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Abstract. This paper presents a general framework for the design of alterna-
tives in decision problems. The paper addresses both the issue of how to design
alternatives within “known decision spaces” and on how to perform the same
action within “partially known or unknown decision spaces”. The paper aims at
providing archetypes for the design of algorithms supporting the generation of
alternatives.

1 Introduction

Most scholar articles in decision analysis and operational research, when introducing
the problem formulation they talk about, start with a claim of the type “given a set A of
alternatives”. Both researchers and practitioners know that in reality the set A is never
“‘given” ... It is actually constructed during the decision aiding process and most of the
times defined several times during that same process.

Surprisingly enough this topic is almost ignored in the specialised literature. With
the notable exception of Keeney ([14]) who stated the principle that decision making
should start considering “values” (in the sense of attributes) and not “alternatives” the
latters derived from the formers, (see also [15], [16]) very few contributions are avail-
able: some early attempts include [19] and [20], while other contributions were mainly
focussed on how to structure the decision problem suggesting alternatives generation al-
gorithmes (see [1], [3], [6], [11]). To our knowledge the topic has been partially consid-
ered in behavioural and cognitive sciences studies analysing how real decision makers
handle alternatives construction (see [18]).

This is remarkably strange. Practically the mainstream decision analysis literature
focus on how to “choose” an alternative without considering where these alternatives
come from and how they can be established. On the other hand it should be obvious: if
all the alternatives in the considered set are “bad” we are going to choose a bad option
even if it is the best one ... On the other hand who and how decides which are “good”
options to include in the set of alternatives?

This paper is far from being a survey. We want to construct a general framework
allowing handling this topic in a formal way. The topic results as part of the research in
conducting decision aiding processes (see [29]). We recall that within that framework
we will always make the hypothesis that the information used within such a process is
the result of the interaction of at least two agents: the client and the analyst. This attempt
follows our recent work on defining what a decision problem is (see [4]) and should in-
clude both known procedures which are actually used in order to generate alternatives



as well as to give the basis for defining new procedures of more general validity. Our
objective is two-fold:
- show that constructing a set of alternatives is a decision problem itself;
- show which are the conceptual and algorithmic challenges in developing a general the-
ory about alternatives construction, a key topic in conducting decision aiding processes
(see [29]).

The paper is organised as follows. In Section 2 we present the general framework
(what is a decision problem) within which we consider the problem of generating alter-
natives. In Section 3 we show that this problem is a decision problem itself. Section 4
discusses how existing methods handle the issue of generating “known” alternatives. In
Section 5 we show instead how to handle the issue of generating “unknown” alternatives
when the set of available ones is unsatisfactory. Section 6 discusses related literature.

2 Concepts and Notation

This work follows our previous contribution about “What is a Decision Problem” ([4])
where we introduced a general framework aiming to characterise decision problems on
the basis of the information the client in a decision situation can provide. Indeed our
framework is independent of any method characterisation: it should instead help defin-
ing a decision problem (and thus choosing or constructing any new method) from some
minimal information which we call the primitives. Within such a framework a decision
problem is “the partitioning of a set A satisfying some properties and preferential in-
formation”. The primitives then are:
- the setA described along a set of attributes satisfying separability, in other terms these
attributes are the minimal descriptors necessary to make a decision and each one con-
sidered alone is sufficient to make a decision;
- the problem statement Π establishing the type of partitioning to perform;
- the preference statements H provided by the client, to be modelled through appropri-
ate structures and languages.
Let’s present these topics with more details.

1. The set A of alternatives can be essentially of three types:
- a subset of a vector space, where alternatives are described as points (vectors) of
an n-dimensional “feasible” decision space (often each dimension being associated
to a “decision variable”), A ⊆ Rn;
- a subset of a combinatorial structure , where alternatives are described as combi-
nations of decision variables having a finite and discrete number of possible values
(possibly binary), A ⊆

∏
j Xj where ∀jXj = {x1j , · · ·xnj}, Xj being ordered;

- an explicit enumeration of objects, possibly described by one or more features or
attributes.

2. The problem statement Π can be:
- a ranking: construct a partition of ordered equivalence classes which are not de-
fined a-priori;
- a rating: construct a partition of ordered equivalence classes which are defined
a-priori;



- a clustering: construct a partition of unordered equivalence classes which are not
defined a-priori;
- an assignment: construct a partition of unordered equivalence classes which are
defined a-priori.

3. The preference statementsH (the reader should note that we use the term of prefer-
ence in a very general way: any ordering relation can be considered as a preference
relation, see [21], [26], including similarity and equivalence relations) can be of
different types:
- single or multi-attribute ones;
- relative (comparing elements of A among them) or absolute (comparing elements
of A to some external norm);
- simple (comparing single elements of A) or extended (comparing whole subsets
of A);
- ordinal or more than ordinal (expressing some notion of difference of preference);
- positive or negative (negative preference statements should not be considered as
the complement of positive ones);
- first order or higher (preferences about preferences).

4. Let’s recall finally that in order to choose or to construct a “resolution” method
what we strictly need is the set A (minimally described), a problem statement Π
and enough preference statements where we need to check (wrt toH):
- how differences of preferences are considered on each single dimension/attribute;
- how differences of preferences are considered among the different dimensions or
attributes;
- whether preferences are conditional/dependent from other preferences;
- whether negative preferences should be considered explicitly or not.
It is important to note that the concept of “preference” applies to all three principal
reasons for which decisions are variable: values, opinions and scenarios.

3 Constructing A as a recursion

Proposition 1. Constructing the set A is itself a decision problem.

Proof. Suppose a decision situation where any option is possible. In other terms a
situation where we do not really have a well established set, but only hypotheses of
what this should be. We can represent this situation representing this ill defined set A
as follows:
A ⊆ Rn ∨

∏
j Xj admitting that n is unknown and that equally exist unknown Xj .

That is, the set A is only partially known (possibly totally unknown).
On the other hand let’s recall that in order to establish a decision problem we need

at least a set A, a problem statement Π and some preference statements H (at least of
the type x � y or x � k where x and y are members of A and k an external norm not
necessarily member of A). Finally the description of set A needs to satisfy separability.
With these elements in mind we can establish a fix point:
A decision problem exists iff
- ∃Xj such that Xj is known and



- ∀Xj such that Xj is unknown these are not separable.
In other terms applying our minimality requirements either there is no decision problem
or if there is one then there is at least one known descriptive dimension of the setA, any
other potential, but unknown dimension, being not separable and thus irrelevant. Let’s
call this the set Â.
We can now establish a recursion constructing the set A:
- A1 = Â
- An =

⋃
i[An−1]i where [An−1] are some of the equivalence classes constructed for a

decision problem defined at step n− 1 and thus upon the set An−1.
ut

Let’s explain better our proposition. Despite the fact that the set A is not given,
there is always a starting point for constructing it. It can be large and ill defined, but
there always exist a set to start with (otherwise there is no problem ... to work with).
The construction of the set A is a recursion where at each step we construct a set as a
result of the partition of the set defined at the previous step. The ending condition of
this process is subjective. It is the client of the decision aiding process that declares that
the present version of set A satisfies his/her requirements. In the following we provide
three small examples in order to show the generality of our model.

Example 1. Consider the problem of constructing the feasible set of some linear pro-
gramming problem. We can start establishing Â = Rn, n being the known decision
variables (at least one should be known). Then:
- A1 = Â
- A2 = [A1 : x1 ≥ 0]
- · · ·
- Am = [Am−1 : xm ≥ 0]
- establishing thus a first feasible set this being the non negative reals; then:
- Am+1 = [Am : f(x1, · · ·xm) ≥ 0], introducing a first linear constraint
- and then introducing all known constraints.

The reader should note that each time we solve a rating decision problem with two
possible equivalence classes (the feasible and the unfeasible solutions) defined by an
externa norm (the rhs of each constraint). It should also note our implicit preference
statements (feasible solutions are better than the unfeasible ones) and that the pref-
erences upon each variable and then upon bundles of variables (the constraints) are
independent (thus allowing to establish a linear, additive, model).

Example 2. Consider the case of a company aiming to offer promotional tickets to the
population for some advertising purpose. Then if Ω is the target population, Â will be
the subset ofΩ for which some information is known (sex, age, education, income etc.).

A clustering decision problem would generate n equivalence classes (unknown at
the beginning) [A1], · · · [An] each being an homogeneous advertising target (ie. young,
female, not-single, no-children, low income). Each of such equivalence classes could
then become the set A1 for some ranking decision problems identifying the recipients
of the promotional tickets.

Example 3. Consider the case of a national park administrator who needs to apply
preservation policies for the park’s animals. The starting point will be to consider the



whole animal population Ω of the park. Then through an assignment decision prob-
lem she will identify the species within the park (let’s say mammals, birds and reptiles,
A1 = [A1]m ∪ [A1]b ∪ [A1]r). Then a rating decision problem may distinguish be-
tween endangered and not endangered animals (A2). A clustering decision problem
will identify “geographical communities” of animals within the park ((A3). Further on
an assignment procedure may distinguish between local and imported animals (A4).
Finally a ranking procedure may order the animals on the basis of their attractiveness
for the visitors (A5). Why these sets may be generated? The client (the park adminis-
trator) first realises that different species need different policies (she thus introduces the
attributes characterising species), then she realises that endangered animals may be a
priority (using new attributes describing animals’ threats), then she decides to consider
the differences which might be necessary for the different locations in the park (using
now spatial attributes), she decides to separate local from imported animals since this is
imposed by bio-diversity considerations and finally considering cost (and revenue) is-
sues she decides to rank animals by attractiveness. Different intersections (and unions of
intersections) of the above partitionings will produce now the input for further decision
problems. For instance, given a group of animals being described by their relevant at-
tributes: ”local endangered mammals breading around X”, cluster preservation actions
into policies. In this case the starting set will be a universe of potential preservation
actions (known in the literature), but the separable attributes are the ones relevant for
that specific group of animals, resulting to an initial set of relevant preservation actions
for that group.

4 Generating known alternatives

All existing methods in operational research, decision analysis and artificial intelligence
implicitly follow the general procedure shown in the previous section, generating sets
of alternatives as part of the resolution algorithm they implement. Alternatives are im-
plicitly known and only explicitly shown when they happen to be a solution for the
algorithm within the method (most of the times an optimisation one).

The reason for this is that alternatives are almost never explicitly enumerated (most
of the times the whole set could be impossible to describe explicitly or even be infinite).
They are described as combination of variables. Humans also, in order to handle their
limited computing capability, tend to use the same approach: either reduce the number
of variables (thus reducing the number of alternatives) or just focus to a limited set of
“interesting alternatives” (most of the times resulting from some screening process).

Let’s start with some simple human heuristics. These are always based on two sim-
ple ideas: screening and choosing (see also [30]) and/or fixing the value of one or
more variables and exploring the reduced set of combinations (possibly applying the
method recursively). However let’s consider the following simple example (borrowed
from [25]):

Example 4. Consider the transportation problem shown in Table 1, implying 3 produc-
tion units (p1, p2 and p3) and 3 warehouses (w1, w2 and w3; the figures in the cells
representing the costs).



w1 w2 w3 prd. capacity
p1 0 4 1 300
p2 1 6 3 600
p3 3 7 6 500
wrh capacity 600 300 500

Table 1. A simple 3× 3 transportation problem

Most experienced managers, when trying to solve intuitively the problem, try to
maximise the amount of shipping corresponding to variable x1 (from p1 to w1, cost 0,
the lowest), keeping at 0 the shipping corresponding to variable x8 (p3 to w2, cost 7,
the highest). This gives a relatively reasonable solution, but far from the optimal one
which is 〈x1 = 0, x2 = 0, x3 = 300, x4 = 400, x5 = 0, x6 = 200, x7 = 200, x8 =
300, x9 = 0〉. The reason for failing to see intuitively the optimal solution is due to
the fact that without a model and an algorithm is difficult to consider a counterintuitive
choice (ship nothing from p1 tow1). For a more general and interesting discussion about
these topics the reader can see [9].

The use of a formal model and some exploring algorithm certainly improves the
situation. However, we know that due to algorithmic complexity most exact resolution
algorithms are of little practical interest since in the worst case they require inconceiv-
able amount of computing resources or time. Most of the times we end using heuristics
(see [2], [22]).

The use of heuristics does not really change the problem. Consider the well known
“knapsack” problem and the use of the equally well known simple heuristic consisting
in choosing the variables (the objects to put in the knapsack) following the magnitude
of the ratio between the value (the coefficient of the objective function) and the weight
(the coefficient of the constraint). This procedure produces rapidly good results, but can
easily miss the best solution since this may not necessarily respect this reasonable order.
Heuristics generate sets of alternatives biased by the specific resolution procedure they
use and in doing so they tend to eliminate alternatives which could be “interesting”.

Finally let us consider the case where efficient exact algorithms are available for
the problem at hand. In this case we are sure to be able to explore the whole set of
potential alternatives although not explicitly enumerating them. The problem here is
that despite this algorithm will provide a solution (most of the times denoted optimal),
this might not be satisfactory for the client. The reason most of the times is that we
are using the “wrong” set of alternatives. We should bear in mind that clients have a
limited knowledge of the technical details of algorithms and more generally of problem
solving methods. An initial description of a decision problem using a set of separable
attributes (variables) might not be immediately perceived as partial. Usually it is when
we present the results to the client that they realise that this first description of their
problem does not really fit what they have in mind: all suggested solutions are perceived
as unsatisfactory.



Let us summarise: generating alternatives only through resolution oriented proce-
dures does not allow to conduct neither efficiently nor creatively a decision aiding pro-
cess. We need to be able to generate further “unknown” alternatives and we need spe-
cific procedures to do so.

5 Generating unknown alternatives

Let’s start with three examples where the known alternatives might be unsatisfactory
for the decision maker.

Example 5. Ahmed, is a young man going to an appointment with his recent new girl-
friend. Crossing a flowers’ shop he suspects it might be her birthday. To buy or not to
buy the flowers? That’s the dilemma ... However these two options appear to be equally
unsatisfactory. If he buys the flowers and is not the birthday (actually the most likely
scenario) there will be interminable discussions on why he did that. If he does not buy
the flowers and it happens to be the birthday then it is just a tragedy. Ahmed needs more
options before deciding.

Example 6. Aisha is a young French PhD student having the opportunity to visit Syd-
ney for a conference (if her paper is accepted and conditional to the finances of the lab).
Aisha’s boyfriend is considering joining her. Tickets for Sydney sell presently as low
as 1000e, but they are expected to rise very soon. The problem is that Aisha will know
if she will make the travel only one month before the conference, while today we are
four months before the conference. Once again the available options are unsatisfactory:
either low price tickets combined to high risk of losing the money in case Aisha does
not make the travel, or being sure about the travel combined to a high risk of not being
able to pay for the ticket. Aisha and her boyfriend would like to have more alternatives
before deciding.

Example 7. Aisha and Ahmed are celebrating 10 years of living together and they look
for a one week holiday package. The problem is that what they get are either expensive
resorts in attractive locations or cheap resorts located in unattractive locations ... Aisha
and Ahmed need to expand the set of alternatives they are looking for.

The three examples are inspired from the decision analysis literature (see [7], [14],
[27]). Indeed there already exist suggestions on how to handle such decision situations
expanding appropriately the set of alternatives. These include “decision trees”, ”real
options theory” and “valued focussed thinking”.

1. A well known strategy in decision under uncertainty consists in asking for more
information (an action called an “oracle” given the limited trust to the information
provided). Under such a perspective the two options b (buy) and ¬b (not buy) can
be expanded to ib (get information and then buy), i¬b (get information and then
not buy), ¬ib and ¬i¬b (same as before, deciding to buy or not without any further
information). The reader will note that until information is not a separable charac-
teristic of the decision to take, this variable simply does not exist (consistently with



our hypothesis that not separable variables are not relevant). The new expanded
set results thanks to information becoming a separable dimension (influencing our
decision).

2. In real options theory the idea is to add “‘time” as a separable explicit dimension
among the attributes. The unsatisfactory nature of the alternatives is due to the fact
that we need to decide today for something expected to occur after a certain time.
Introducing time as a further dimension we could introduce alternatives which real-
isation has a a shortest time horizon but not preclude realising the original options.
For instance airlines offer today the possibility to pay a non refundable fee fixing
the price of a ticket at today’s price for a certain amount of time. Instead having the
two options b0 (buy today) and ¬b0 (not buy today) we get the expanded set ob1
(pay the fee and then buy one month later), o¬b1 (pay the fee, but then not buy),
¬ob0 and ¬o¬b0 (same as before, deciding to buy today or not without paying any
fee). This set can be further expanded if we introduce options with different time
horizons. Once again we note that is the explicit separation of time as a relevant
decision dimension that allows to expand the set of alternatives.

3. In valued focussed thinking Keeney suggests to consider principally the values be-
hind any decision questioning instead fixing the set of alternatives. In the vacation
example we can relax the “one week” constraint allowing getting more interesting
offers (for instance two weeks packages could be more valuable than the one weeks
ones, although relatively more expensive). However, we can do more than that. Af-
ter all, why celebrating 10 years of common life should be done through a holiday?
What about buying 10 concert tickets or booking 10 famous restaurants or 10 tick-
ets for recent Broadway productions? Keeney’s suggestion to distinguish between
core objectives (celebrating) and mean objectives (buy a holiday) allows identifying
dimensions with which we can compose more alternatives from the ones initially
considered. An approach more likely to generate satisfying alternatives to assess.

Let’s make a first summary of what we knew about the generating algorithms problem.

Claim 1 From a decision aiding process perspective (implying some time extension),
generating further sets of alternatives is related to some non satisfactory assessment of
the present set of alternatives.

Claim 2 Generating unknown alternatives is always related to some expansion (or
more generally revision) of the separable attributes describing the existing set.

Let’s focus on claim 2 and see what happens in a combinatorial optimisation case.

Example 8. Consider a client formulating a problem where a city (organised in n dis-
tricts) should be covered by shops belonging to the client’s brand, under the hypothesis
that a shop opened in a certain district “covers” also the adjacent ones. The client asks
to do the minimum necessary.

This is a well known location problem formulated as follows:



min
∑
j

xj

st
Dx ≥ 1

xj ∈ {0, 1}

where j = 1 · · ·n are the districts;
xj are binary variables representing the opening in a certain district;
D is the adjacency matrix;
the meaning of the set of contraints being to satisfy covering the whole city.
Once the problem solved, the client realises that the minimum openings necessary to
cover the whole city cannot be inferior of k (the minimum value of

∑
j xj). At this

point he realises that this goes beyond his budget capacity. How the problem formula-
tion should evolve? A new version of the problem will be the following one:

max
∑
j

wjyj

st
Dx ≥ y∑

j

cjxj ≤ C

xj , yj ∈ {0, 1}

where j = 1 · · ·n are the districts;
xj are binary variables representing the opening in a certain district;
yj are binary variables representing the covering of a certain district;
D is the adjacency matrix;
wj representing the importance of each district;
and cj representing the cost of each opening, C being the available budget;
the meaning of the set of contraints being to satisfy the logical relations between open-
ing and covering as well as the budget availability provided by the client.
The reader should note that the problem could also be formulated as a bi-objective
optimisation one:

max
∑
j

wjyj

min
∑
j

cjxj

st
Dx ≥ y

xj , yj ∈ {0, 1}



Discussion For the time the problem being formulated under the constraint of cov-
ering the whole city, the covering dimension characterising potential alternatives is not
separable (since all covering variables are implicitly equal to 1). The setA is established
considering only combinations of the variables xj . The unsatisfactory result obliges us
to expand this set using the covering variables (since now we allow some of these to be
0: some districts might not be covered). To put it on a formal basis, using our general
decision problem framework the decision aiding process will be described as follows:

1. The starting set A1 is defined by all combinations of the variables xj (openings).
2. The constraints Ax ≥ 1 defines a rating decision problem resulting to a new set
A2 to be used in the next step.

3. The objective function min
∑

j xj defines a ranking decision problem resulting to
a minimum of k openings. This information qualifies the whole set A2 as unsatis-
factory since k openings are practically impossible (but we only discover it at this
stage of the process).

4. A2 being unsatisfactory we backtrack to the initial set A1 and we create a new
starting set, let’s call it B1 as combinations of all opening and covering variables.
This is possible relaxing the constraint obliging to cover the whole city, resulting
in making the covering variables separable (relevant for the client’s decisions).

5. The constraintsAx ≥ y and
∑

j cjxj ≤ C establish a new rating decision problem
resulting to a new feasible set B2.

6. The objective function max
∑

j wjyj establishes a new ranking problem which
hopefully will provide a satisfactory solution to the client.

Can we generalise what we described until now? Yes! Let’s go back to the proce-
dure used in order to prove Proposition 1. Introducing at each step a generalised rating
decision problem (is the resulting set Ai satisfying?) we are able to control the process
of generating subsequent As. Further on we need to add two more possible actions (re-
member that A is always described by separable attributes):
- backtrack at any point of the recursion and open a new branch;
- revise the set of separable variables describing the set A in order to generate alterna-
tives not considered until this moment (unknown alternatives).
What do we get?

Claim 3 Generating unknown alternatives is possible allowing within the recursion
constructing A two actions: backtracking and revising the set of separable variables.

6 Discussion

What we are presenting here are not necessarily completely new ideas, although we
are sure that they have never been discussed as in this paper and combined under our
perspective.

Expanding the set of variables describing a set of objects is borrowed from C-K
theory ([12], [13]). This is the only formal theory of design we are aware of and is very
powerful although essentially simple. The theory addresses the problem of designing



new “objects” (products or services) identifying two spaces:
- the knowledge one, where objects are completely described on finite set of known
attributes (a house, a car ...);
- the concept one, where objects are only partially known, the list of attributes describ-
ing them being only partially defined;
The design process is then described as a sequence of variables transformation between
the two spaces allowing the exchange of attributes between knowledge and concepts
such that “new objects” can appear: a house which is also a car; a camping car.

We are firmly convinced that there are many more important links between C-K
theory and our suggestion about the process of constructing alternatives. These links
are yet to be explored.

Algorithms controlling the execution of algorithms and allowing intelligent back-
tracking are as old as TMS (see [5]) and are regularly used in planning and automated
reasoning devices ([23]). We can certainly see our alternatives generation procedure
under such a perspective although the information conducting the process is provided
on-line (during the decision aiding process) and not as an input (as it happens is most
of the existing literature, for an exception see [24]).

The whole idea of revising the conclusion of a process as a result of new informa-
tion is central in Non Monotonic Reasoning (NMR) formalisms ([10], [17]). In [28] it
has already been suggested a relation between model revision in NMR and preference
modelling. Our idea about generating alternatives shows several relations to this litera-
ture:
- a decision aiding process is naturally subject to updates (new information becoming
available and existing information becoming obsolete and/or inconsistent) and revisions
(of values, opinions and scenarios) two notions central in the study of NMR (see [8]);
- expanding the set of conclusions derivable from given knowledge, adding defeasible
reasoning is a suitable logical framework for our suggestion about the alternatives gen-
eration process starting from a partially described decision space. Since this space is
only partially known we can proceed to multiple expansions which could (and actually
are) defeasible, as soon as the client assess their satisfiability.
It is less obvious to us how the dimension of “creative” construction of alternatives can
be considered within this framework, but this is only a special case of the more general
problem; in most cases the dimensions which could be added, revised or updated are
already implicitly considered in the problem formulation, but not yet explicitly consid-
ered due to the separability condition.

Concluding we are not afraid to state that is likely that other relations exist be-
tween our proposal and other artificial intelligence areas including argumentation the-
ory, learning and knowledge discovery. But these are yet to be explored.



7 Conclusions

The paper presents a problem often neglected and/or underestimated in decision analy-
sis: how the set of alternatives on which a decision support method/algorithm applies is
constructed. Our effort to discuss this topic is part of a long term project aiming at es-
tablishing a characterisation of decision problems independent from methods and only
relying on simple primitives, the set A of alternatives being one of these ones.

In the paper we have been able to show two results. The first consists in showing
that the construction of A is itself a decision problem (allowing a recursion of decision
problems) and thus, that it can be studied within our general framework. The second
consists in showing that the crucial problem in constructing A is the generation of “un-
known” alternatives, when the set presently available is considered to be unsatisfactory.
Under such a perspective we have been able to show that generating such alternatives
is practically possible through backtracking the recursion which generated the present
set A and expanding/revising the set of separable dimensions describing the set.

We concluded showing that our research is strongly related to existing fields of
research in design theory and artificial intelligence. Given the low interest of this topic
in the mainstream literature, it is not surprising that most of these links are yet to be
explored. We hope our contribution may motivate more efforts in this promising (for
us) direction.
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