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Abstract. The rough set theory, based on the indiscernibility relation, is

not useful for analysing incomplete information. Therefore, we introduce

two generalizations of this theory, besides the well known one based

on tolerance relations. The �rst proposal is based on non symmetric

similarity relations, while the second one uses valued tolerance relation.

Both approaches provide more informative results than the previously

known approach employing simple tolerance relation.
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1 Introduction

Rough sets theory has been developed since Pawlak's seminal work [6] (see also

[7]) as a tool enabling to classify objects which are only \roughly" described,

in the sense that the available information enables only a partial discrimination

among them although they are considered as di�erent objects. In other terms,

objects considered as \distinct" could happen to have the \same" or \similar"

description, at least as far as a set of attributes is considered. Such a set of

attributes can be viewed as the possible dimensions under which the surrounding

world can be described for a given knowledge. An explicit hypothesis done in the

classic rough sets theory is that all available objects are completely described

by the set of available attributes. Denoting the set of objects as A = fa1; � � �ang
and the set of attributes as C = fc1; � � � cmg it is considered that 8aj 2 A; ci 2 C,

the attribute value always exists, i.e. ci(aj) 6= ;.

Such an hypothesis, although sound, contrast with several empirical situa-

tions where the information concerning the set A is only partial either because it

has not been possible to obtain the attribute values (for instance if the set A are

patients and the attributes are clinical exams, not all results may be available

in a given time) or because it is de�nitely impossible to get a value for some ob-

ject on a given attribute. A problem arise when such an incomplete information

table is used in order to make a classi�cation which implies an action. It may

be the case that such an action has to be undertaken while the information is

still incomplete. Under such conditions it is necessary to develop a theory which

may enable to induce a classi�cation in presence of partial information.

The problem has been already faced in literature by Grzymala [2] Kryszkiewicz

[4, 5], S lowi�nski and Stefanowski [10]. Our paper enhances such works by distin-

guishing two di�erent semantics for the incomplete information: the \missing"

semantics (unknown values allow any comparison) and the \absent" semantics

(unknown values do not allow any comparison) and explores three di�erent for-

malisms to handle incomplete information tables: tolerance relations, non sym-

metric similarity relations and valued tolerance relations.

Due to the limited size of the paper we will assume that the reader is at least

partly familiar with basic rough set concepts, i.e. notion of information table,

\classic" indiscernibility relation, approximations of ambiquous decision classes,

reduct and decision rules. More information can be found e.g. in [8]; rough set

based rule induction is discussed in [3, 9, 12]. The rest paper is organized as

follows. In section 2 we present and discuss the tolerance approach introduced

by Kryszkiewicz [4]. Moreover, we give an example of incomplete information

table which will be used all along the paper in order to help the understanding

of the di�erent approaches and allow comparisons. In section 3 an approach

based on non symmetric similarity relations is introduced using some results

obtained by S lowi�nski and Vanderpooten [11]. We also demonstrate that the non

symmetric similarity approach re�nes the results obtained using the tolerance

relation approach. Finally, in section 4 a valued tolerance approach is introduced

and discussed as an intermediate approach among the two previous ones. Further

research directions are included in the conclusions.



2 Tolerance relations

In the following we brie
y present the idea introduced by Kryszkiewicz [4]. The

interested readers can refer to the quoted papers for more details.

In our point of view the key concept introduced in this approach is to as-

sociate to the unavailable values of the information table a \null" value to be

considered as \everything is possible" value. Such an interpretation corresponds

to the idea that such values are just \missing", but they do exist. In other words,

it is our imperfect knowledge that obliges us to work with a partial information

table. Each object potentially has a complete description, but we just miss it for

the moment. More formally, given an information table IT = (A;C) we denote

the missing values by � and we introduce the following binary relation T :

8x; y 2 A�A T (x; y) , 8cj 2 C cj(x) = cj(y) or cj(x) = � or cj(y) = �
Clearly T is a re
exive and symmetric relation, but not necessarily transitive.

We call the relation T a \tolerance relation". Further on let us denote by IC(x)

the set of of objects y for which T (x; y) holds. In other terms the set IC(x) can

be seen as the set of objects similar to x taking into account attributes C. We

call such a set the \tolerance class of x", thus allowing the de�nition of a set of

tolerance classes of the set A. We can now use the tolerance classes as the basis

for rede�ning the concept of lower and upper approximation of a set � using the

set of attributes C. We have:

�C = fx 2 AjIC(x) � �g the lower approximation of �
�C = fx 2 AjIC(x) \ � 6= ;g the upper approximation of �
It is easy to observe that �C =

S
fI(x)jx 2 �g also. The usual properties of

lower and upper approximations apply in this case also. Let us introduce now

an example of incomplete information table which will be used all along the

paper in order to help the understanding of the di�erent approaches and allow

comparisons.

Example 1. Suppose the following information table is given

A a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12
c1 3 2 2 * * 2 3 * 3 1 * 3

c2 2 3 3 2 2 3 * 0 2 * 2 2

c3 1 2 2 * * 2 * 0 1 * * 1

c4 0 0 0 1 1 1 3 * 3 * * *

d � � 	 � 	 	 � 	 	 � 	 �

where a1, ...., a12 are the available objects, c1, ...., c4 are four attributes which

values (discrete) range from 0 to 3 and d is a decision attribute classifying objects

either to the set � or to the set 	 .

Using the tolerance relation approach to analyse the above example we have

the following results (notice that 	 = �c): IC(a1) = fa1; a11; a12g, IC(a2) =

fa2; a3g, IC(a3) = fa2; a3g, IC(a4) = fa4; a5; a10; a11; a12g, IC(a5) = fa4; a5; a10; a11; a12g,

IC(a6) = fa6g, IC(a7) = fa7; a8; a9; a11; a12g, IC(a8) = fa7; a8; a10g, IC(a9) =

fa7; a9; a11; a12g, IC(a10) = fa4; a5; a8; a10; a11g, IC(a11) = fa1; a4; a5; a7; a9; a10; a11; a12g,



IC(a12) = fa1; a4; a5; a7; a9; a11; a12g. From which we can deduce that: �C = ;,

�C = fa1; a2; a3; a4; a5; a7; a8; a9; a10; a11; a12g, 	C = fa6g, 	C = A

The results are quite poor. Moreover there exist elements which intuitively

could be surely classi�ed in � or in 	 , while they are not. Take for instance a1. We

have complete knowledge about it and intuitively there is no element perceived

as similar to it. However, it is not in the lower approximation of �. This is due to

\missing values" of a11 and a12 which enables them to be considered as \similar"

to a1. Of course this is \safe" because potentially the two objects could come up

with exactly the same values of a1.
A reduct is de�ned in a similar way as in the \classical" rough set model, i.e.

it is a minimal subset of attributes that preserves lower approximations of object

classi�cation. In table from Example 1 one can notice that it is possible to reduce

that table just by skipping attribute c3 - we can built the same classes of tolerance

relation and approximations as ones created using all attributes. The set of

attributes fc1; c2; c4g is the only reduct in this information table. In Kryszkiewicz

[4] generalized decision rules and their generation from incomplete information

tables is discussed. Generalized decision rules are of the form ^i(ci; v)!_(d; w).

If the decision part contains one disjunct only, the rule is certain. Let B be a

set of condition attributes which occur in a conditional part of the rule s! t. A

decision rule is true if for each object x satisfying condition part s, IB(x) � [t].
It is also required that the rule must have non-redundant conditional part. In

our example, we can �nd only one certain decision rule (due to the small size of

the lower approximation) : (c1 = 2)^(c2 = 3)^(c4 = 1)!(d = 	).

3 Similarity Relations

We introduce now a new approach based on the concept of a not necessarily

symmetric similarity relation. Such a concept has been �rst introduced in general

rough sets theory by S lowi�nski and Vanderpooten [11] in order to enhance the

concept of indiscernability relation. We �rst introduce what we call the \absent

values semantics" for incomplete information tables. In this approach we consider

that objects may be described \incompletely" not only because of our imperfect

knowledge, but also because de�nitely impossible to describe them on all the

attributes Therefore we do not consider the unknown values as uncertain, but

as \non existing" and we do not allow to compare unknown values.

Under such a perspective each object may have a more or less complete

description, depending on how many attributes has been possible to apply. From

this point of view an object x can be considered similar to another object y only if

they have the same known values. More formally, denoting as usual the unknown

value as � and given an information table IT = (A;C) we introduce a similarity

relation S as follows: 8x; y S(x; y) , 8cj 2 C : cj(x) 6= �; cj(x) = cj(y)

It is easy to observe that such a relation although not symmetric is transitive.

The relation S is a partial order on the set A. Actually it can be seen as a

representation of the inclusion relation since we can consider that \x is similar

to y" i� the \the description of x" is included in \the description of y". We can



now introduce for any object x 2 A two sets:

R(x) = fy 2 AjS(y; x)g the set of objects similar to x
R�1(x) = fy 2 AjS(x; y)g the set of objects to which x is similar

Clearly R(x) and R�1(x) are two di�erent sets. We can now introduce our

de�nitions for the lower and upper approximation of a set � as follows:

�C = fx 2 AjR�1(x) � �g the lower approximation of �
�C =

S
fR(x)jx 2 �g the upper approximation of �

In other terms we consider as surely belonging to � all objects which have

objects similar to them belonging to �. On the other hand any object which is

similar to an object in � could potentially belong to �. Comparing our approach

with the tolerance relation based one we can state the following result.

Theorem 1. Given an information table IT = (A;C) and a set �, the up-

per and lower approximations of � obtained using a non symmetric similarity

relation are a re�nement of the ones obtained using a tolerance relation.

Proof. Denote as �T
C

the lower approximation of � using the tolerance ap-

proach and �S
C

the lower approximation of � using the similarity approach, �C
T

and �C
S

being the upper approximations respectively. We have to demonstrate

that: �T
C
� �S

C
and �C

S
� �C

T
.

Clearly we have that: 8x; y S(x; y)!T (x; y) since the conditions for which

the relation S holds are a subset of the conditions for which the relation T holds.

Then it is easy to observe that: 8x R(x) � I(x) and R�1(x) � I(x).

1. �T
C

� �S
C

. By de�nition �T
C

= fx 2 A jI(x) � �g and �S
C

= fx 2
A jR�1(x) � �g. Therefore if an object x belongs to �T

C
we have that

IC(x) � � and since R�1(x) � I(x) we have that R�1(x) � � and there-

fore the same object x will belong to �S
C

. The inverse is not always true.

Therefore the lower approximation of � using the non symmetric similarity

relation is at least as rich as the lower approximation of � using the tolerance

relation.

2. �C
S
� �C

T
. By de�nition �C

S
= [x2�R(x) and �C

T
= [x2�I(x) and since

R(x) � I(x) the union of the sets R(x) will be a subset of the union of the

sets I(x). The inverse is not always true. Therefore the upper approximation

of � using the non symmetric similarity relation is at most as rich as the

upper approximation of � using the tolerance relation.

Continuation of Example 1 Let us come back to the example introduced

in section 1. Using the whole set of attributes we have the following results

(notice that 	 = �c): R�1(a1) = fa1g, R(a1) = fa1; a11; a12g, R�1(a2) =

fa2; a3g, R(a2) = fa2; a3g, R�1(a3) = fa2; a3g, R(a3) = fa2; a3g, R�1(a4) =

fa4; a5g, R(a4) = fa4; a5; a11g, R�1(a5) = fa4; a5g, R(a5) = fa4; a5; a11g,

R�1(a6) = fa6g, R(a6) = fa6g, R�1(a7) = fa7; a9g, R(a7) = fa7g, R�1(a8) =

fa8g, R(a8) = fa8g, R�1(a9) = fa9g, R(a9) = fa7; a9; a11; a12g, R�1(a10) =

fa10g, R(a10) = fa10g, R�1(a11) = fa1; a4; a5; a9; a11; a12g, R(a11) = fa11g,

R�1(a12) = fa1; a9; a12g, R(a12) = fa11; a12g. From which we can deduce that:



�C = fa1; a10g, �C = fa1; a2; a3; a4; a5; a7; a10; a11; a12g, 	C = fa6; a8; a9g,

	C = fa2; a3; a4; a5; a6; a7; a8; a9; a11; a12g.

As expected the new approximations are more informative than the tolerance

based ones. Moreover, we �nd now in the lower approximations of the sets � and

	 some of the objects which intuitively we were expecting to be there. Obviously

such an approach is less \safe" than the tolerance based one, since objects can

be classi�ed as \surely in �" although very little is known about them (as in

our case the object a10). However, under the \absent values" semantic which

we introduced at the beginning of the section, we do not consider a partially

described object as \little known", but as \known" just on few attributes. Absent

semantics allow to make a kind of \non monotonic classi�cation", in the sense

that the classi�cation is defeasable in the case new information is added such

that an object will have a more complete description, classifying it di�erently

from the present class.

Let us now consider the concept of a reduct using the similarity relation. The

subset C 0 of C is a reduct with respect to a classi�cation if it is minimal subset

of attributes C that keeps the same lower approximation of such a classi�ca-

tion. Therefore, the de�nition is the same as in the original rough set approach,

the di�erence consists in using di�erent similarity relation while building ap-

proximations. We observe that according to de�nition of the relation an object

\totally unknown" (having in all attributes an unknown value) is not similar to

any other object. If we eliminate one or more attributes which will make an ob-

ject to become \totally unknown" on the remaining attributes we lose relevant

information for the classi�cation. We can conclude that all such attributes have

to be in the reducts. Therefore, there is one reduct in our example fc1; c2; c4g -

it leads to the same classes R�1(x) and R(x) as using all attributes.

While de�ning the decision rule we employ classes R(x). The decision rule is

de�ned as s!t ( where s = ^i(ci; v) and t = (d; w)). The certain rule is true if

for each object x satisfying s its class R(x) � [t]. The conditional part cannot

contain redundant conditions. This way of de�ning the decison rule follows the

semantics of the rules discussed in the original version of similarity approach

[11]. Moreover it is consistent with our idea of \non monotonic classi�cation":

we classify objects which as similar as possible to a given rule although this

might not be the safest conclusion.

Given absent value semantics and similarity relation the following certain

decision rules can be generated from the example of the information table:

(c1 = 1) ! (d = �), (c3 = 1)^(c4 = 0) ! (d = �), (c3 = 3)^(c4 = 0) ! (d = �)

(c2 = 3)^(c4 = 1) ! (d = 	), (c2 = 0) ! (d = 	), (c3 = 0) ! (d = 	)

The absent value semantics gives more informative decision rules than tolerance

based approach. Nevertheless these two di�erent approaches (the tolerance and

the non symmetric similarity) appear to be two extremes, in the middle of which

it could be possible to use a more 
exible approach.



4 Valued tolerance relations

Going back to the example of section 2, let's consider the elements a1, a11 and

a12. Under both the tolerance relation approach and the non symmetric similar-

ity relation approach we have: T (a11; a1); T (a12; a1); S(a11; a1); S(a12; a1)
However we may desire to express the intuitive idea that a12 is \more similar"

to a1 than a11 or that a11 is \less similar" to a1 than a12. This is due to the

fact that in the case of a12 only one value is unknown and the rest all are equal,

while in the case of a11 only one value is equal and the rest are unknown. We

may try to capture such a di�erence using a valued tolerance relation.

The reader may notice that we can de�ne di�erent types of valued tolerance

(or similarity) using di�erent comparison rules. Moreover a valued tolerance (or

similarity) relation can be de�ned also for complete information tables. Actually

the approach we will present is independent from the speci�c formula adopted

for the valued tolerance and can be extended to any type of valued relation.

Given a valued tolerance relation for each element of U we can de�ne a \tol-

erance class" that is a fuzzy set with membership function the \tolerance degree"

to the reference object. It is easy to observe that if we associate to the non zero

tolerance degree the value 1 we obtain the tolerance classes introduced in section

2. The problem is to de�ne the concepts of upper and lower approximation of a

set �. Given a set � to describe and a set Z � U we will try to de�ne the degree

by which Z approximates from the top or from the bottom the set �. Under

such a perspective, each subset of U may be a lower or upper approximation of

�, but to di�erent degrees. For this purpose we need to translate in a functional

representation the usual logical connectives of negation, conjunction etc..:

1. A negation is a function N : [0; 1] 7! [0; 1], such that N(0) = 1 and N(1) = 0.

An usual representation of the negation is N(x) = 1� x.

2. A T -norm is a continuous, non decreasing function T : [0; 1]2 7! [0; 1] such

that T (x; 1) = x. Clearly a T -norm stands for a conjunction. Usual representa-

tions of T -norms are: the min: T (x; y) = min(x; y); the product: T (x; y) = xy;

the  Lukasiewicz T -norm: T (x; y) = max(x+ y � 1; 0).

3. A T -conorm is a continuous, non decreasing function S : [0; 1]2 7! [0; 1]

such that S(0; y) = y. Clearly a T -conorm stands for a disjunction. Usual

representations of T -conorms are: the max: S(x; y) = max(x; y); the product:

S(x; y) = x+ y � xy; the  Lukasiewicz T -conorm: S(x; y) = min(x + y; 1).

If S(x; y) = N(T (N(x); N(y))) we have the equivalent of the De Morgan law

and we call the triplet hN;T; Si a De Morgan triplet. I(x; y), the degree by which

x may imply y is again a function I : [0; 1]2 7! [0; 1]. However, the de�nition of

the properties that such a function may satisfy do not make the unanimity. Two

basic properties may be desired:

- the �rst claiming that I(x; y) = S(N(x); y) translating the usual logical equiv-

alence x!y=def:x_y;

- the second claiming that whenever the truth value of x is not greater than the

truth value of y, then the implication should be true (x � y , I(x; y) = 1).

It is almost impossible to satisfy both the two properties. In the very few cases

where this happens other properties are not satis�ed (for a discussion see [1]).



Coming back to our lower and upper approximations we know that given a

set Z � U and a set � the usual de�nitions are:

1. Z = �C , 8 z 2 Z; �(z) � �, 2. Z = �C , 8 z 2 Z; �(z) \ � 6= ;
�(z) being the \indiscernability (tolerance, similarity etc.)" class of element z.

The functional translation of such de�nitions is straightforward. Having:

8 x �(x) =def Tx�(x); 9 x �(x) =def Sx�(x); � � 	 =def Tx(I(��(x); �	 (x)));

� \ 	 6= ; =def 9 x �(x)^ (x) =def Sx(T (��(x); �	 (x))) we get:

1. ��C (Z) = Tz2Z(Tx2�(z)(I(R(z; x); x̂))).

2. ��C (Z) = Tz2Z(Sx2�(z)(T (R(z; x); x̂))). where:

��C (Z) is the degree for set Z to be a lower approximation of �;

��C (Z) is the degree for set Z to be an upper approximation of �;

�(z) is the tolerance class of element z; T; S; I are the functions previously

de�ned; R(z; x) is the membership degree of element x in the tolerance class of

z; x̂ is the membership degree of element x in the set � (x̂ 2 f0; 1g).

Continuation of Example 1Considering that the set of possible values on each

attribute is discrete we make the hypothesis that there exists a uniform probabil-

ity distribution among such values. More formally, consider cj an attribute of an

information table IT = (A;C) and associate to it the set Ej = fe1
j
; � � � em

j
g of all

the possible values of the attribute. Given an element x 2 A the probability that

cj(x) = ei
j

is 1=jEj j. Therefore given any two elements x; y 2 A and an attribute

cj , if cj(y) = ei
j
, the probability Rj(x; y) that x is similar to y on the attribute

cj is 1=jEj j. On this basis we can compute the probability that two elements are

similar on the whole set of attributes as the joint probability that the values of

the two elements are the same on all the attributes: R(x; y) =
Q

cj2C
Rj(x; y).

Applying this rule to the whole set example we obtain the following table 1

concerning the valued tolerance relation.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

a1 1 0 0 0 0 0 0 0 0 0 1/64 1/4

a2 0 1 1 0 0 0 0 0 0 0 0 0

a3 0 1 1 0 0 0 0 0 0 0 0 0

a4 0 0 0 1 1/256 0 0 0 0 1/1024 1/1024 1/64

a5 0 0 0 1/256 1 0 0 0 0 1/1024 1/1024 1/64

a6 0 0 0 0 0 1 0 0 0 0 0 0

a7 0 0 0 0 0 0 1 1/256 1/16 0 1/1024 1/64

a8 0 0 0 0 0 0 1/256 1 0 1/1024 0 0

a9 0 0 0 0 0 0 1/16 0 1 0 1/64 1/4

a10 0 0 0 1/1024 1/1024 0 0 1/1024 0 1 1/4096 0

a11 1/64 0 0 1/1024 1/1024 0 1/1024 0 1/64 1/4096 1 1/256

a12 1/4 0 0 1/64 1/64 0 1/64 0 1/4 0 1/256 1

Table 1: Valued tolerance relation for example 2.1

If we consider element a1, the valued tolerance relation R(a1; x); x 2 U will

result in the vector [1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1=64; 1=4] which actually represents

the tolerance class �(a1) of element a1. The reader may notice that the crisp

tolerance class of element a1 was the set fa1; a11; a12g which corresponds to



the vector [1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 1]. Following our \probabilistic approach" we

may choose for T and S the product representation, while for I we will satisfy

the De Morgan property thus obtaining: T (x; y) = xy, S(x; y) = x + y � xy,

I(x; y) = 1 � x + xy. Clearly our choice of I(x; y) does not satisfy the second

property of implication. However, the reader may notice that in our speci�c case

we have a peculiar implication from a fuzzy set (�(z)) to a regular set (�),

such that x̂ 2 f0; 1g. The application of any implication satisfying the second

property will reduce the valuation to the set f0; 1g and therefore the whole degree

��C (Z) will collapse to f0; 1g and thus to the usual lower approximation. With

such considerations we obtain:

��C (Z) =
Q

z2Z

Q
x2�(z)(1�R(z; x) +R(z; x)x̂)

��C (Z) =
Q

z2Z
(1�

Q
x2�(z)(1 �R(z; x)x̂))

Consider now the set � and as set Z consider the element a1, where R(a1; x)

was previously introduced and x̂ = [1; 1; 0; 1; 0; 0; 1; 0; 0; 1; 0; 1]. We obtain ��C (a1) =

0:98 and ��C (a1) = 1. Operationally we could choose a set Z as lower (upper)

approximation of set � as follows:

Step 1 take all elements for which �(�(z)!�) = 1 (�(�(z) \ �) = 1);

Step 2 then add elements in a way such that �(�(z)!�) > k (�(�(z)\�) > k), (for

decreasing values of k, let's say 0.99, 0.98 etc.), thus obtaining a family of

lower (upper) approximations with decreasing membership function ��C (Z)

(��C (Z));

Step 3 �x a minimum level � enabling to accept a set Z as a lower (upper) approx-

imation of � (thus ��C (Z) � �).

The concept of reduct and decision rules are also generalized in the valued tol-

erance case. Given the decision table (A;C) and the partition Y = �1; �2; : : : �n,

the subset of attributes C 0 � C is a reduct i� it does not reduce the degree of

lower approximation obtained with C, i.e. if z1; z2; : : : ; zn is a family of lower

approximations of �1; �2; : : : �n then 8i=1;:::;nzi ��iC (zi) � ��iC0
(zi).

In order to induce classi�cation rules from the decision table on hand we may

accept now rules with a \credibility degree" derived from the fact that objects

may be similar to the conditional part of the rule only to a certain degree, besides

the fact the implication in the decision part is also uncertain. More formally we

give the following representation for a rule �i: �
J

i
=def

V
j
(cj(ai) = v) ! (d = w)

where: J � C, v is the value of attribute cj , w is the value of attribute d.

As usual we may use relation s(x; �i) in order to indicate that element x
\supports" rule �i or that, x is similar to some extend to the conditional part

of rule �i. We denote as S(�i) = fx : s(x; �i) > 0g and as W = fx : d(x) = wg.

Then �i is a classi�cation rule i�: 8 x 2 S(�i) : �(x) �W
We can compute a credibility degree for any rule �i calculating the truth

value of the previous formula which can be rewritten as:

8 x; y s(x; �i)!(R(x; y)!W (y)). We get: �(�i) = Tx(Iy(s(x; �i); I(��(x)(y); �W (y))))

Finally it is necessary to check whether J is a non-redundant set of conditions

for rule �i, i.e. to look if it is possible to satisfy the condition: 9 Ĵ � J : �(�Ĵ
i

) �
�(�J

i
) or not.



Continuation of Example 1. Consider again the example of incomplete in-

formation table used in the paper and take as candidate the rule: �1 : (c1 =

3)^(c2 = 2)^(c3 = 1)^(c4 = 0)!(d = �) Since in the paper we have chosen for

the functional representation of implication the satisfaction of De Morgan law

and for T -norms the product, we get:

�(�i) =
Q

x2S(�i)
(1� s(x; �i) + s(x; �i)

Q
y2�(x)(1���(x)(y) +��(x)(y)�W (y)))

where s(x; �i) represents the \support" degree of element x to the rule �i. We

thus get that �(�1) = 0:905

However, the condition part of rule �1 is redundant as the rule could be trans-

formed to: �1 : (c1 = 3)^(c3 = 1)^(c4 = 0)!(d = �) with degree �(�1) =

0:905.

Operationally a user may �rst �x a threshold of credibility for the rules to

accept and then could operate a sensitivity analysis on the set of rules that is

possible to accept in an interval of such threshold.

Supposing that the level of credibility is �xed at 0.9 we can induce from the

decision table the following set of decision rules:

�1 : (c1 = 3)^(c3 = 1)^(c4 = 0)!(d = �) with �(�1) = 0:905

�2 : (c1 = 2)^(c4 = 1)!(d = 	) with �(�1) = 0:931

�3 : (c2 = 3)^(c3 = 2)^(c4 = 1)!(d = 	) with �(�1) = 0:969

If we reduce the level to 0.87 we can substitute the third rule by two others:

�3 : (c2 = 3)^(c4 = 1)!(d = 	) with �(�1) = 0:879

�4 : (c2 = 3)^(c3 = 2)!(d = 	) with �(�1) = 0:879

5 Conclusions

Rough sets theory has been conceived under the implicit hypothesis that all ob-

jects in a universe can be evaluated under a given set of attributes. However, it

can be the case that several values are not available for various reasons. In our

paper we introduce two di�erent semantics in order to distinguish such situa-

tions. \Missing values" imply that not available information could always become

available and that in order to make \safe" classi�cations and rules induction we

might consider that such missing values are equal to everything. Tolerance rela-

tions (which are re
exive and symmetric, but not transitive) capture in a formal

way such an approach. \Absent values" imply that not available information

cannot be used in comparing objects and that classi�cation and rules induction

should be performed with the existing information since the absent values could

never become available. Similarity relations (which in our case are re
exive and

transitive, but not symmetric) are introduced in our paper in order to formalize

such an idea. We demonstrate in the paper that our approach always lead to

more informative results with respect to the tolerance relation based approach

(although less safe).

A third approach is also introduced in the paper, as an intermediate position

among the two previously presented. Such an approach is based on the use of a

valued tolerance relation. A valued relation could appear for several reasons not

only because of the non available information and in fact the approach presented



has a more general validity. However in this paper we limit ourselves in discussing

the missing values case. A functional extension of the concepts of upper and lower

approximation is introduced in the paper so that to any subset of the universe

a degree of lower (upper) approximation can be associated. Further on such a

functional extension enables to compute a credibility degree for any rule induced

by the classi�cation. Further research direction include, but are not limited to:

- a further analysis of rules induction properties and algorithms under the non

symmetric similarity relation based approach;

- an analysis of the non-monotonic behaviour of the classi�cation obtained under

the non symmetric similarity relation based approach (what happens if an absent

value becomes available);

- the introduction of other examples of valued tolerance relations, besides the

probability based one introduced as an example in the paper;

- the analysis of the obtained results when the valued tolerance relation obeys

to a precise fuzzy set formalism as for instance possibility distributions.
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