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Abstract

We provide an answer to an open problem concerning the representation of pref-
erences by intervals. Given a finite set of elements and three relations on this set
(indifference, weak preference and strict preference), necessary and sufficient condi-
tions are provided for representing the elements of the set by intervals in such a way
that 1) two elements are indifferent when the interval associated to one of them is
included in the interval associated to the other; 2) an element is weakly preferred to
another when the interval of the first is “more to the right” than the interval of the
other, but the two intervals have a non empty intersection; 3) an element is strictly
preferred to another when the interval of the first is “more to the right” than the
interval of the other and their intersection is empty.

Key words: Intervals, Interval Orders, Indifference, Weak Preference, Strict
Preference.

1 Introduction

Comparing intervals is a frequently encountered problem in preference mod-
elling and decision aid. This is due to the fact that the comparison of alterna-
tives (outcomes, objects, candidates, ....) generally are realized through their
evaluations on numerical scales, while such evaluations often are imprecise or
uncertain. A well known preference structure, in this context, is the semi order
(see Luce, 1956 and for a comprehensive presentation Pirlot and Vincke, 1997)
and more generally the interval order (see also Fishburn, 1985). An interval or-
der is obtained when one considers that an alternative is preferred to another
iff it’s interval is “completely to the right” of the other (hereafter we assume
that the larger an evaluation of an alternative is on a numerical scale the bet-
ter the alternative is), while any two alternatives the intervals of which have
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a non empty intersection are considered indifferent. Such a model has a strict
probabilistic interpretation, since the intervals associated to each alternative
can be viewed as the extremes of the probability distributions of the evalu-
ations of the alternatives. Under such an interpretation a “sure preference”
occurs only if the distributions have an empty intersection. A second implicit
assumption in this frame is that if there is no preference of an alternative over
the other then they are indifferent.

It is easy however to notice that if, in the previous frame, we want to establish
a “sure indifference”, it is much more natural to consider that two alternatives
are indifferent if their associated intervals (or distributions) are embedded. In
such a case we obtain a preference relation which is known to be a partial
order of dimension 2 (a partial order obtained from the intersection of exactly
two linear orders; see Roubens and Vincke, 1985).

Practically we observe that we have three situations:
- a “sure indifference”: when the intervals associated to two alternatives are
embedded;
- a “sure preference”: when the interval associated to one alternative is “more
to the right” with respect to the interval associated to the other alternative
and the two intervals have an empty intersection;
- an “hesitation between indifference and preference” which we denote as weak
preference: when the interval associated to one alternative is “more to the
right” with respect to the interval associated to the other alternative and the
two intervals have a non empty intersection.

Such an interpretation fits better in the case we have qualitative uncertainties
or imprecision and is consistent with the use of specific relations in order to
represent situations of hesitation in preference modelling (see Tsoukiàs and
Vincke, 1997). However, such a preference structure (hereafter called PQI
interval order) lacked any characterization as mentioned for instance in Vincke,
1988 (by characterization we mean the determination of a list of properties
concerning the three preference relations which are necessary and sufficient
conditions in order to be able to represent them by intervals as mentioned
before).

In this paper we present an answer for this problem. Section 2 provides the
basic notations and definitions. In section 3 we recall some results concerning
conventional interval orders. The main result is presented, demonstrated and
discussed in section 4. Finally section 5 presents an algorithm for the detection
of a PQI interval order on a set A.
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2 Notations and definitions

In this paper we consider binary relations defined on a finite set A, that is
subsets of A × A (the quantifiers apply therefore always to such a domain).
Further on we will use the following notations for any binary relations S, T . If
S is a binary relation on A we denote by S(x, y) the fact that (x, y) ∈ S. ¬,
∧ and ∨ denote the usual negation, conjunction and disjunction operations.

S−1 = {(x, y) : S(y, x)}
Sc = ¬S = {(x, y) : ¬S(x, y)}
Sd = ¬S−1 = {(x, y) : ¬S(y, x)}
S ⊂ T : ∀x, y S(x, y)→T (x, y)
S.T = {(x, y) : ∃z S(x, z)∧T (z, y)}
S2 = {(x, y) : ∃z S(x, z)∧S(z, y)}
S ∪ T = {(x, y) : S(x, y)∨T (x, y)}
S ∩ T = {(x, y) : S(x, y)∧T (x, y)}

We recall some well known definitions from the literature (our terminology
follows Roubens and Vincke, 1985).

Definition 2.1 A relation S on a set A is said to be:
- reflexive: iff ∀x S(x, x)
- irreflexive: iff ∀x ¬S(x, x)
- symmetric: iff ∀x, y S(x, y)→S−1(x, y)
- asymmetric: iff ∀x, y S(x, y)→Sd(x, y)
- complete: iff ∀x, y, x 6= y, S(x, y)∨S−1(x, y)
- transitive: iff ∀x, y, z S(x, y)∧S(y, z)→S(x, z)
- negatively transitive: iff ∀x, y, z ¬S(x, y)∧¬S(y, z)→¬S(x, z)

Definition 2.2 A binary relation S is:
- a partial order iff it is asymmetric and transitive;
- a weak order iff it is asymmetric and negatively transitive;
- a linear order iff it is irreflexive, complete and transitive;
- an equivalence iff it is reflexive, symmetric and transitive.

In this paper we will consider relations representing strict preference, weak
preference and indifference situations. We will denote them P,Q, I respec-
tively. Moreover, such relations are expected to satisfy some “natural” prop-
erties of the type announced in the following two definitions.

Definition 2.3 A 〈P, I〉 preference structure on a set A is a couple of binary
relations, defined on A, such that:
- I is reflexive and symmetric;
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- P is asymmetric;
- I ∪ P is complete;
- P and I are mutually exclusive (P ∩ I = ∅).

Definition 2.4 A 〈P,Q, I〉 preference structure on a set A is a triple of binary
relations, defined on A, such that:
- I is reflexive and symmetric;
- P and Q are asymmetric;
- I ∪ P ∪Q is complete;
- P , Q and I are mutually exclusive.

Finally we introduce an equivalence relation as follows:

Definition 2.5 The equivalence relation associated to a 〈P,Q, I〉 preference
structure is the binary relation E, defined on the set A, such that, ∀x, y ∈ A:

E(x, y) iff ∀z ∈ A :





P (x, z) ⇔ P (y, z)

Q(x, z) ⇔ Q(y, z)

I(x, z) ⇔ I(y, z)

Q(z, x) ⇔ Q(z, y)

P (z, x) ⇔ P (z, y)

Remark 2.1 In this paper we consider that two different elements of A are
never equivalent for the given 〈P,Q, I〉 preference structure. This is not restric-
tive as it suffices to consider the quotient of A by E to satisfy the assumption.
Under such an assumption we will use in the numerical representation of the
preference relations only strict inequalities without any loss of generality.

3 Interval Orders

In this section we recall some definitions and theorems concerning conventional
interval orders and semi orders.

Definition 3.1 A 〈P, I〉 preference structure on a set A is a PI interval order
iff ∃ l, r : A 7→ R+ such that:
∀ x : r(x) > l(x)
∀ x, y : P (x, y) ⇔ l(x) > r(y)
∀ x, y : I(x, y) ⇔ l(x) < r(y) and l(y) < r(x)

Definition 3.2 A 〈P, I〉 preference structure on a set A is a PI semi order
iff ∃ l : A 7→ R+ and a positive constant k such that:
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∀ x, y : P (x, y) ⇔ l(x) > l(y) + k
∀ x, y : I(x, y) ⇔ |l(x)− l(y)| < k

Such structures have been extensively studied in the literature (see for exam-
ple Fishburn, 1985). We recall here below the two fundamental results which
characterize interval orders and semi orders.

Theorem 3.1 A 〈P, I〉 preference structure on a set A is a PI interval order
iff P.I.P ⊂ P .

Proof. See Fishburn, 1985.

Theorem 3.2 A 〈P, I〉 preference structure on a set A is a PI semi order iff
P.I.P ⊂ P and I.P.P ⊂ P .

Proof. See Fishburn, 1985.

4 〈P, Q, I〉 interval orders

As mentioned in the introduction, we are interested in situations where, com-
paring elements evaluated by intervals, one wants to distinguish three situ-
ations: indifference if one interval is included in the other, strict preference
if one interval is completely “to the right” of the other and weak preference
when one interval is “to the right” of the other, but they have a non empty
intersection. Definition 4.1 precisely states this kind of situation, l(x) and r(x)
respectively representing the left and right extremities of the interval associ-
ated to any element x ∈ A.

Definition 4.1 A 〈P, Q, I〉 preference structure on a finite set A is a PQI
interval order, iff there exist two real valued functions l and r such that,
∀x, y ∈ A, x 6= y:
- r(x) > l(x);
- P (x, y) ⇔ r(x) > l(x) > r(y) > l(y);
- Q(x, y) ⇔ r(x) > r(y) > l(x) > l(y);
- I(x, y) ⇔ r(x) > r(y) > l(y) > l(x) or r(y) > r(x) > l(x) > l(y).

The reader will notice that the above definition immediately follows Definition
3.1, since a preference structure characterized as a PI interval order can always
be seen as a PQI interval order also. We give now necessary and sufficient
conditions for which such a preference structure exists.

Theorem 4.1 A 〈P, Q, I〉 preference structure on a finite set A is a PQI
interval order, iff there exists a partial order Il such that:
i) I = Il ∪ Ir ∪ Io where Io = {(x, x), x ∈ A} and Ir = I−1

l ;
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ii) (P ∪Q ∪ Il)P ⊂ P ;
iii) P (P ∪Q ∪ Ir) ⊂ P ;
iv) (P ∪Q ∪ Il)Q ⊂ P ∪Q ∪ Il;
v) Q(P ∪Q ∪ Ir) ⊂ P ∪Q ∪ Ir;

Proof.

We first give an outline of necessity demonstration which is the easy part of
the theorem. If 〈P, Q, I〉 is a PQI interval order, then defining
- Il(x, y) ⇔ l(y) < l(x) < r(x) < r(y)
- Ir(x, y) ⇔ l(x) < l(y) < r(y) < r(x)
we obtain two partial orders satisfying the desired properties. As an example
we demonstrate property (v):

Q(x, y) and (P ∪ Q ∪ Ir)(y, z) imply r(x) > r(y) and r(y) > r(z), hence
r(x) > r(z), so that (P ∪Q ∪ Ir)(x, z).

Conversely let us assume the existence of Il satisfying the properties of the
theorem. Define a set A′ isomorphic to A and denote by x′ the image of x ∈ A
in A′. In the set A∪A′ let us define the relation S as follows: ∀ x, y ∈ A, x 6= y
- S(x′, x)
- S(x, y) ⇔ (P ∪Q ∪ Il)(x, y)
- S(x′, y′) ⇔ (P ∪Q ∪ Ir)(x, y)
- S(x, y′) ⇔ P (x, y)
- S(x′, y) ⇔ ¬P (y, x)

We demonstrate now that S is a linear order (irreflexive, complete and tran-
sitive relation) in A ∪ A′.

Irreflexivity results from irreflexivity of P , Q, Il and Ir.

To demonstrate completeness of S remark that for x 6= y:

¬S(x, y) ⇔ ¬(P ∪Q ∪ Il)(x, y)
⇔ (P ∪Q ∪ Il)(y, x) since P ∪Q ∪ I is complete and I = Il ∪ Ir ∪ Io

⇔ S(y, x)
¬S(x′, y′) ⇔ ¬(P ∪Q ∪ Ir)(x, y)

⇔ (P ∪Q ∪ Ir)(y, x) since P ∪Q ∪ I is complete and I = Il ∪ Ir ∪ Io

⇔ S(y′, x′)
¬S(x, y′) ⇔ ¬P (x, y)

⇔ S(y′, x)
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¬S(x′, y) ⇔ P (y, x)
⇔ S(y, x′)

We demonstrate now that S is transitive.

• S(x, y) and S(y, z) imply (P ∪ Q ∪ Il)(x, y) and (P ∪ Q ∪ Il)(y, z). From
conditions ii) and iv) of the theorem, we know that (P ∪ Q ∪ Il)(x, y) and
(P ∪ Q)(y, z) imply (P ∪ Q ∪ Il)(x, z), hence S(x, z). From transitivity of
Il we have that Il(x, y) and Il(y, z) imply Il(x, z), hence S(x, z). Finally, if
(P ∪Q)(x, y) and Il(y, z) then (P ∪Q ∪ Il)(x, z) because, if not, we would
have (P ∪ Q ∪ Il)(z, x) which with Il(y, z) would give (P ∪ Q ∪ Il)(y, x)
(by conditions ii) and iv) and transitivity of Il), contradiction. So we get
S(x, z).

• S(x, y) and S(y, z′) imply (P ∪Q∪Il)(x, y) and P (y, z), which, by condition
ii), give P (x, z), hence S(x, z′).

• S(x, y′) and S(y′, z) imply P (x, y) and ¬P (z, y). If ¬S(x, z), then (P ∪
Q ∪ Il)(z, x) which, with P (x, y) and by condition ii) would give P (z, y), a
contradiction. Thus S(x, z). This reasoning applies also in the case y = z.

• S(x, y′) and S(y′, z′) imply P (x, y) and (P∪Q∪Ir)(y, z), which, by condition
iii), give P (x, z), hence S(x, z′).

• S(x′, y′) and S(y′, z) imply (P ∪ Q ∪ Ir)(x, y) and ¬P (z, y). If ¬S(x′, z),
then P (z, x) which, with (P ∪Q∪ Ir)(x, y) and by condition iii) would give
P (z, y), a contradiction. Thus S(x′, z). This reasoning applies also in the
case y = z.

• S(x′, y′) and S(y′, z′) imply (P ∪Q∪ Ir)(x, y) and (P ∪Q∪ Ir)(y, z). From
conditions iii) and v) of the theorem, we know that (P ∪Q)(x, y) and (P ∪
Q∪ Ir)(y, z) imply (P ∪Q∪ Ir)(x, z), hence S(x′, z′). From transitivity of Ir

we have that Ir(x, y) and Ir(y, z) imply Ir(x, z), hence S(x′, z′). Finally, if
Ir(x, y) and (P ∪Q)(y, z) then (P ∪Q ∪ Ir)(x, z) because, if not, we would
have (P ∪ Q ∪ Ir)(z, x) which with Ir(x, y) would give (P ∪ Q ∪ Ir)(z, y)
(by condition iii) and v) and transitivity of Ir), contradiction. So we get
S(x′, z′).

• S(x′, y) and S(y, z) imply ¬P (y, x) and (P ∪Q∪ Il)(y, z) If ¬S(x′, z), then
P (z, x) which, with (P ∪Q∪Il)(y, z) and by condition ii) would give P (y, x),
a contradiction. Thus S(x′, z). This reasoning applies also in the case y = x.

• S(x′, y) and S(y, z′) imply ¬P (y, x) and P (y, z). If ¬S(x′, z′), then (P ∪
Q∪ Ir)(z, x) which, with P (y, z) and by condition iii) would give P (y, x), a
contradiction. Thus S(x′, z′). This reasoning applies also in the case y = x.

Since S is a linear order on A ∪ A′, there exists a real valued function u such
that, ∀ x, y ∈ A:
- S(x, y) ⇔ u(x) > u(y);
- S(x′, y′) ⇔ u(x′) > u(y′);
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- S(x, y′) ⇔ u(x) > u(y′);
- S(x′, y) ⇔ u(x′) > u(y).

We define ∀ x ∈ A, l(x) = u(x) and r(x) = u(x′) and we obtain:

• ∀ x : r(x) > l(x), since S(x′, x).
• ∀ x, y : P (x, y) ⇔ S(x, y′) ⇔ l(x) > r(y).
• ∀ x, y : Q(x, y) ⇔ S(x, y)∧S(x′, y′)∧¬P (x, y) ⇔

l(x) > l(y) and r(x) > r(y) and r(y) > l(x), equivalent to:
r(x) > r(y) > l(x) > l(y).

• ∀ x, y : I(x, y) ⇔
r(x) > r(y) > l(y) > l(x) or r(y) > r(x) > l(x) > l(y)
since I(x, y) holds in all the remaining cases. 2

We can complete the investigation providing a characterization of PQI semi
orders.

Definition 4.2 A PQI semi order is a PQI interval order such that ∃ k > 0
constant for which ∀x : r(x) = l(x) + k

In other words, a PQI semi order is a 〈P, Q, I〉 preference structure for which
there exists a real valued function l : A 7→ R and a positive constant k such
that ∀ x, y:
- P (x, y) ⇔ l(x) > l(y) + k;
- Q(x, y) ⇔ l(y) + k > l(x) > l(y);
- I(x, y) ⇔ l(x) = l(y); (in fact I reduces to Io).

For such preference structures the following theorem holds.

Theorem 4.2 A 〈P, Q, I〉 preference structure is a PQI semi order iff:
i) I is transitive
ii) PP ∪ PQ ∪QP ⊂ P ;
iii) QQ ⊂ P ∪Q;

Proof

Necessity is trivial. We give only the sufficiency proof. Since I is an equivalence
relation, we consider the relation P ∪ Q on the set A/I. Such a relation is
clearly a linear order (irreflexivity and completeness result from definition 2.4
and transitivity from conditions ii) and iii) of the theorem). Therefore we can
index the elements of A/I by i = 1, 2 · · ·n in such a way that ∀ xi, xi+1 ∈ A/I:
(P ∪Q)(xi+1, xi).
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Choosing an arbitrary positive value k, we define function l as follows:
l(x1) = 0 and for i = 2, 3, · · ·n
l(xi+1) > l(xi)
l(xi) > l(xj) + k ∀ j < i such that P (xi, xj)
l(xi) < l(xm) + k ∀ m < i such that Q(xi, xm).

This is always possible because P (xi, xj) and Q(xi, xm) imply (P ∪Q)(xm, xj)
(if not, we would have (P ∪Q)(xj, xm) which, with P (xi, xj) and by condition
ii) would give P (xi, xm), hence m > j and l(xm) > l(xj)). By construction the
function l satisfies the numerical representation of a PQI semi order. 2

5 Detection of a PQI interval order

The problem is the following:
Given a set A and a 〈P,Q, I〉 preference structure on it, verify whether it
is a PQI interval order. The difficulty resides in the fact that the theorem
previously announced contains a second order condition which is the existence
of the partial order Il. For this purpose we give two propositions which show
the difficulties in detecting such a structure.

Proposition 1 There exist 〈P,Q, I〉 preference structures which are P Î-interval
orders (where Î = Q ∪ I ∪Q−1), but are not PQI interval orders.

Proof Consider the following case.
- A = {a, b, c, d, e};
- P = {(a, c), (d, e), (a, e)};
- Q = {(d, c), (a, b), (b, e)};
- I = {(a, d), (c, e), (b, d), (b, c), (d, a), (e, c), (d, b), (c, b)} ∪ Io

On the one hand if we consider the relation Î = Q∪I∪Q−1 it is easy to observe
that the 〈P, Î〉 preference structure is a PI interval order (P ÎP ⊂ P holds).
On the other hand if we accept that the given 〈P, Q, I〉 preference structure
is a PQI interval order then we have (by the definition 4.1 and the theorem
4.1) that:
- I(a, d) has to be Il(a, d) because of c;
- I(d, b) has to be Il(d, b) because of e;
therefore by transitivity we should have Il(a, b), while we have Q(a, b) which
is impossible. Therefore we can conclude that for this particular case the PQI
interval order representation is impossible. 2

Proposition 2 There exist 〈P,Q, I〉 preference structures which have more
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than one PQI interval order representation.

Proof Consider the following case.
- A = {a, b, c};
- P = ∅;
- I = {(a, c), (b, c), (c, a), (c, b)} ∪ Io;
- Q = {(a, b)}

It is easy to observe that both Il(a, c), Il(b, c) and Il(c, a), Il(c, b) are possible,
thus allowing two different PQI interval orders: one in which the interval of c
is included in the intervals of both a and b and the other where the intervals
of b and a are included in the interval c. Both representations are correct,
although incompatible with each other. 2

In order to detect if a 〈P, Q, I〉 preference structure is a PQI interval order
we propose the following algorithm which we present in terms of pseudo-code.

Step 1 For all x, y verify that P 2 ⊂ P , P.Q ⊂ P , Q.P ⊂ P and Q2 ⊂ P ∪Q.
Step 2 ∀x, y, z I(x, y)∧P (x, z)∧Q(y, z)→Il(x, y)
Step 3 ∀x, y, z I(x, y)∧P (z, x)∧Q(z, y)→Il(x, y)
Step 4 ∀x, y, z I(x, y)∧I(y, z)∧P (x, z)→Il(x, y)∧Il(z, y)

Step 4bis ∀x, y, z I(x, y)∧I(y, z)∧Q(x, z)→(Il(x, y)∧Il(z, y))∨(Il(y, x)∧Il(y, z))
Step 5 ∀x, y, z Il(x, y)∧Il(y, z)→Il(x, z)
Step 6 For a x, y such that I(x, y) and Il has not been established, choose arbitrary

Il(x, y) and go to step 5.

The algorithm succeeds if it arrives to assign all elements of relation I to the
relation Il or to the relation Ir without any contradiction, that is without
assigning to a relation a couple already assigned to another relation.

Proposition 3 If the above algorithm succeeds, then the 〈P,Q, I〉 preference
structure is a PQI interval order.

Proof

We have to demonstrate that the conditions of Theorem 4.1 are verified.

(1) Exists a partial order Il such that I = Il∪ Io∪ I−1
l . By construction of Il.

(2) (P ∪Q ∪ Il).P ⊂ P .
P.P ⊂ P by step 1;
Q.P ⊂ P by step 1;
Il.P ⊂ P . Suppose that:
∃x, y, z : Il(x, y)∧P (y, z)∧P (z, x).
Impossible since it implies P (y, x) step 1

10



∃x, y, z : Il(x, y)∧P (y, z)∧Q(z, x).
Impossible since it implies P (y, x) step 1
∃x, y, z : Il(x, y)∧P (y, z)∧Il(z, x).
Impossible since it implies Il(z, y) step 5
∃x, y, z : Il(x, y)∧P (y, z)∧Il(x, z).
Impossible since it implies P (z, y) step 4
∃x, y, z : Il(x, y)∧P (y, z)∧Q(x, z).
Impossible since it implies Il(y, x) step 2.

(3) P.(P ∪Q ∪ I−1
l ) ⊂ P .

P.P ⊂ P by step 1;
P.Q ⊂ P by step 1;
P.I−1

l ⊂ P . Suppose that:
∃x, y, z : P (x, y)∧I−1

l (y, z)∧P (z, x).
Impossible since it implies P (z, y) step 1
∃x, y, z : P (x, y)∧I−1

l (y, z)∧Q(z, x).
Impossible since it implies P (y, x) step 1
∃x, y, z : P (x, y)∧I−1

l (y, z)∧Il(z, x).
Impossible since it implies P (y, x) step 4
∃x, y, z : P (x, y)∧I−1

l (y, z)∧Il(x, z).
Impossible since it implies Il(x, y) step 5
∃x, y, z : P (x, y)∧I−1

l (y, z)∧Q(x, z).
Impossible since it implies Il(y, z) step 3.

(4) (P ∪Q ∪ Il).Q ⊂ P ∪Q ∪ Il.
P.Q ⊂ P by step 1;
Q.Q ⊂ P ∪Q by step 1;
Il.Q ⊂ P ∪Q ∪ Il. Suppose that:
∃x, y, z : Il(x, y)∧Q(y, z)∧P (z, x).
Impossible since it implies P (y, x) step 1
∃x, y, z : Il(x, y)∧Q(y, z)∧Q(z, x).
Impossible since it implies P (y, x)∨Q(y, x) step 1
∃x, y, z : Il(x, y)∧Q(y, z)∧Il(z, x).
Impossible since it implies Il(z, y) step 5.

(5) Q.(P ∪Q ∪ I−1
l ) ⊂ P ∪Q ∪ I−1

l .
Q.P ⊂ P by step 1;
Q.Q ⊂ P ∪Q by step 1;
Q.I−1

l ⊂ P ∪Q ∪ I−1
l . Suppose that:

∃x, y, z : Q(x, y)∧I−1
l (y, z)∧P (z, x).

Impossible since it implies P (z, y) step 1
∃x, y, z : Q(x, y)∧I−1

l (y, z)∧Q(z, x).
Impossible since it implies P (y, x)∨Q(y, x) step 1
∃x, y, z : Q(x, y)∧I−1

l (y, z)∧Il(x, z).
Impossible since it implies Il(x, y) step 5. 2

How difficult is it to verify whether a PQI preference structure is a PQI
interval order? In other terms, what is the complexity of the previous algo-

11



rithm? The reader may notice that in Step 6 we make an arbitrary choice.
If after such a choice the algorithm reaches a contradiction normally we have
to backtrack and try with a new choice. Actually we have a tree structure
defined by the branches created by each arbitrary choice. The exploration of
such a tree normally is in NP. However, our conjecture is that the introduction
of Step 4bis (which is useless for the demonstration of the correctness of the
algorithm) reduces the complexity of the algorithm to polynomial time, since
a failure (reaching a contradiction) will be independent from any arbitrary
choice previously done. This is the subject of a forthcoming paper (see also
Ngo The, 1998).
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