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Abstract. The paper addresses the problem of finding an appropri-
ate formalism for the representation of preferences expressed on an n-
dimensional space of attributes and on different layers: generic, contex-
tual and structural preferences.
The paper first introduces a general framework for preference modelling
and then specialises it for the multi-layer case. It then shows that in the
case we privilege computational efficiency an appropriate formalism can
be the CP-nets one. More precisely we show how contextual and struc-
tural preferences can be seen as different types of constraint satisfaction
problems to which apply some Ceteris-Paribus preferential reasoning.

1 Introduction

Preferences represent the basic notion for any decision support activity. One of
the principal tasks within a decision aiding process is to model preferences in
such a way that it is possible to derive a final recommendation for the decision
maker (the preferences of whom have been modelled; see [23]).

The problem is that quite often the decision maker adopts preference state-
ments in “natural language” which do not necessarily have a straightforward
modelling. It is therefore necessary to use appropriate languages for preference
modelling taking into account the specific context where the constructed model
is going to be used (for more details see [10] and [20]). In this paper we focus
our attention on situations where:
- preferences can be expressed on different layers representing different types of
possible use as well as different moments of a decision process;
- it is necessary to be able to formulate a final recommendation for the decision
maker efficiently (as in automatic decision devices) irrespectively of the dimen-
sion of the space of possible outcomes to compare (thus, computational efficiency
is more important than expressiveness of the language).

In the paper we present an initial study of how problems of these type can
be handled, establishing a three layer preference model (generic, contextual and



structured preferences) and adopting the CP-nets formalism in order to com-
pute efficiently a “best choice”. The paper is organised as follows. In section 2
we present the notation used and the problem statement. In section 3 we intro-
duce our three layer model. Section 4 shows how CP-nets can be used in order
to model structured preferences in a constraint satisfaction problem, while sec-
tion 5 extends dynamic constraint satisfaction problems in order to work with
contextual preferences introducing preferences among active variables. Several
examples illustrate the paper’s definitions.

2 Notation and Problem

2.1 Notation

We use capital letters X, Y, Z · · · , possibly subscribed, in order to represent dis-
crete (infinite denumerable) domains where variables can range. We call such
domains “attributes”. We use capital letters A,B,C · · · to represent sets of ob-
jects which can be described by the set of attributes D = {X, Y, Z · · · }. Elements
of, say set A, are denoted by lowercase letters a, b, c · · · . Each such element can
be seen as a vector in the space X × Y × Z × · · · .

Besides the usual notation, we use capital letters P,Q,R, I · · · , possibly sub-
scribed, in order to represent binary relations applied to a set A (therefore:
P,Q,R · · · ⊆ A × A). We use such relations as a formalism for understanding
and studying statements of the type “a is preferred to b”, “a is at least as good
as b” etc. We use the conventions introduced in [20, 21]. See also [15]. More pre-
cisely, given a binary relation � (to be read as “at least as good as”), we write:
- P (a, b) or a � b iff x � y and ¬(y � x);
- I(a, b) or a ∼ b iff x � y and y � x;
- J(a, b) or a � b iff ¬(x � y) and ¬(y � x);
and we call P as “strict preference”, I as “indifference” and J as “incompara-
bility”.

Definition 1. A preference structure is a collection 〈P,Q,R · · · 〉 of preference
relations able to partition any universe of discourse A
- P ∪Q ∪R ∪ · · · = A×A;
- P ∩Q = P ∩R = Q ∩R = · · · = ∅.

It is easy to see that the relations P, I, J previously defined establish a prefer-
ence structure. Binary relations are characterised by the properties they satisfy.
It is easy to show that by definition 1 the preference structure 〈P, J, I〉 satisfies
the following properties:
- P is irreflexive and asymmetric;
- J is irreflexive and symmetric;
- I is reflexive and symmetric.

A binary relation (used as characteristic relation of a preference structure)
can satisfy several properties. We are concerned with ordering properties, that is
different types of transitivity (transitivity, semi-transitivity, Ferrers-transitivity,



etc.) and completeness. The satisfaction of certain properties uniquely charac-
terises a “preference model”. For instance we have:
- � is a weak order iff it is reflexive, strongly complete and transitive;
- � is a semi order iff it is complete, semi and Ferrers transitive;
- � is a partial order iff it is reflexive and transitive;

Definition 2. For a given set A, we call a criterion the application of a prefer-
ence model to the set A.

If a criterion is derived from an attribute we may use the same notation for
both of them. However, the reader should note that these are not equivalent
concepts. Objects which are different in a certain attribute may not be necessar-
ily preferred to each other. For instance, two objects whose price is e 10K and
e 10.1K are different on the attribute price, but not necessarily there is a pref-
erence between them; a decision maker may be indifferent among objects if the
difference in their price is less than 0.5 Euro. Moreover, the concept of preference
is subjective. Different decision makers have different preferences comparing the
same objects.

Occasionally preference models (which are binary relations) can be repre-
sented through functions which both represent them and preserve them (for in-
stance, for a weak order we have: x � y iff ∃ f : A 7→ R such that f(x) ≥ f(y)).
Only certain types of preference models admit such numerical representation
(for instance, they have to be complete, see more in [20]).

2.2 Our problem

1. We consider a set of attributes X = {X1, X2 · · ·Xn}. Each attribute is
endowed with its domain (dom(Xj)). We consider a set of outcomes O ⊆
dom(X1)×dom(X2)×· · · dom(Xn) and unless there is a problem of confusion
we adopt the notation O ⊆ X1 ×X2 × · · ·Xn. We denote the ith element
of dom(Xj) by xij .

2. We consider an agent (a decision maker) able to make preference statements
of different nature. For example:
- “I prefer a to b on criterion Xj”;
- “I prefer a to b considering a set of attributes X ∗ ⊆ X”;
- “If two objects are identical in all attributes (of a set X ∗) but one (Xj),
then I prefer objects with value xj1 to objects with value xj2 to objects with
value xj3 · · · ;
- “Attribute Xj is more important than attribute Xi”
- ....

3. We are looking for a subset of O (possibly of one element), say Ô, such that
Ô is the “best” choice when we consider the decision makers’ preference
statements all together. In reality this is a reductive problem statement with
respect to the richness of real problem situations, but for the moment we are
going to concentrate our efforts on this one. For further discussion on this
issue see [5, 23].



The problem of course is not new. It has been extensively studied in decision
theory and more precisely in multiple criteria decision aiding methodology as
well in decision under risk and uncertainty, see [5, 13, 16, 17, 22, 24, 25]. However,
most of the above literature underestimates a number of issues which in other
settings can be very important.

– The dimension of the space X1×X2×· · ·Xn. For a large number of attributes
we can easily end up with a set of potential objects which is exponentially
large. An explicit representation of the binary relation representing a prefer-
ence in a highly dimensional space can be impossible. This problem can be
partially surmounted through the use of functions that represent and pre-
serve the binary relation, but such functions do not always exist and do not
always have an intuitive meaning.

– The expressivity of the language in which preferences are handled can be a
key issue (considering the construction of user friendly interfaces). Binary
relations and their functional representation (if they exist) are very powerful,
but not always fit the users requirements for communication.

– The necessity to be able to provide the “best choice” any time and under
any circumstances (as often happens in automatic decision making settings).
Decision theory is geared on the hypothesis that there is always a client
somewhere to ask and obtain more information when it is difficult to make
a decision, but this is not always the case.

– The possibility that during a decision process the information concerning
some attributes as well as some preference statements may change, there-
fore requiring a revision of the “best choice” identified and of the agent’s
behaviour towards obtaining it.

In this paper we put forward some ideas for a general framework enabling
to take into account “natural language” preference statements and use them in
different settings (from aiding a client in a decision process to implementing an
automatic decision making device). To achieve our purpose we employ findings
from both decision theory and artificial intelligence (see [1, 2, 8–12, 26, 27]).

3 Attributes, Preferences, Layers and Models

In this section we establish some basic concepts which are going to be used in
the rest of the paper.

1. When we establish a decision model, we may have attributes for defining
a set of alternatives and attributes used to make a decision, and these two
types of alternatives do not necessarily coincide. We call “definitional” the
attributes used in order to establish the set of alternatives A (and we denote
them with XD) and “decisional” the attributes used in order to identify the
best choice in A (and we denote them with X∆). The reader should note
that the set A can be a subset of the cartesian product of the elements of
XD if we introduce a set of hard constraints.



Example 1. Consider yourself in a restaurant. Your options consist of choos-
ing a meal (meat, fish, vegetarian) and a drink (red wine, white wine, water).
The set of alternatives coincide with the two attributes space, A = X =
Xm ×Xd (there are 9 alternatives). However, if you have to make a choice,
you may consider also the attribute ”cost”, but such an attribute does not
introduce any new alternative option. Moreover, you may be totally indif-
ferent on what you drink, the choice being determined by reasoning about
the cost and the meal.

2. Preferences can be expressed on different layers. We distinguish three such
layers
– Generic preferences. These are expressed on one or more decisional at-

tributes, but not on definitional ones. Decisional variables, such as time
and cost, are ”generic” in the sense that they are meaningful in many dif-
ferent decision making settings. They usually represent a “decision rule
of thumb” allowing to reach a “best choice” when a thorough analysis
of the available options is not possible or is useless. Consider example
1: if your have little money, you may just focus on the least expensive
option, regardless of what you eat or you drink.

– Contextual preferences. These are expressed on a subset of the defini-
tional attributes irrespectively of the rest. The subset of the variables
on which these preferences are defined depends on the context, ie. the
values assigned to other variables, hence the term ”contextual”. Other
decisional attributes may be considered, but not necessarily. Such prefer-
ences are used when a partial analysis of the definitional attributes space
is considered sufficient at least in order to start taking some decisions. To
some extend contextual preferences are equivalent to a statement of “nil”
importance as far as some definitional attributes are concerned. Contex-
tual preferences result in comparing subsets of the set A as wholes. Con-
sider once more example 1: a contextual preference could be: “I prefer
fish to vegetarian and this to meat”. This will result in three equivalence
classes (solutions including fish, the ones including vegetarian and the
ones including meat) which are totally ordered: a weak order on A.

– Structural preferences. These are expressed using the whole set of de-
finitional attributes. Other decision attributes may be considered, but
not necessarily. Structural preferences imply using the whole definitional
attributes space (possibly reduced by the hard constraints) and thus im-
plies an extensive comparison of them. Consider once more example 1:
although I may keep stating that I prefer fish to vegetarian to meat, I
may add that I prefer red wine to white wine to water, but that I also
prefer white wine with fish to red wine with meat etc.

In order to have a better understanding of these three different layers of
preferences we present a more detailed example.

Example 2. Consider the situation where an agent has to decide what to do this
evening. He may stay at home (reading a book or watching TV) or he may go



out (to a movie, to a restaurant, to a bar). In the second case he may see a friend
(Ann or Bob) or not. We have the following definitional attributes:
- type of activity, X1 = {inside,outside},
- inside activity, X2 = {Book,TV},
- outside activity, X3 = {Movie,Restaurant,Bar},
- friends, X4 = {Ann,Bob}.
However, note that the assignment of the value ”inside” to variable X1 renders
variable X3 irrelevant. Indeed, if the agent decides to stay at home, she is not
concerned with choosing a movie, a restaurant or a bar. Similarly, variable X4 is
also irrelevant in this case. If the definitional attributes X3 and X4 are irrelevant
in this case, so are the possible preferences that the agent may have on these
attributes. This is one of the cases where contextual preferences arise. Indeed,
the values assigned to some of the variables, determine the definitional attributes
and therefore the preferences that are defined in terms of these attributes.

The above problems belongs to the class of dynamic constraint satisfaction
problems. In section 5 we discuss how CP-networks can be extended from classical
to dynamic constraint satisfaction problems. To correctly represent our problem
as a classical constraint satisfaction one, we introduce a new value in the domains
of the variables, called null value and denoted by ∅. A variable assumes this value
iff it is irrelevant given the values of the other variables. Therefore, the problem
now becomes:
- type of activity, X1 = {inside,outside},
- inside activity, X2 = {Book,TV,∅},
- outside activity, X3 = {Movie,Restaurant,Bar,∅},
- friends, X4 = {Ann,Bob,∅}.

Typical alternatives are 〈Outside,∅,Restaurant,Bob〉 or 〈Inside,TV,∅, ∅〉. Po-
tentially there are 72 such alternatives, but using hard constraints of the type
“if X1 =Inside, then X2 6= ∅ and X3 = X4 = ∅ we can reduce its size down to
20.

The four dimensions could be also criteria, provided the agent is able to
express some preferences (at least a partial order). However, we may use two
more criteria which are not among the above introduced definitional attributes:
“time to implement a decision” and “cost of a decision”. These are decisional
attributes. Consider the attribute “time”. We may have time values for each
of the above attribute values allowing an additive computation of the time
necessary to implement a decision. Consider for instance the alternatives in-
troduced previously. Suppose we know that t(x11) = 1, t(x12) = 10, t(x21) =
5, t(x22) = 1, t(x23) = 10. A solution a = 〈Inside,TV,∅, ∅} will give t(a) =
t(x11) + t(x22) + t(x34) + t(x43) = 2.

– Generic preferences do not take into account the definitional attributes and
focus on one of the decisional attributes, say time. The preference model
here is a simple weak order such that “a is better than b iff t(a) < t(b)”.
Applying this single criterion to the whole set A will result in a weak order
where a maximal element always exist (perhaps not necessarily with only



one element. Clearly, this is a rapid way to identify a solution, possibly not
very satisfactory.

– Contextual preferences are expressed on one or more definitional attributes
through statements of the type: “I prefer to go out instead of staying at
home” (x21 > x11) regardless of whatever else I am going to do and with
whom” or “If I go out I prefer a movie to a restaurant to a bar, provided that
I have the same company”. The first statement results in a total order of two
equivalence classes, the first of the type 〈x12, ∅, x3, x4〉 and the second of the
type 〈x11, ∅, x3, x4〉 (equivalent to the result of a lexicographic order where
X1 is the most important criterion; see [14]). The second statement results in
a partial order where only compare alternatives of the type 〈x12, ∅, x3j , x4k〉
to alternatives of the type 〈x12, ∅, x3i, x4k〉. A comparison to an alternative
of the type 〈x12, ∅, x3i, x4l〉 is impossible.

– Structural preferences are defined on the whole set of definitional attributes
plus, possibly, other decisional ones. In this case we also allow any type of
comparison among alternatives including conflicting statements and their
relevant preference relations.

4 Ceteris Paribus as structural preference

In order to be able to provide a final recommendation to a decision maker, we
have to solve a preference aggregation problem. With this term we refer to the
problem of establishing an overall preference relation (an order on the set of out-
comes) taking into account all the criteria the decision maker considers relevant
to his problem. Unfortunately there is no universal way to solve this problem
(see [4] and [5]). Basically, what we know is that, under looser conditions on the
type of preferences to aggregate and properties to satisfy by the final result, the
resulting preference relation is not an order (neither completeness nor acyclicity
can be guaranteed: see [3]). If the stake is to obtain rapidly a reasonable recom-
mendation, we have to simplify both the possible types of preference statements
that can be modelled and aggregated, and the aggregation procedure itself. For
this purpose, in this paper we have chosen the use of the CP-nets formalism
which guarantees an efficient computation of a final result, although it is less
expressive than other frameworks.

The reader should note that Ceteris-Paribus comparisons of multi-attribute
outcomes is one of the simplest models used in order to perform such a com-
parison. In the literature (see [13], [17], [25]) there exist different models under
which such a comparison is possible based on different assumptions about the
dependencies among subsets of criteria. For a general theoretical framework the
reader may refer to the literature on conjoint measurement (see [18] and the
more recently [6]).

In this section we focus on the use of CP-nets as the basic formalism. We
review the basic CP-network semantics in the spirit of [27].

Assume a constraint satisfaction problem C over a set of variables X =
{X1, . . . , Xn} with domains dom(X1), . . . , dom(Xn) respectively. The set of pos-
sible outcomes of C, is a subset of dom(X1) × . . . × dom(Xn), each element of



which satisfies all the constraints of C. In order to simplify our discussion, in the
following we specify a constraint satisfaction problem by referring to its set of
outcomes. We assume that variable domains are pairwise disjoint, ie. for every
Xi, Xj ∈ X it holds that dom(Xi) ∩ dom(Xj) = ∅. Given the value assignments
x∗ and x∗∗ to the set of variables X ∗ and X ∗∗ respectively with X ∗∗ ⊆ X ∗ ⊆ X ,
we write x∗ |= x∗∗ to denote that the projection of x∗ to the variables of X ∗∗

equals x∗∗.
A preference statement is an expression of the form x∗ : xik � xjk where

x∗ is an assignment to a set of variables X ∗ ⊆ X and xik, xjk are values of a
variable Xk such that Xk ∩ X ∗ = ∅. We then write xik �x∗ xjk. Intuitively,
such a preference statement means that, given the assignment x∗, the value
xik is preferred to the value xjk. A CP-network is set of preference statements
on the set of variables X that is used to rank an associated set of possible
outcomes. We define the set of parent Pa(Xk) of a variable Xk in a CP-net N
as Pa(Xk) = {y|y ∈ X and N contains a statement of the form x∗ : xik � xjk

where xik, xjk ∈ dom(Xk) and x∗ contains some value for y}. We assume that in
each preference statements of the form x∗ : xik � xjk on the values of variable
Xk, the assignment x∗ is a complete assignment to the set of variables Pa(Xk).

A CP-net N induces a graph GN that contains a node for every variable of N
and an edge from the node associated with variable Xj to the node of variable
Xi if Xj ∈ Pa(Xi). We say that N is acyclic iff GN is acyclic. The notation
tr(R) denotes the transitive closure of a binary relation R.

Definition 3. [27]. Let s = x∗ : xik � qjk be a preference statement. The rela-
tion induced by s on a set of outcomes O is a binary relation Rs = {(a, b)|a, b ∈ O
and a = wxik and b = wxjk and w |= x∗}. The relation induced by a CP-net
N = {s1, s2, . . . sn} is the relation RN = tr(Rs1 ∪Rs2 ∪ . . . ∪Rsn).

Therefore, the criteria aggregation method used in the CP-networks is the
disjunctive aggregation.

If N is an acyclic CP-net the relation RN is a strict partial order, ie. it is
irreflexive, asymmetric and transitive. The next theorem proves the first two
properties of RN , as transitivity follows from its definition.

Theorem 1. Let N be an acyclic CP-net. Then, the relation RN is irreflexive
and asymmetric.

If N is an acyclic CP-network we say that the outcome oi is strictly preferred
to outcome oj wrt N , denoted by oi �N oj , if (oi, oj) ∈ RN . We drop N from �N

when the CP-network to which we refer is clear from the context. The following
example illustrates the ranking relation imposed on the set outcomes by the
CP-networks.

Example 3. Let N be the CP-network defined on the variables X, Y, Z as follows:
s1 =: x1 � x2 s2 = x1 : y1 � y2

s3 = x2 : y2 � y1 s4 = y1 : z1 � z2

s5 = y2 : z2 � z1



The relation induced by each of the above statements are the following:
Rs1 = {(x1y1z1, x2y1z1), (x1y1z2, x2y1z2), (x1y2z1, x2y2z1), (x1y2z2, x2y2z2)}
Rs2 = {(x1y1z1, x1y2z1), (x1y1z2, x1y2z2)}
Rs3 = {(x2y2z1, x2y1z1), (x2y2z2, x2y1z2)}
Rs4 = {(x1y1z1, x1y1z2), (x2y1z1, x2y1z2)}
Rs5 = {(x1y2z2, x1y2z1), (x2y2z2, x2y2z1)}

The ranking induced by the relation RN = ∪5
i=1Rsi

specifies that x1y1z1 �
x1y1z2 � x1y2z2 � {x1y2z1, x2y2z2} � x2y2z1 � x2y1z1 � x2y1z1. Note that the
outcomes x1y2z1 and x2y2z2 are incomparable.

TCP-networks [7] extend CP-networks with relative variable importance state-
ments. A relative variable importance (or relative importance) statement is of
the form x∗ : X.Y where X, Y ⊆ X , and the sets Pa(X), {X}, and {Y } are pair-
wise disjoint. Intuitively, the meaning of such a sentence is that when x∗ is true,
whatever the value on attribute Y , is we prefer better values on attribute X. A
variable importance statement induces a binary relation on the set of possible
outcomes.

Definition 4. Let v = x∗ : Xk . Xl be a variable importance statement of a
TCP-net N . The relation induced by v on a set of outcomes O is a binary
relation Rv = {(a, b)|a, b ∈ O, a = wzxikxal, oj = wzxjkxbl, xik �z xjl, and
wz |= x∗}, where xik, xjk ∈ dom(Xk) and xal, xbl ∈ dom(Xl). The relation
induced by a TCP-net N that contains the preference statements s1, s2, . . . sn

and the variable importance statements v1, v2, . . . vm is RN = tr(Rs1 ∪ Rs2 ∪
. . . ∪Rsn

∪Rv1 ∪Rv2 ∪ . . . ∪Rvm
).

We can extend the notion of the graph GN associated with a CP-nets to the
graph associated with a TCP-net N , also denoted by GN , by adding to the graph
an edge from the node that corresponds to X to the node that corresponds to
Y for every variable importance statement of the form x∗ : X . Y . We can now
extend theorem 1 and show that for a TCP-network N with an acyclic graph
GN the relation RN is a strict partial order.

Theorem 2. Let N be an acyclic TCP-net. Then, the relation RN is irreflexive
and asymmetric.

As in the case of acyclic CP-networks we say that the outcome a is strictly
preferred to outcome b wrt to an acyclic TCP-net N , denoted by a �N b, if
(a, b) ∈ RN . The next example illustrates the semantics of TCP-networks.

Example 4. Consider the CP-network of example 3 extended with the variable
importance v = X .Z. The associated binary relation is Rv = {(x1y1z1, x2y1z2),
(x1y1z2, x2y1z1), (x1y2z1, x2y2z2), (x1y2z2, x2y2z1)}. The reader should note that
the relation tr(Rs1 ∪Rs2 ∪Rs3 ∪Rs4 ∪Rs5 ∪Rv) is antisymmetric and that the
new relation includes the pair (x1y2z1, x2y2z2), ie. outcomes that were previously
incomparable now become comparable.



5 Contextual preferences and Dynamic Constraint
Satisfaction

As noted earlier, contextual preferences arise naturally in the context of dynamic
constraint satisfaction problems. Moreover, such problems appear in many ap-
plication domains such as configuration, compositional modelling, planning etc.
In this section we extend CP-networks from classical to dynamic constraint sat-
isfaction problems.

Dynamic Constraint Satisfaction [19] is an extension of classical constraint
satisfaction with activity constraints that select the variables that participate in
a solution. In the following we slightly change the notation and use the original
definition of the problem as it presented in [19]. Formally, a dynamic constraint
satisfaction problem D is a tuple of the form D =< X ,XI , D, CC , CA >, where
X = {X1, X2, . . . , Xn} is a set of variables and D = {D1, D2, . . . , Dn} the do-
mains of the variables that determine the possible values Di = {x1i, x2i, . . . , xki}
that can be assumed by the variables. The set XI is the set of initial variables,
and must appear in every solution, whereas CC the set of compatibility con-
straints and CA the set of activity constraints.

A variable is called active if it must be part of a solution. We declare that
variable X is active with the proposition active(X), and that X is not active with
the proposition ¬active(X). Propositions of the form active(X) and ¬active(X)
are called activity literals. The proposition active(X) is satisfied in an outcome
a if a assigns a value to X and ¬active(X) is satisfied in a if the variable X does
not appear in a. An activity constraint is an expression of the form
c → l1 ∨ l2 ∨ . . . ∨ ln
where each li is an activity literal and c is the activity condition. In the following
we assume that each positive activity literal (ie. literal of the form active(X)) ap-
pears positively or negatively (ie. active(X) or ¬active(X)) in only one activity
constraint. An activity condition is a conjunction of the form V ∧A where A is a
conjunction of activity literals and V is a conjunction of expressions of the form
vi = uij where vi ∈ X and uij ∈ Di. An activity constraint c → l1 ∨ l2 ∨ . . . ∨ ln
is satisfied in an outcome a if either c is not satisfied in O or l1 ∨ l2 ∨ . . . ∨ ln is
satisfied in a.

Given a dynamic constraint satisfaction problem D, we can construct the
activity graph GD of D from its set of activity constraints CA as follows. For
each positive activity literal active(Xi) that appears in CA, a corresponding
node ni is included in GD. If D contains an activity constraint of the form
c → l1 ∨ l2 ∨ . . . ∨ ln such that some activity literal active(Xi) belongs to c and
lk = active(Xj) for some 1 ≤ k ≤ n, then GD contains the edge (ni, nj). In this
paper we restrict our attention to problems with an acyclic activity graph. We
denote by predD(Xi) the set predD(Xi) = {Xj |Xj is a variable such that ni is
reachable from nj in GD}.

A compatibility constraint is a traditional constraint. A compatibility con-
straint c is satisfied in an outcome if either some of the variables of c are not
active in a or c is satisfied in the traditional sense.



A value assignment (or valuation) a to a set of variables X ′ such that XI ⊆
X ′ ⊆ X of a dynamic constraint satisfaction problem D is called an outcome of
D if a satisfies all constraints of CA ∪ CC and no subset of a is an outcome of
D.

We extend classical dynamic constraint satisfaction by introducing the con-
cept of activity preference. An activity preference is a statement of the form

c : active(Xi) � active(Xj)

with the intuitive meaning that if the activity condition c is satisfied we
prefer that Xi being active over Xj being active. We assume that for every
activity preference of the form c : active(Xi) � active(Xj) that is contained
in a dynamic constraint satisfaction problem D, D also contains an activity
constraint of the form c → active(X1) ∨ active(X2) ∨ . . . ∨ active(Xk), with
{Xi, Xj} ⊆ {X1, X2, . . . , Xk}. Formally, the semantics of an activity preference
statement is as follows.

Definition 5. Let s = c : active(Xi) � active(Xj) be an activity preference
statement. The ranking of the set of outcomes O wrt to s is a binary relation
Rs = {(a, b)|a, b ∈ O and a = wxmi, b = wxkj where xmi ∈ Di, xkj ∈ Dj,
w |= c, and w is a value assignment to a subset of X that does not contain Xi

and Xj .}

In addition to the above, we also slightly extend the language of CP-network
in order to accommodate the activity literals. More specifically we allow prefer-
ence statements of the form s = p1∧p2∧. . .∧pi∧a1∧a2∧. . .∧aj : u1 � u2 where
each pm ∈ Dm with 1 ≤ m ≤ i, the ai’s are activity literals, and {u1, u2} ⊆ Dv

for some variable X. To distinguish between activity preference statements and
preference statements on the values of variables, we call the later object level
preference statements. We say that the object level preference statement s is
active if all the variables in the set {X, X1, X2, . . . , Xi} are active. Otherwise s
is inactive. The semantics of such a preference statement is defined as follows.

Definition 6. Let s = p1 ∧ p2 ∧ . . . ∧ pi ∧ a1 ∧ a2 ∧ . . . ∧ aj : u1 � u2 be an
object level preference statement of a dynamic constraint satisfaction problem
with preferences D with {u1, u2} ∈ DX . The ranking of the set of outcomes O
wrt to s is a binary relation Rs = {(a, b)|a, b ∈ O where a = p1p2 . . . pnzw1u1,
b = p1p2 . . . pnzw2u2 and z is a value assignment to the variables of predP (v)
and w1 and w2 are value assignments to a set of variables that do not belong to
predD(X)}.

The semantics of variable importance statements, which are also extended
to accommodate activity literals, is changed analogously. The new type of con-
straint satisfaction problems is defined formally as follows.

Definition 7. A dynamic constraint satisfaction problem with preferences D, is
a tuple of the form D =< X ,XI , D, CC , CA, A, S, F >, where D′ =< X ,XI , D,
CC , CA > is a classical dynamic constraint satisfaction problem and A is a set



of activity preferences, S a set of variable importance statements and F a set of
object level preferences.

The ranking on the solutions induced by such a problem is defined as follows.

Definition 8. Let D =< X ,XI , D,CC , CA, A, S, F > be a dynamic constraint
satisfaction problem with A = {a1, a2, . . . , ak}, S = {s1, s2, . . . sn} and F =
{p1, p2, . . . , pm}. If a, b are two outcomes of D′ =< X ,XI , D,CC , CA >, it holds
that a �D b iff (a, b) ∈ tr(Ra1∪Ra2 ∪ . . .∪Rak

∪Rp1∪Rp2 ∪ . . .∪Rpm
∪Rs1∪Rs2∪

. . . ∪Rsn).

The next example illustrates the new semantics.

Example 5. Consider the dynamic constraint satisfaction problem P on the vari-
ables:
Where = {in, out}
Book = {scifi, novel}
TV = {action, comedy}
Restaurant = {italian, indian}
Bar = {winebar, discobar}
Company = {Ann, Bob}

The activity preference statements are
a1 = in : active(Book) � active(TV )
a2 = out : active(Restaurant) � active(Bar)
There is also the variable importance statements
s1 = active(Restaurant) : Company . Restaurant
s2 = active(Bar) : Bar . Company
Finally the object level preferences are
p1 = : out � in p2 = : Ann � Bob
p3 = : novel � scifi p4 = : action � comedy
p5 = : italian � indian p6 = : discobar � winebar
Finally, the activity constraints are
in → active(Book) ∨ active(TV )
out → active(Movie) ∨ active(Restaurant) ∨ active(Bar)
out → active(Company)

The set of outcomes of P is O = {{in, scifi}, {in, novel}, {in, action}, {in,
comedy}, {out, italian, Ann}, {out, indian, Ann}, {out, italian, Bob}, {out, indian, Bob},
{out, winebar,Ann}, {out, discobar,Ann}, {out, winebar,Bob}, {out, discobar,Bob}}.

The various preference statements induce the following binary relations on
the set of outcomes O.
Ra1 = {({in, scifi}, {in, action}), ({in, scifi}, {in, comedy}), ({in, novel}, {in, action}),
({in, novel}, {in, comedy})}.
Ra2 = { ({out, italian, Bob}, {out, winebar,Bob}), ({out, indian, Bob}, {out, winebar,Bob}),
({out, italian, Bob}, {out, discobar,Bob}), ({out, indian, Bob}, {out, discobar,Bob}),
({out, italian, Ann}, {out, winebar,Ann}), ({out, indian, Ann}, {out, winebar,Ann}),
({out, italian, Ann}, {out, discobar,Ann}), ({out, indian, Ann}, {out, discobar,Ann})}



Rs1 = { ({out, indian, Ann}, {out, italian, Bob})}
Rs2 = {({out, discobar,Bob}, {out, winebar,Ann})}
Rp1 = {({out, u1, u2}, {in, u3}, )|u1 ∈ DRestaurant ∪DBar, u2 ∈ DCompany, u3 ∈
DBook ∪DTV }
Rp2 = {({out, discobar,Ann}, {out, discobar,Bob}) ({out, winebar,Ann}, {out, winebar,
Bob})}
Rp3 = {({in, novel}, {in, scifi})} Rp4 = {({in, action}, {in, comedy})}
Rp5 = {({out, italian, Ann}, {out, indian, Ann}) ({out, italian, Bob}, {out, indian,
Bob}) }
Rp6 = {({out, discobar,Ann}, {out, winebar,Ann}) ({out, discobar,Bob}, {out, winebar,
Bob}) }
The semantics of P is given by the relation R = tr(Ra1 ∪ Ra2 ∪Rp1 ∪ Rp2

∪ . . . ∪ Rp6 ∪Rs1 ∪ Rs2) which induced the following ranking on the set of out-
comes O:

6 Conclusions

In this paper we address a general preference modelling and aggregation problem.
Suppose an n-dimensional attribute space where outcomes of potential actions
can be compared. A possible “best choice” is searched. However, in our setting
we introduce a further modelling component. We consider that preferences can
be expressed on different layers:
- generic preferences: where attributes not used for describing the outcomes are
used in order to make a decision; a decision rule of thumb allowing to obtain
rapidly reasonable decisions, at least as far as some rough evaluations of the
outcomes are concerned;
- contextual preferences: where only part of the attributes describing the out-
comes are used to compare them, considering a specific context within which
preferences have to be expressed;
- structural preferences: where the whole set of attributes is used in order to
model the preferences of the decision maker.

At the same time we have chosen in our setting to privilege computational
efficiency with respect to the expressiveness of the modelling language. For this
purpose, as far as the modelling of contextual and structural preferences are
concerned, we use the CP-nets formalism although limited in the allowed com-
parisons. Indeed structural preferences in the paper are modeled through con-
ventional CP-net and TCP-nets.

The modelling of contextual preferences introduces the necessity to extend
the language in order to take into account the dynamic nature of “contextual”
preference statements. Indeed, in these cases we have to model statements where
parts of the attribute space is simply not considered as it is irrelevant to the
decision. The solution is to associate classic CP-nets to dynamic constraint sat-
isfaction problems and introduce preferences as far as the activation of variables
is concerned.



This preliminary study opens a certain number of problems which we hope
to handle in future research:
- a more thorough study of the computational complexity of the solution pro-
posed in this paper;
- further extension of the CP-nets language in order to allow the comparison of
more complex outcomes instead of Ceteris Paribus ones only;
- further analysis of the dynamics implicitly present in the idea of contextual
preferences and the relations they have with the problem of revising preference
statements and models.
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