬c,¬a ∧ ¬b ∧ c) ∧ p(a ∧ ¬b ∧ ¬c,¬a ∧
¬b ∧ c) ∧ p(¬a ∧ b ∧ ¬c,¬a ∧ ¬b ∧ c)

AW 5. p(a, b) ≡ p(a ∧ c, b ∧ c) ∧ p(a ∧ ¬c, b ∧ ¬c).

The first two axioms are asymmetry and transitivity of the preference
relation, while the following three axioms face the problem of combi-
nations of states of affairs. The use of specific elements instead of the
variables and quantifiers reflects the fact that von Wright considered
the axioms not as logical ones, but as “reasoning principles”. This dis-
tinction has important consequences on the calculus level. In the first
two axioms, preference is considered as a binary relation (therefore the
use of a predicate), in the three “principles”, preference is a proposi-
tion. Von Wright does not make this distinction directly, considering
the expression aPb (p(a, b) in our notation) as a well-formed formula-
tion of his logic. However, this does not change the problem since the
first two axioms are referred to the binary relation and the others are
not. The difference appears if one tries to introduce quantifications; in
this case the three principles appear to be weak. The problem with this
axiomatisation is that empirical observation of human behavior provides
counterexamples of these axioms. Moreover, from a philosophical point
of view (following the normative objective that this approach assumed),
a logic of intrinsic preferences about general states of affairs should al-
low to define what is good (the always preferred?) and what is bad (the
always not preferred?). But this axiomatization fails to enable such a
definition.



Preference Modelling 33

Chisholm and Sosa [42] rejected axioms AW 3 to AW 5 and built an
alternative axiomatization based on the concepts of “good” and “intrin-
sically better”. Their idea is to postulate the concept of good and to
axiomatize preferences consequently. So a good state of affairs is one
that is always preferred to its negation (p(a,¬a)); Chisholm and Sosa,
use this definition only for its operational potential as they argue that
it does not capture the whole concept of “good”). In this case we have:

AS1. ∀x, y p(x, y) → ¬p(y, x)

AS2. ∀x, y, z ¬p(x, y) ∧ ¬p(y, z) → ¬p(x, z)

AS3. ∀x, y ¬p(x,¬x) ∧ ¬p(¬x, x) ∧ ¬p(y,¬y) ∧ ¬p(¬y, y) →
¬p(y, x) ∧ ¬p(x, y)

AS4. ∀x, y p(x, y) ∧ ¬p(y,¬y) ∧ ¬p(¬y, y) → p(x,¬x)

AS5. ∀x, y p(y,¬x) ∧ ¬p(y,¬y) ∧ ¬p(¬y, y) → p(x,¬x).

Again in this axiomatisation there are counterexamples of the axioms.
The assumption of the concept of good can be argued as it allows circu-
larities in the definitions of preferences between combinations of states
of affairs. This criticism lead Hansson [101] to consider only two funda-
mental, universally recognised axioms:

AH1. ∀x, y, z s(x, y) ∧ s(y, z) → s(x, z)

AH2. ∀x, y s(x, y) ∨ s(y, x),

where s is a “large preference relation” and two specific preference rela-
tions are defined, p (strict preference) and i (indifference):

DH1. ∀x, y p(x, y) ≡ s(x, y) ∧ ¬s(y, x)

DH2. ∀x, y i(x, y) ≡ s(x, y) ∧ s(y, x).

He also introduces two more axioms, although he recognises their
controversial nature:

AH3. ∀x, y, z s(x, y) ∧ s(x, z) → s(x, y ∨ z)

AH4. ∀x, y, z s(x, z) ∧ s(y, z) → s(x ∨ y, z)

Von Wright in his reply [209], trying to argue for his theory, introduced
a more general frame to define intrinsic “holistic” preferences or as he
called them “ceteris paribus” preferences. In this approach he considers
a set S of states where the elements are the ones of A (n elements) and
all the 2n combinations of these elements. Given two states s and t
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(elementary or combinations of m states of S) you have i (i = 2n−m)
combinations Ci of the other states. You call an s-world any state that
holds when s holds. A combination Ci of states is also a state so you can
define it in the same way a Ci-world. Von Wright gives two definitions
(strong and weak) of preference:

1 (strong): s is preferred to t under the circumstances Ci iff every
Ci-world that is also an s-world and not a t-world is preferred to
every Ci-world that is also t-world and not s-world.

2 (weak): s is preferred to t under the circumstances Ci iff some Ci-
world that is an s-world is preferred to a Ci-world that is a t-world,
but a Ci-world that is a t-world that is preferred to a Ci-world that
is an s-world does not exist.

Now s is “ceteris paribus” preferred to t iff it is preferred under all
Ci. We leave the discussion to the interested reader, but we point out
that, with these definitions, it is difficult to axiomatize both transitivity
and complete comparability unless they are assumed as necessary truths
for “coherence” and “rationality” (see [209]).

It can be concluded that the philosophical discussion about prefer-
ences failed the objective to give a unifying frame of generalized prefer-
ence relations that could hold for any kind of states, based on a well-
defined axiomatization (for an interesting discussion see [137]). It is still
difficult (if not impossible) to give a definition of good or bad in abso-
lute terms based on reasoning about preferences and the properties of
these relations are not unanimously accepted as axioms of preference
modelling. For more recent advances in deontic logic see [145].

More recently, Von Wright’s ideas and the discussion about “logical
representation of preferences” attracted attention again. This is due to
problems found in the field of Artificial Intelligence field due to essen-
tially two reasons:

the necessity to introduce some “preferential reasoning” (see [26,
27, 34, 62, 63, 64, 120, 123, 180]);

the large dimension of the sets to which such a reasoning might
apply, thus demanding a compact representation of preferences
(see [21, 19, 20, 61, 121]).

9. Conclusion

We hope that this chapter on preference modelling, gave the non-spe-
cialist reader a general idea of the field by providing a list of the most
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important references of a very vast and technical literature. In this
chapter, we have tried to present the necessary technical support for
the reader to understand the following chapters. One can note that
our survey does not interpret all the questions related to preference
modelling. Let us mention some of them:

How to get and validate preference information [12, 207];

Relation between preference modelling and the problem of signifi-
ance in measurement theory [165];

Statistical analysis of preferential data [44, 94];

Interrogations on the relations between preferences and the value
system, and the nature of these values [37, 46, 193, 208].

Notes

1. We can use the word action instead of alternative.

2. Lets take an example: Imagine that we have to choose one car between two. We have
to know the performance of each car in order to establish the relation of preference:

In the first case, the performance of each car is known and noted between 1 and
10 (p(car1) = 8 and p(car2) = 5); the relation of preference is known too (car1 is
preferred to car2: car1Pcar2 (µ(car1Pcar2) = 1)).

In the second case, the performance of each car is known and noted between 1 and
10 (p(car1) = 8 and p(car2) = 7); we are not sur about the preference relation that
is why the relation of preference is fuzzy (µ(car1Pcar2) = 0.75).

In the third case, the performance of each car is fuzzy (in this case the performances
of each car will be defined by fuzzy numbers ; in this case we can use triangular or
trapezoidal fuzzy number to represent the performance); the relation of preference is
crisp (car1 is preferred to car2: car1Pcar2 (µ(car1Pcar2) = 1)).

In the fourth case, the performance of each car is fuzzy (in this case the performances
of each car will be defined by fuzzy numbers ); the relation of preference is fuzzy too
((µ(car1Pcar2) = 0.75)).

3. A suitable one can be the complement operator defined: n(µ(x)) = 1 − µ(x).

4. To have a partition of the set A × A, the inverse of the asymmetric relation must be
considered too.

5. While several authors prefer using both of them, there are others for which one is
sufficient. For example Fishburn does not require the use of preference structures with a
characteristic relation.

6. One can be indifferent between a cup of tea with n milligrams of sugar and one with
n+1 milligrams of sugar, if one admits the transitivity of the indifference, after a certain step
of transitivity, one will have the indifference between a cup of tea with n milligram of sugar
and that with n + N milligram of sugar with N large enough, even if there is a very great
difference of taste between the two; which is contradictory with the concept of indifference.

7. This value can be given directly by the decision-maker or calculated by using different
concepts, such values (indices) are widely used in many MCDA methods such as ELECTRE,
PROMETHEE [171, 35].

8. The function g defines an ordinal scale for both structures.

9. But in this case the scale defined by g is more complex than an ordinal scale.
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10.When it is a partial order of dimension 2, the detection can be made in polynomial
time.

11.One can imagine that l(a) represents the evaluation of the alternative a (g(a)) which
is the left limit of the interval and r(a) represents the value of (g(a)+q(a)) which is the right
limit of the interval. One can remark that a semi-order is an interval order with a constant
length.
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[7] L. Åqvist. Deontic logic. In D. Gabbay and F. Guenther, editors, Handbook
of Philosophical Logic, vol II, pages 605–714. D. Reidel, Dordrecht, 1986.

[8] O. Arieli and A. Avron. The value of the four values. Artificial Intelligence,
102:97–141, 1998.

[9] W.E. Armstrong. The determinateness of the utility function. The Economic
Journal, 49:453–467, 1939.

[10] W.E Armstrong. Uncertainty and utility function. Economics Journal, 58:1–
10, 1948.

[11] W.E Armstrong. A note on the theory of consumer’s behavior. Oxford Eco-
nomics, 2:119–122, 1950.

[12] C.A Bana e Costa and J.C Vansnick. Preference relation and MCDM. In
T. Gal, T. Stewart, and T. Hanne, editors, Multicriteria Decision Making:
Advances in MCDM models, Algorithms, Theory, and Applications, Interna-
tional Series in Operations Research & Management Science, pages 4.1–4.23,
Dordrecht, 1999. Kluwer Academic.
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Informatique et Sciences Humaines, 119:53–74, 1992.

[40] A. Chateauneuf. Continuous representation of a preference relation on a con-
nected topological space. Journal Mathematical Economics, 16:139–146, 1987.

[41] R.M. Chisholm and E. Sosa. Intrinsic preferability and the problem of su-
pererogation. Synthese, 16:321–331, 1966.

[42] R.M. Chisholm and E. Sosa. On the logic of intrinsically better. American
Philosophical Quarterly, 3:244–249, 1966.

[43] M. Cohen and J.-Y Jaffray. Rational behavior under complete ignorance.
Econometrica, 48:1281–1299, 1980.

[44] C.H. Coombs. A theory of data. Wiley, New York, 1964.

[45] C.H. Coombs and J.E.K Smith. On the detection of structures in attitudes
and developmental processes. Psychological Reviews, 80:337–351, 1973.



40

[46] T.A Cowan and P.C Fishburn. Foundations of preference. In Essays in honor
of Werner Leinfellner, pages 261–271. D. Reidel, Dordrecht, 1988.

[47] M.B. Cozzens and F.S. Roberts. Double semiorders and double indifference
graphs. SIAM Journal on Algebraic and Discrete Methods, 3:566–583, 1982.

[48] B. De Baets, E. Kerre, and B. Van De Walle. Fuzzy preference structures and
their characterization. Journal of Fuzzy Mathematics, 3:373, 1995.

[49] G. Debreu. Representation of a preference ordering by a numerical function.
In R. Thrall, C.H Coombs, and R. Davies, editors, Decision Processes, pages
159–175. Wiley, New York, 1954.

[50] G. Debreu. Theory of Value: An Axiomatic Analysis of Economic Equilibrium.
John Wiley and Sons Inc., New York, 1959.

[51] De Morgan. On the symbols of logic i. Transactions of the Cambridge Philo-
sophical Society, 9:78–127, 1864.
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[89] Ph. Fortemps and R. S lowiński. A graded quadrivalent logic for ordinal pref-
erence modelling : Loyola-like approach. Fuzzy Optimization and Decision
Making, 1:93–111, 2002.

[90] M. Frank. On the simultaneous associativity of f(x, y) and x + y − f(x, y).
Aequationes Mathematicae, 19:194–226, 1979.

[91] N. Georgescu-Roegen. The pure theory of consumer’s behavior. Quarterly
Journal of Economics, 50:545–593, 1936.

[92] M.C Golumbic and R. Shamir. Complexity and algorithms for reasoning about
time. a graph theoretic approach. Journal of the ACM, 40:1108–1133, 1993.

[93] J.A Gougen. The logic of inexact concepts. Synthese, 19:325–373, 1969.

[94] P.E Green, D.S Tull, and G. Albaum. Research for marketing decisions. En-
glewood Cliffs, 1988. 2nd edition.

[95] S. Halldén. On the Logic of Better. Library of Theoria, Lund, 1957.

[96] C. Halldin. Preference and the cost of preferential choice. Theory and Decision,
21:35–63, 1986.

[97] E. Halphen. La notion de vraisemblance. Technical Report 4(1), Publication
de l’I.S.U.P, 1955.

[98] D. J Hand. Discrimination and Classification. John Wiley, 1981.

[99] E. Hansen. Global Optimization Using Interval Analysis. M. Dekker, 1992.

[100] B. Hansson. Choice structures and preference relations. Synthese, 18:443–458,
1966.

[101] B. Hansson. Fundamental axioms for preference relations. Synthese, 18:423–
442, 1966.

[102] F. R Hodson, D. G Kendall, and P. Tautu. Mathematics in the Archaeological
and Historial Sciences. Edinburgh University Press, 1971.



References 43

[103] H.S Houthakker. The logic of preference and choice. In A.T Tymieniecka,
editor, Contributions to Logic and Methodology in honour of J.M. Bochenski,
pages 193–207. North Holland, Amsterdam, 1965.

[104] O. Huber. An axiomatic system for multidimensional preferences. Theory and
Decision, 5:161–184, 1974.

[105] O. Huber. Non transitive multidimensional preferences. Theory and Decision,
10:147–165, 1979.

[106] O. Hudry and F. Woirgard. Ordres médians et ordres de Slater des tournois.
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In V. Bouchitté and M. Morvan, editors, Orders, algorithms and applications,
pages 162–175. LNCS 831, Springer-Verlag, Berlin, 1994.

[130] M. Mizumoto and K. Tanaka. The four operations of arithmetic on fuzzy
numbers. Syst. Comput. Controls, 7(5):73–81, 1976.

[131] M. Mizumoto and K. Tanaka. Some properties of fuzzy sets of type 2. Inf.
Control, 31:312–340, 1976.

[132] B. Monjardet. Axiomatiques et propriétés des quasi ordres. Mathmatiques et
Sciences Humaines, 63:51–82, 1978.
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[182] R. S lowiński, editor. Fuzzy sets in decision analysis, operations research and
statistics. Kluwer Academic, Dordrecht, 1998.

[183] B. Subiza. Numerical representation of acyclic preferences. Journal of Mathe-
matical Psychology, 38:467–476, 1994.

[184] A. S Tanguiane. Aggregation and Representation of Preferences. Springer-
Verlag, Berlin, 1991.

[185] A. Tarski. Contributions to the theory of models i, ii. Indagationes Mathemat-
icae, 16:572–588, 1954.

[186] A. Tarski. Contributions to the theory of models iii. Indagationes Mathemat-
icae, 17:56–64, 1955.

[187] R. Thomason and J. Horty. Logics for inheritance theory. In M. Reinfrank, J. de
Kleer, M.L Ginsberg, and E. Sandewall, editors, Non-Monotonic Reasoning,
pages 220–237. Springer Verlag, Berlin, 1987. LNAI 346.

[188] W.T Trotter. Combinatorics and partially ordered sets. John Hopkins Univer-
sity Press, Baltimore, 1992.
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