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Preferences

Preferences are “rational” desires.
Preferences are at the basis of any decision aiding activity.
There are no decisions without preferences.
Preferences, Values, Objectives, Desires, Utilities, Beliefs,
...
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Decision Aiding

A client An analyst
A problem situation 〈A,O,S〉

A problem formulation 〈A,V,Π〉
An evaluation model 〈A,D,E ,H,U,R〉

A final recommendation
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Basic information

A: a set of alternatives (enumerative, combinatorial, product
space ...)

D: a set of dimensions (attributes) describing A.
E : the “scales” used for the attributes in D.
H: Preferential Information
U: uncertainties ....
R: algorithms, procedures, protocols etc ...
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What are the problems?

How to learn preferences?
How to model preferences?
How to aggregate preferences?
How to use preferences for recommending?
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Binary relations

�: binary relation on a set (A).
�⊆ A× A or A× P ∪ P × A.
� is reflexive.

What is that?
If x � y stands for x is at least as good as y , then the
asymmetric part of � (�: x � y ∧ ¬(y � x) stands for strict
preference. The symmetric part stands for indifference
(∼1: x � y ∧ y � x) or incomparability
(∼2: ¬(x � y) ∧ ¬(y � x)).
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More binary relations

We can further separate the asymmetric (symmetric) part
in more relations representing hesitation or intensity of
preference.

�=�1 ∪ �2 · · · �n

We can get rid of the symmetric part since any symmetric
relation can be viewed as the union of two asymmetric
relations and the identity.
We can also have valued relations such that:
v(x � y) ∈ [0,1]
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Binary relations properties

Binary relations have specific properties such as:

Irreflexive: ∀x ¬(x � x);
Asymmetric: ∀x , y x � y → ¬(y � x);
Transitive: ∀x , y , z x � y ∧ y � z → x � z;
Ferrers; ∀x , y , z,w x � y ∧ z � w → x � w ∨ z � y ;
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Numbers

x � y ⇔ Φ(x , y) ≥ 0

where:
Φ : A× A 7→ R. Simple case Φ(x , y) = f (x)− f (y); f : A 7→ R

N.B.
Likelihoods can also be expressed under form of binary
relations and their numerical representations (ω1 � ω2: event 1
is likely to occur at least as much as event 2).
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Consider sentences of the type:

I like red shoes.
I do not like brown sugar.
I prefer Obama to McCain.
I do not want tea with milk.
Cost is more important than safety.
I prefer flying to Athens than having a suite at Istanbul.
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What do we learn out of such sentences?

Basic hypotheses about the structure of the evaluation
model.
Binary relations.
Numerical values (exact or imprecise).
Importance Parameters.
Inconsistencies.
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Preference Structures

A preference structure
is a collection of binary relations ∼1, · · · ∼m,�1, · · · �n such
that:

they are pair-disjoint;
∼1 ∪ · · · ∼m ∪ �1 ∪ · · · �n= A× A;
∼i are symmetric and �j are asymmetric;
possibly they are identified by their properties.
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∼1,∼2,� Preference Structures

Independently from the nature of the set A (enumerated,
combinatorial etc.), consider x , y ∈ A as whole elements. Then:

If � is a weak order then:
� is a strict partial order, ∼1 is an equivalence relation and ∼2
is empty.

If � is an interval order then:
� is a partial order of dimension two, ∼1 is not transitive and ∼2
is empty.
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∼1,∼2,�1�2 Preference Structures

If � is a PQI interval order then:
�1 is transitive, �2 is quasi transitive, ∼1 is asymmetrically
transitive and ∼2 is empty.

If � is a pseudo order then:
�1 is transitive, �2 is quasi transitive, ∼1 is non transitive and
∼2 is empty.
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What characterises such structures?

Characteristic Properties
Weak Orders are complete and transitive relations.
Interval Orders are complete and Ferrers relations.

Numerical Representations

w.o. ⇔ ∃f : A 7→ R : x � y ↔ f (x) ≥ f (y)
i.o. ⇔ ∃f ,g : A 7→ R : f (x) > g(x); x � y ↔ f (x) ≥ g(y)
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More about structures

Characteristic Properties
PQI Interval Orders are complete and generalised Ferrers
relations.
Pseudo Orders are coherent bi-orders.

Numerical Representations

PQI i.o. ⇔ ∃f ,g : A 7→ R : f (x) > g(x); x �1 y ↔ g(x) >
f (y); x �2 y ↔ f (x) > f (y) > g(x)
p.o. ⇔ ∃f , t ,g : A 7→ R : f (x) > t(x) > g(x); x �1
y ↔ g(x) > f (y); x �2 y ↔ g(x) > t(y)
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What if A is multi-attribute described?

x = 〈x1 · · · xn〉 y = 〈y1 · · · yn〉

x � y ⇔ Φ([u1(x1) · · · un(n)], [u1(y1) · · · un(yn)] ≥ 0

A special case is when Φ is increasing to its first n arguments
and decreasing to the following n arguments: it then can be an
additive function. See more in conjoint measurement theory.
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What is measuring?

Constructing a function from a set of “objects” to a set of
“measures”.

Objects come from the real world.

Measures come from empirical observations on some attributes
of the objects.

The problem is: how to construct the function out from such
observations?
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Measurement

1 Real objects (x , y , · · · ).
2 Empirical evidence comparing objects (x � y , · · · ).
3 First numerical representation (Φ(x , y) ≥ 0).
4 Repeat observations in a standard sequence

(x ◦ y � z ◦ w).
5 Enhanced numerical representation

(Φ(x , y) = Φ(x)− Φ(y)).
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Example

α1 α2 α3

α1 � α2 � α3

α1 α2 α3
10 8 6
97 32 12
3 2 1

Any of the above could be
a numerical representation of
this empirical evidence.
Ordinal Scale: any increasing
transformation of the numerical
representation is compatible with the EE.
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Further Example

Consider putting together objects and observing:

α1 ◦ α5 > α3 ◦ α4 > α1 ◦ α2 > α5 > α4 > α3 > α2 > α1

Consider now the following numerical representations:

L1 L2 L3
α1 14 10 14
α2 15 91 16
α3 20 92 17
α4 21 93 18
α5 28 99 29

L1, L2 and L3 capture the simple order among α1−5, but L2 fails
to capture the order among the combinations of objects.
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Further Example

NB
For L1 we get that α2 ◦ α3 ∼ α1 ◦ α4
while for L3 we get that α2 ◦ α3 > α1 ◦ α4.
We need to fix a “standard sequence”.

Length

If we fix a “standard” length, a unit of measure, then all objects
will be expressed as multiples of that unit.

Tsoukiàs Preference Handling



Problem Setting
Basics

Preference Learning
Preference Modeling

Preference Measurement
References

Further Example

NB
For L1 we get that α2 ◦ α3 ∼ α1 ◦ α4
while for L3 we get that α2 ◦ α3 > α1 ◦ α4.
We need to fix a “standard sequence”.

Length

If we fix a “standard” length, a unit of measure, then all objects
will be expressed as multiples of that unit.

Tsoukiàs Preference Handling



Problem Setting
Basics

Preference Learning
Preference Modeling

Preference Measurement
References

Scales

Ratio Scales
All proportional transformations (of the type αx) will deliver the
same information. We only fix the unit of measure.

Interval Scales
All affine transformations (of the type αx + β) will deliver the
same information. Besides the unit of measure we fix an origin.
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More complicated

Consider a Multi-attribute space:

X = X1 × ·Xn

to each attribute we associate an ordered set of values:

Xj = 〈x1
j · · · xm

j 〉

An object x will thus be a vector:

x = 〈x l
1 · · · xk

n 〉

Tsoukiàs Preference Handling



Problem Setting
Basics

Preference Learning
Preference Modeling

Preference Measurement
References

Generally speaking ...

x � y

⇐⇒

〈x l
1 · · · xk

n 〉 � 〈y i
1 · · · y

j
n〉

⇐⇒

Φ(f (x l
1 · · · xk

n ), f (y i
1 · · · y

j
n)) ≥ 0
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What that means?

Commuting Clients Services Size Costs
Time Exposure

a 20 70 C 500 1500

a1 25 70+δ1 C 500 1500
a2 25 70+δ1 C 700 1500+δ2

For what value of δ1 a and a1 are indifferent?
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What that means?

Commuting Clients Services Size Costs
Time Exposure

a 20 70 C 500 1500
a1 25 80 C 500 1500

a2 25 80 C 700 1500+δ2

For what value of δ2 a1 and a2 are indifferent?
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For what value of δ2 a1 and a2 are indifferent?

Tsoukiàs Preference Handling



Problem Setting
Basics

Preference Learning
Preference Modeling

Preference Measurement
References

What that means?

Commuting Clients Services Size Costs
Time Exposure

a 20 70 C 500 1500
a1 25 80 C 500 1500
a2 25 80 C 700 1500+δ2

For what value of δ2 a1 and a2 are indifferent?

Tsoukiàs Preference Handling



Problem Setting
Basics

Preference Learning
Preference Modeling

Preference Measurement
References

What that means?

Commuting Clients Services Size Costs
Time Exposure

a 20 70 C 500 1500
a1 25 80 C 500 1500
a2 25 80 C 700 1700

The trade-offs introduced with δ1 and δ2 allow to get
a ∼ a1 ∼ a2
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What do we get?

Standard Sequences

Length: objects having the same length allow to define a unit of
length;

Value: objects being indifferent can be considered as having the
same value and thus allow to define a “unit of value”.

Remark 1: indifference is obtained through trade-offs.
Remark 2: separability among attributes is the minimum
requirement.

Tsoukiàs Preference Handling



Problem Setting
Basics

Preference Learning
Preference Modeling

Preference Measurement
References

What do we get?

Standard Sequences

Length: objects having the same length allow to define a unit of
length;

Value: objects being indifferent can be considered as having the
same value and thus allow to define a “unit of value”.

Remark 1: indifference is obtained through trade-offs.
Remark 2: separability among attributes is the minimum
requirement.

Tsoukiàs Preference Handling



Problem Setting
Basics

Preference Learning
Preference Modeling

Preference Measurement
References

What do we get?

Standard Sequences

Length: objects having the same length allow to define a unit of
length;

Value: objects being indifferent can be considered as having the
same value and thus allow to define a “unit of value”.

Remark 1: indifference is obtained through trade-offs.
Remark 2: separability among attributes is the minimum
requirement.

Tsoukiàs Preference Handling



Problem Setting
Basics

Preference Learning
Preference Modeling

Preference Measurement
References

What do we get?

Standard Sequences

Length: objects having the same length allow to define a unit of
length;

Value: objects being indifferent can be considered as having the
same value and thus allow to define a “unit of value”.

Remark 1: indifference is obtained through trade-offs.
Remark 2: separability among attributes is the minimum
requirement.

Tsoukiàs Preference Handling



Problem Setting
Basics

Preference Learning
Preference Modeling

Preference Measurement
References

The easy case

IF

1 restricted solvability holds;
2 at least three attributes are essential;
3 � is a weak order satisfying the Archimedean condition
∀x , y ∈ R,∃n ∈ N : ny > x .

THEN

x � y ⇔
∑

j

uj(x) ≥
∑

j

uj(y)
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General Usage

The above ideas apply also in

Economics (comparison of bundle of goods);
Decision under uncertainty (comparing consequences
under multiple states of the nature);
Inter-temporal decision (comparing consequences on
several time instances);
Social Fairness (comparing welfare distributions among
individuals).
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