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Abstract

Integer models are of particular interest for applications where predictive models are sup-
posed not only to be accurate but also interpretable to human experts. We introduce a
novel penalty term called Facets whose primary goal is to favour integer weights. Our
theoretical results illustrate the behaviour of the proposed penalty term: for small enough
weights, the Facets matches the L1 penalty norm, and as the weights grow, it approaches
the L2 regulariser. We provide the proximal operator associated with the proposed penalty
term, so that the regularized empirical risk minimiser can be computed e�ciently. We also
introduce the Strongly Convex Facets, and discuss its theoretical properties. Our numer-
ical results show that while achieving the state-of-the-art accuracy, optimisation of a loss
function penalised by the proposed Facets penalty term leads to a model with a significant
number of integer weights.
Keywords: Regularisation, interpretable models, integer models

1. Introduction

The goal of supervised learning is to estimate a model from observations which generalises
as accurately as possible to unseen data. We are interested in interpretable models, and we
focus on linear models. Linear models whose weights are 1) sparse; 2) small ; and 3) integers
are even more preferable for human experts, since these models are easier to interprete.

Traditionally, a machine learning algorithm is cast as an optimisation problem. In a
classification task, one would aim to maximise directly the accuracy of the model, however,
the corresponding loss function, the 0-1 loss, is not convex and its minimisation is intractable
for real-world applications. Therefore, a widely used approach is to relax the optimisation
problem with a surrogate loss, chosen to be convex (or even better: strongly convex, or
smooth), and to bound the 0-1 loss from above. Such an upper bound obtained on the
surrogate loss provides some guarantees on the accuracy.

In the supervised learning scenario, learning models with small parameters or weights,
and also sparse models, is already known to be beneficial, since the compact models overfit
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less. Shrinking parameters of a model is often addressed through regularisation where the
objective function, subject to minimisation, consists of two terms, namely, of a loss term
enforcing accuracy, and of a penalty term which is responsible for sparsity and for the
parameters magnitude. A number of penalty functions have been proposed. The most
known are probably Tikhonov regularization (Hastie et al., 2009) shrinking parameters
towards zero, and Lasso regularization (Tibshirani, 1996) setting a controlled (by a hyper-
parameter) number of weights exactly to zero. A number of penalty terms including various
norms and their combinations have been proposed in the past decade (Hastie et al., 2015).

Our contribution to interpretable models learning is multi-fold:

• We introduce a novel penalty term, called Facets, which favours models with small
integers;

• We consider theoretical properties and optimisation issues of the Facets and Strongly
Convex Facets penalty terms; note that the introduced penalty term does not com-
promise the convexity of the objective function;

• Finally, we illustrate that the proposed method achieves the state-of-the-art results
on real-world data.

The problem of learning interpretable models from data, and specifically compact lin-
ear integer models, has gathered recent interest. We relate our work to three particular
approaches:

• Chevaleyre et al. (2013) consider the problem of maximising accuracy subject to hard
integrity and magnitude constraints, and solve it through rounding schemes. We
believe our soft constraints approach to be more apt at adapting to data and find
more attractive trade-o↵s between accuracy and magnitude of a fully integral model.

• Golovin et al. (2013), where the focus is on the reduction of memory usage and the
processing of massive amounts of data. Their approach focuses on online learning and
is based on randomised rounding and counting, with a diminishing learning rate and
discretisation grid size. They compute a no-regret model stored as a tuple of integers,
with a magnitude increasing as the square root of the number of examples. How-
ever, they are not interested in interpretability, and their model cannot be considered
integral, because of the per-coordinate grid size.

• Ustun and Rudin (2016) describe a loss function expressing a linear trade-o↵ between
sparsity, magnitude and accuracy, over all integral models, then defer the NP-complete
exact minimisation to a MILP solver. In comparison, we propose an actual algorithm
based on convex optimisation to approximately solve a similar problem. We make
use of the huge computational gain to remain agnostic considering the admissible
magnitude vs accuracy trade-o↵ and better explore its Pareto front.

The paper is organised as follows. Section 2 is devoted to notations we use in the paper.
We introduce the Facets penalty term in Section 3. Section 4 is dedicated to theoretical
results and properties of the Facets regularisation. We discuss the optimisation issues in
Section 5. In Section 6 we demonstrate our numerical results. Concluding remarks and
perspectives close the paper.
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2. Preliminaries

We are in the context of supervised learning where a training method has access to n

observations and their labels. In this section, we introduce some notions we use throughout
the paper.

Models. A linear model is a vector w 2 Rm. The integrity of a model is the proportion
of coe�cients wj , j 2 {1, . . . ,m} that are integers. The magnitude of a model is an upper
bound of a norm of w (for an arbitrary norm).

Penalty functions. A penalty function is a nonnegative function ⌦ : Rm ! R which
is added to an objective function for the following reasons: (1) to avoid overfitting of an
objective function `; (2) to ensure parsimony of the model, e.g. to promote sparsity via the
L1 penalty term, and/or to control coe�cients magnitude via the L2 regularisation; (3) in
this contribution, our particular goal is also to enforce integrity of a model via a penalty
term.

Regularised objective. Given two convex functions ` and ⌦, and a positive real number
�, the �-regularised objective is the function ` + �⌦. In the context of the Lagrangian
theory, this formulation can be seen as the soft formulation of the hard constrained problem
minw:⌦(w)k `(w), with a latent correspondence between parameters � and k. It can also
be considered as a convex surrogate objective for the bi-objective minimisation problem
min(`,⌦). From this viewpoint, � is the price regulating the trade-o↵ between ` and ⌦.
Throughout this paper, ` is fixed (e.g. the Ordinary Least Squares loss for regression, or the
log-loss for classification), and we denote w?

�⌦ the unique model minimising the regularised
objective ` + �⌦. Finally, common penalty functions include L1 norm, noted ⌦L1(·) and
the squared L2 norm, noted ⌦L2(·).

Level sets. Given a function � : Rm ! R, and a real number k, we denote B�
k := {w 2

Rm : �(w)  k} the level set of � for value k. Thus, B⌦L1

k is the closed ball for the L1 norm

centred on the origin of radius k, and B⌦L2

k is the closed ball for the L2 norm centred on
the origin of radius k2.

Proximal operators. Given a penalty function ⌦, a positive real number µ and a model
w, the function Rm ! R,v 7! µ⌦(v) + 1

2kv � wk22 is strictly convex and therefore has a
unique minimizer, allowing to define the proximal operator of the function ⌦:

Proxµ⌦ : Rm ! Rm
,w 7! argmin

v2Rm

1

2
kv �wk22 + µ⌦(v). (1)

When ⌦ is separable, i.e. ⌦ : w 7!
Pm

j=1⌦j(wj), computing its proximal operator is
equivalent to finding the intersection between the graphical representation of the subgradient
@⌦j and the line y = (w � x)/µ in the 2-dimensional space. The proximal operators of
some widely-used penalty functions can be found in the literature, e.g., in (Bach et al.,
2012; Bauschke and Combettes, 2017), usually with a focus on norms and sparsity-inducing
functions.
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3. The Facets Penalty Term

In this section, we introduce the Facets regulariser and discuss its properties.
Ideally, in order to obtain integer weights of small L2 norm, the optimisation problem

we should solve is argminw2Zm `(w) + � kwk22. This constrained optimization problem can
be equivalently written in unconstrained form:

arg min
w2Rm

`(w) + �⌦smallint(w),

where ⌦smallint(w) = kwk22 + C(w), and where C(w) = 0, if w 2 C, and C(w) = 1,
otherwise; C = Z, is the domain where the parameters take their values. Unfortunately,
this function is not convex, and classical learning problems where this function appears
are computationally intractable. To make this problem tractable, we will build a convex
approximation of ⌦smallint. A standard way of building a convex approximation of a given
function is to take its lower convex envelope (LCE), defined as the supremum over all convex
functions that lie under that function.

For the sake of simplicity, we will first consider the 1-dimensional case (m = 1). It turns
out that the 1-dimensional LCE of the above non-convex penalty belongs to a wider class
of functions of independent interest, which we call ↵-Facets penalties:

Definition 1 Let ↵ = (↵i)i2N be a sequence of strictly positive integers. The ↵-Facets
penalty in the one-dimensional case is defined as

⌦↵�Facets
1D : w 7!

1X

i=0

↵imax (0, |w|� i) .

We can now show how this penalty relates to the non-convex ⌦smallint function.

Proposition 2 The ↵-Facets penalty function with ↵ = (1, 1, . . .), which we will now refer
to as ⌦Facets

1D , is the LCE of ⌦smallint in 1 dimension.

In the rest of this paper, we will build upon the ⌦Facets
1D penalty. However, as mentioned

earlier, the whole family of ↵-Facets penalties is of high interest: in fact, the following
proposition states that any reasonable convex penalty enforcing integrity must be a ↵-
Facets penalty.

Proposition 3 (Characterisation of the ↵-Facets penalty) A one-dimensional penalty
function ⌦1D satisfies the following properties if and only if it is a ↵-Facets penalty for some
sequence ↵ of strictly positive integers.

1. Nullity. ⌦1D(0) = 0.

2. Even penalty. ⌦1D(w) = ⌦1D(�w) for all w 2 R.

3. Integrality. If the objective function is linear, then adding our penalty always yields
integer weights. More precisely, define F (�) = argminw2R `�(w) + �⌦1D(w) where `�

is the linear objective function w 7! �w. Let D = {� 2 R : card (F (�)) = 1} be the set
of all values � 2 R on which the solution to the minization problem is unique. Then,
the image of D under F is Z.
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Proof (sketch) The if part of the proof is straightforward, the reader can check that
↵-Facets penalties satisfy these conditions. Let us focus on the only-if part. For the sake
of clarity, let ⌦ : R ! R be our 1D penalty function, which is, be definition, convex and
non-negative.Assume ⌦ satisfies the three properties stated in the proposition.

Let us first show that ⌦ is piece-wise linear. Assume that ⌦ is twice di↵erentiable on
an open interval ]a, b[, and ⌦00(x) > 0 for x 2 ]a, b[. Let z 2 ]a, b[. Then, by Taylor’s
theorem on ⌦0, for any y 2 ]a, b[ we have: ⌦0(y) = ⌦0(z)+⌦00(z)(y� z)+ (y� z)o (1). Thus,
⌦0(y) � ⌦0(z) = (y � z) (⌦00(z) + o (1)). Because the o(·) term tends to zero and because
⌦00(z) > 0, there exists ŷ 2 ]a, b[ with |ŷ � z| < 1 such that ⌦0(ŷ)�⌦0(z) 6= 0. Define `ŷ(w) =
�w�⌦0(ŷ) and `z(w) = �w�⌦0(z). Let fŷ(w) = `ŷ(w)+�⌦(w) and fz(w) = `z(w)+�⌦(w).
Clearly, f 0

ŷ(ŷ) = 0 and f
0
z(z) = 0. Because ⌦00(x) > 0 for x 2 ]a, b[, ŷ = argminw fŷ(w) and

z = argminw fz(w), and these minimisers are unique. But because |ŷ � z| < 1, at least one
of these minimisers is not an integer, which contradicts the integrity property. Thus, on
all open intervals, either ⌦ is non twice di↵erentiable, either ⌦00(x) = 0. This caracterises
piecewise linear functions.

Next, let us show that the discontinuities of ⌦0 occur at each integer. If ⌦0 is discon-
tinuous at x then there exists � such that w 7! `�(w) + �⌦(w) is minimised at x and this
minimiser is unique. So the set of discontinuities of ⌦0 is exactly the set of unique minimis-
ers of `�(w) + �⌦(w). Thus, this set of discontinuities is Z. Finally, it is easy to show that
any piecewise linear even convex fonction ⌦, null at zero, such that its set of discontinuities
is precisely Z can be written as ⌦(w) =

P1
i=0 ↵imax (0, |w|� i).

Note that the above proposition provides us with guarantees in the case of linear loss
functions. For general convex losses, no such integrality guarantee can be provided, because
the optimisation problem is known to be NP-hard (Chevaleyre et al., 2013).

Let us now extend the ⌦Facets
1D to the multi-dimensional case:

⌦Facets : w 7!
mX

j=1

⌦Facets
1D (wj).

In the remainder, a few basic properties of this penalty will be useful.

Proposition 4 (Elementary Properties of the Facets Penalty)

1. ⌦Facets
1D : w 7!

R |w|
0 dxedx,

2. The subgradient of ⌦Facets
1D is odd. For w 2 [0,+1), it is given by

@⌦Facets
1D (w) =

8
><

>:

{dwe}, if w 2 (0,+1) \ N;
[w,w + 1], if w 2 N?;

[�1, 1], if w = 0.

(2)

The partial subgradient of ⌦Facets wrt coordinate j is @⌦Facets
j (w) = @⌦Facets

1D (wj).

3. ⌦Facets can be computed in closed form:

⌦Facets
1D (w) =

bwc(bwc+ 1)

2
+ (bwc+ 1)(w � bwc). (3)
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Figure 1: Graphical representations of ⌦Facets. On the left: penalty term ⌦Facets
1D , in the

center: subgradient of ⌦Facets
1D , on the right: level sets of ⌦Facets

2D .

Figure 1 illustrates the function ⌦Facets
1D , and depicts its subgradient @⌦Facets

1D . ⌦2D is the
penalty term for the 2-dimensional case.

4. Properties of the Facets-Regularised Optimal Solution

Here we provide some properties of the model w?
�⌦Facets obtained by minimising the reg-

ularised risk. We discuss its low magnitude, high integrity, and its ability to correctly
represent a learning set, and generalise beyond it. The intuition behind the theoretical
properties is provided by the level sets of ⌦Facets, depicted on Figure 1 on the right.

Indeed, the regularised problem minw2Rm `(w) + �⌦(w) and the constrained problem
minw2B⌦

k
`(w) are tightly related, with a latent correspondence between the parameters �

and k. Therefore, the shape of the level sets B⌦
k tells a lot about the properties of the

minimiser. Precisely, in the case of ⌦Facets:

• The level sets have di↵erent shapes for di↵erent k: while the innermost sets (small
k) are squares, namely, a L1 ball, the outer sets (bigger k) are increasingly refined
approximations of a circle, of a L2 ball. This behaviour is a consequence of the
inhomogeneity of the Facets penalty, and we propose to leverage it via scaling which
we consider further in the paper.

• The level sets are polyhedra — facets. Due to the Karush – Kuhn –Tucker (KKT)
conditions, the minimisers of the constrained problems are likely to be found at one
of the many vertices of the polyhedron, where some of the coordinates are integers –
the same reason that explains why the L1 norm induces sparsity.

4.1. Bounding the Facet Penalty

The Facets term adds a penalty that is stronger than the L1 and the squared L2 norms of
the weight vector: 8w 2 Rm

, ⌦Facets(w) � ⌦L1(w), with equality if and only if kwk1  1,
and 8w 2 Rm

, ⌦Facets(w) � ⌦L2(w), with equality if and only if w = 0. This leads to
the following inclusions for level sets: 8k � 0,BFacets

k ✓ BL1
k and BFacets

k ✓ BL2
k . Moreover,

elementary calculus yields that, for all models w 2 Rm :

kwk1 + kwk22
2

 ⌦Facets(w) 
kwk1 + kwk22 + m

4

2
. (4)
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4.2. Learnability in the PAC Setting

What is the impact of the Facet penalty on the sample complexity of our linear models ? We
can exploit the fact that the Facet penalty is upper bounded by the L1 and the squared L2

norms to answer this question. For this purpose, we will rely on the Rademacher complexity.
Recall the definition of the Rademacher complexity of a function class F :

Rn(F) = E
"
supf2F

1

n

nX

i=1

f(xi)✏i

#
, (5)

where the ✏i are random variables that take values in {�1,+1} with equal probability. The
monotonicity of the Rademacher complexity ensures that for two function classes F1 and
F2, if F1 ⇢ F2 then Rn(F1)  Rn(F2).

As a consequence of the results on the parameters magnitude, for a given radius k � 0,
the Rademacher complexity of linear predictors with small magnitude weight vectors BL1

k ,

BL2
k , BFacets

k satisfy:

Rn(BFacets
k )  Rn(BL1

k )  X1k

r
2 log(m)

n
, (6)

Rn(BFacets
k )  Rn(BL2

k )  X2

r
k

n
. (7)

Where X2 and X1 refer to the maximum L2 and L1 norm of the examples in the dataset.
Finally, the same risk bounds which apply to linear classifiers of bounded L1 and L2 norms
both apply in our case (e.g. (Kakade et al., 2009)).

4.3. Integrity

Scaling the discretization grid. We remark that, for a classification problem, the model
is invariant by scaling, i.e. for all positive �, the classifiers x 7! sign(w · x) and x 7!
sign(�w ·x) are identical, even though they might be treated di↵erently by the loss function
` and the penalty ⌦. Therefore, we consider two alternative versions of the regularized
objective:

w
?
�,� = argmin

w
`(�w) + �⌦(w); (8)

bw?
�,� = argmin

bw
`(bw) + �⌦(

1

�
bw). (9)

Because of the KKT conditions, we expect the solution of problem 8 to have a high
integrity, i.e. w

? should have most of its coordinate in Z, and bw? should have most of its
coordinates in �Z. Therefore, � can be interpreted as the unit scale of the discretization
grid of the model.

In our soft computing approach, we treat �, � as two distinct hyper-parameters, that
we set by performing a cross-validated grid search. These two hyperparameters allow to
control separately the size and the shape of the level set of the penalty function; in turn,
this should allow us to reach simultaneously models with high accuracy, high integrity and
low magnitude. This contrasts to related works:
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• in (Golovin et al., 2013), similar parameters are used and decay according to an
adaptive, per-coordinate schedule;

• in (Ustun and Rudin, 2016), ` is the 0-1 loss and ⌦ the k ·k0 semi-norm, both invariant
to scaling, and � is a parameter fixed beforehand to reflect the price of sparsity;

• usual penalties, e.g. L1, L2, elastic net, are absolutely homogenous, i.e. �⌦( 1� bw) =
�
�⌦(bw). Thus, the parameters � and � are redundant.

5. E�cient Minimisation of the Facets-Regularised Risk

In this section, we discuss the optimisation issues of the Facets penalty term.
Regularised risk minimisers are theoretical objects that we cannot compute directly,

but rather try to approximate through an optimisation algorithm, that yields a sequence
hwtit2T of iterates. While magnitude and accuracy are convex and continuous properties
of the parameter w, this is not the case for integrity. Therefore, even in the case of a fully
integral limit w

?
�⌦Facets 2 Zm, it is quite possible that the iterates have low, or even zero,

integrity. Therefore, it is of utmost importance to select carefully the algorithm performing
the optimisation.

We consider the operator splitting approach, widely used for non-smooth optimisation
and already known to favour sparsity under sparsity-inducing regularisation. We give a brief
overview of the Proximal Gradient Descent algorithm, and we give a closed-form expression
of the proximity operator of the Facets penalty allowing its e�cient implementation. We
also introduce Strongly Convex Facets that add elasticity, similarly to the Elastic Net
penalty (Zou and Hastie, 2005), facilitating both the theoretical analysis of the algorithm
and its performance.

5.1. Proximal Gradient Descent

Proximal algorithms (sometimes called operator splitting methods) (Moreau, 1965; Parikh
et al., 2014) were developed to minimise an objective function ` + ⌦, where ` is a smooth
di↵erentiable function with Lipschitz-continuous gradient, while ⌦ is a non-di↵erentiable
function. Iterative Shrinkage-Thresholding Algorithm (ISTA), introduced in (Daubechies
et al., 2004; Beck and Teboulle, 2009), which is a Proximal Gradient Descent algorithm, is
a two-step fixed-point scheme à la Picard. It is based on the assumption that, even though
the function ⌦ might be non-di↵erentiable, the optimisation problem defining its proximity
operator can be solved e�ciently. At each time step t 2 T of ISTA, given a step size ⌧ t > 0:

1. the smooth function ` is linearised around w
t so `(w) ⇡ `(wt) + (w �w

t) ·r`(wt),
and optimised by a forward gradient step:

w
t+ 1

2  w
t � ⌧r`(w); (10)

2. the non-smooth ⌦ is augmented by a proximal regularisation term proportional to
kw�w

tk2, in order to i) keep the update close to the previous point, where the linear
approximation of ` is reasonable; ii) to ensure that the regularisation term is strictly
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convex and smooth; and iii) to ensure the descent of wt towards the minimiser of
`+⌦. The optimisation of this term is done via a backward (implicit) proximal step:

w
t+1  Prox⌧⌦(w

t+ 1
2 ). (11)

5.2. Proximal Operator of the Facets Penalty

Fortunately, the proximal operator of ⌦Facets can also be e�ciently computed in a closed
form.

Proposition 5 For all µ 2 [0,+1[, for all w 2 Rm, Proxµ⌦Facets(w) = (sign(w1)·v1, . . . , sign(wm)·
vm), j 2 {1, . . . ,m}:

vj =

�
|wj |
µ+ 1

⌫
+

✓
|wj |� (µ+ 1)

�
|wj |
µ+ 1

⌫
� µ

◆

+

. (12)

Proof First, as ⌦Facets is separable, so is its proximity operator, and we only need to
solve a R ! R optimisation problem. Second, as ⌦Facets

1D is even, its proximal operator
is odd. Third, as, for any nonnegative x, ⌦Facets

i (x + 1) = ⌦Facets
1D (x) + 1, we have that

y = Proxµ⌦Facets
1D

(x) () y + 1 + µ = Proxµ⌦Facets
1D

(x + 1), so the curve representing

Proxµ⌦Facets
1D

in the half-plane x � 0 is invariant by translation of vector (1 + µ, 1). Finally,

it is straightforward to check that, for x 2 [0, 1 + µ[, Proxµ⌦Facets
1D

is the soft thresholding

operator x 7! (x� µ)+.

Figure 2: Proximity operators of penalty
functions: ⌦L1

1D (in orange), ⌦L2
1D (in

green), and ⌦Facets
1D (in blue).

Figure 2 compares the proximity operators
of ⌦Facets, ⌦L1 , and ⌦L2 1. The curve represent-
ing Proxµ⌦Facets

1D
follows the general trend given

by Prox
µ⌦

L2
1D
, which is a straight line with slope

1
1+µ , but instead of a constant slope, it displays
a plateau of width µ followed by a 45 degrees
slope where �x = �y = 1, what is identical to
the behaviour of Prox

µ⌦
L1
1D

between 0 and 1+µ.

5.3. Strongly Convex Facets

The Facets penalty is neither strongly, nor
strictly convex, as a result of its locally constant
subgradient. This is a disadvantage, since it pro-
vokes a number of optimisation problems, such
as absence of unique solution, procedural regularity violations, slow convergence rate, etc.

1. Interestingly, the same functions and diagrams appear in (Hastie et al., 2009), without any reference

to proximity operators. Soft thresholding and shrinkage appear as the modification of a regression

problem penalised by ordinary least squares, when adding respectively L1 and L2 penalisation, when the

observation matrix is orthogonal.
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In order to enforce the strong convexity of the penalty, we tweak the subgradient of the
Facets penalty by adding a separable correcting term ⌦corr, so that, for w � 0,

@⌦corr
1D (w) = (w � bwc) =

(
0, if w 2 Z;
w + 1� dwe, otherwise.

(13)

Hence, ⌦corr = ⌦L2 + ⌦L1 � ⌦Facets and, for 0 < ✏ < 1, the Strongly Convex Facets (SCF)
function defined by

⌦SCF✏ := ⌦Facets + ✏⌦corr = (1� ✏)⌦Facets + ✏(⌦L1 + ⌦L2) (14)

is symmetric, null at 0, and ✏-strongly convex.
The proximity operator of this modified penalty can be e�ciently computed as follows:

���Proxµ⌦SCF✏
1D

(w)
��� = bac+min

✓
1 + µ

1 + µ✏
(a� bac), 1

◆
,

with a =

✓
|w|� µ

1 + µ

◆

+

. (15)

The correcting term modifies the proximity operator of the Facets penalty in the fol-
lowing manner: the width of the plateaus (except the one around zero) is shortened by a
length µ✏, while the width of the slopes is increased by µ✏, and the resulting operator is
now conveniently (1 + µ✏)�1

< 1 Lipschitz continuous2.
Strict convexity entails the uniqueness of the minimiser of the regularised objective. In

turn, this property provides resilience to potential correlations between features.

Scaling. To e�ciently solve the empirical risk minimisation problem 9, we need to com-

pute the proximity operator of a scaled penalty ⌦
⇣

·
�

⌘
. Fortunately, scaling interacts

smoothly with proximal calculus (see e.g. (Bauschke and Combettes, 2017), proposition
24.8):

Prox
µ⌦

⇣
·
�

⌘ = � Prox µ
�2

⌦

✓
·
�

◆
. (16)

In the cases of ⌦Facets and ⌦SCF✏ , �-scaling simultaneously divides the length of the
plateau by �, and multiplies both the width and height of the slope by �.

5.4. Computational E�ciency

Strong convexity leads to computational benefits.

Proposition 6 When applied to the Strongly Convex Facets regulariser, the proximal gra-
dient algorithm enjoys linear convergence, i.e.

kwt � w
?
�⌦SCF✏ |  (�⌧✏+ 1)�tkw0 � w

?
�⌦SCF✏k. (17)

2. This is indeed a particular case of a more general result, found in e.g. (Bauschke and Combettes,

2017), tying strongly convex regularisation and shrinkage: a ↵-strongly convex function has a ↵-strongly
monotone subgradient, and, therefore, its proximity operator is Lipschitz continuous with constant (µ↵+
1)

�1 2]0, 1[.
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A precise (and convoluted) demonstration can be found in (Bauschke and Combettes,
2017), example 28.12. It can be briefly summarised as follows:

• the forward gradient step w 7! w�⌧r`(w) is non-expansive when r` is 2/⌧ -Lipschitz
continuous;

• the backward proximal step Prox�⌧⌦EF
✏

is a (�⌧✏+ 1)�1-contraction.

Linear convergence follows from the Banach-Picard fixed-point theorem applied to the
forward-backward operator consisting in alternating these two steps.

This fast convergence should be compared to the much more modest performance
achieved by PGD/ISTA in the general case, which is O(t�1) (or O(t�2) for the Nesterov-
accelerated version FISTA) (Beck and Teboulle, 2009).

5.5. Regularisation Path

Strong convexity of the penalty leads to a proper optimisation problem3. We can therefore
define the regularisation path RP as the function mapping hyper-parameters to the (unique)
minimiser of the regularised objective:

RP✏ : (�, �) 7! w
?
� scaled�(⌦SCF✏ ). (18)

The hyperparameters provide smooth control over the selected model.

Proposition 7 RP✏ is continuous over ]0,+1[⇥]0,+1[.

Proof Our argument relies on the fixed-point scheme described by equations (10) and (11).
For any positive real numbers �, �, the function F : Rm⇥ [�,+1[⇥]0, �]! Rm

, (wt
,�, �) 7!

w
t+1 is both

• continuous in (wt
,�, �), as the gradient step (eq. 10) is continuous, since ` is smooth;

and the proximal step (eq. 11) is continuous because of the specific form of Proxµ⌦�,� ;

• uniformly k-Lipschitz w.r.t. w
t, independently of the values of � and �, with k =

1/(1 + (�✏)/�2) < 1.

Therefore, the limit w? of the fixed-point scheme depends continuously on the parameters
(�, �).

Acceleration of the Optimisation Procedure. An optimal step size is essential to
accelerate the optimisation procedure, and a number of schemes are used to find an optimal
sequence of ⌧ t governing the proximity term:

• an optimal choice is to let ⌧
t be the Hessian matrix of the objective function at

w
t. In this case, the function has to be twice di↵erentiable. Although this choice

leads to a faster convergence of the proximal algorithm, it also demands much more
computations at each iteration.

3. Contrast this clean-cut situation with the convoluted discussion about ‘having a single solution when

the columns of the observation matrix are in general position’ surrounding the Lasso regularisation.
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Figure 3: Mammography data set. Variations of the objectives as a function of the hyper-
parameters (shape and strength of the Facets regulariser). On the left: accuracy, in the
center: integrity, on the right: the regularisation path.

• on the other side of the spectrum, it is possible to let ⌧
t be a scalar constant, with

convergence guarantees for the case where it is bigger than a Lipschitz constant of the
gradient of the objective function. Exactly this option is implemented in the ISTA
algorithm.

• ⌧
t can be chosen scalar, but regularly updated. Beck and Teboulle (2009) propose an

adaptive strategy consisting in choosing ⌧
t just big enough to ensure that the update

from w
t to w

t+1 is indeed a descent step. McMahan and Streeter (2010) also propose
a learning rate which is an update per coordinate, decreasing in magnitude.

The ISTA is not a very fast algorithm, it requires to compute the full gradient of the
objective function at each time step, and its convergence towards the minimizer of the
function is in t

�1. Two types of acceleration techniques are widely used:

Stochastic gradient: Instead of computing the full gradient of the function, an unbiased
estimation of it, e.g. by line sampling, Online Gradient Descent, yielding the FTRL-
Proximal algorithm (McMahan et al., 2013; McMahan, 2017), or column sampling à
la Coordinate Descent can be used.

The Nesterov’s trick: Instead of updating the parameters directly by the proximity op-
erator of the gradient step, interpret this new value as a direction only, and find an
update along this direction (Nesterov, 2013). This leads to a t

�2 rate of convergence.
However, as integrity is not a convex property of the parameters, it might su↵er from
the interpolation step.

6. Experiments

We run the experiments on 8 publicly available data sets (all downloadable from the UCI
Machine Learning Repository): Mammography, Bankruptcy, Breast Cancer, Haberman,
Heart Disease, Mushrooms, Spam, and Adult. All the hyper-parameters, µ, ✏, and all other
hyper-parameters are chosen by cross-validation, ✏ is fixed to 0.01, so that the impact of
the L1 and L2 penalty terms were minimal.

To fix the hyper-parameters, we apply an extensive grid search over (�, �). As we want
to focus on the trade-o↵ between � and �, we introduce ↵ := �/�, that should govern
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Data Chev. Golo. SLIM Lasso Ridge Facets
Adult 0.75 0.77 0.82 0.82 0.82 0.70
Bank 0.98 0.97 0.99 0.99 0.99 0.99

Breast 0.94 0.95 0.97 0.97 0.97 0.97

Haberman 0.75 0.71 0.71 0.58 0.63 0.75

Heart 0.68 0.67 0.83 0.85 0.85 0.85

Mammo 0.66 0.60 0.81 0.80 0.81 0.80

Mushooms 0.81 0.99 1 1 0.98 0.92
Spam 0.86 0.88 0.93 0.90 0.74 0.89

Table 1: Mean test accuracy from 10-fold CV. Integral models are in italics.

Data grid points null integral optimal
Adult 2400 600 122 5
Bank 2400 300 522 14
Breast 2400 400 458 7

Haberman 2400 800 606 9
Heart 2400 500 101 7

Mammo 2400 500 236 23
Mushrooms 2400 400 34 1

Spam 2400 600 45 1

Table 2: Statistics for Facets grid search.

the size of the Facets regulariser and � := �/�
2 which should control its shape. Table 1

illustrates the results of these experiments. Performance is rather homogeneous over the
grid — as long as the estimated model is not null, which happens as soon as regularisation
is too strong — while integrity is not, e.g., for the Mammography data we retrieve 236 fully
integral models, 23 achieve maximal accuracy (equal to the one achieved by non-integral
models). These numbers can be found in Table 2. The obtained accuracy is in line with
the state-of-the-art techniques, SLIM (Ustun and Rudin, 2016) for integral models, L1,
or L2 regularisation, and much better than our implementation of the Chevaleyre’s and
Golovin’s approaches. We report the results obtained on the seven other public datasets
reported in (Ustun and Rudin, 2016) (Table 6 pp 26-27) in Table 1, and we highlight the
ones where Facets obtains results within the error margin of the best accuracy. Table 1
seems to indicate that, in the case where Facets seems to fail to deliver an accurate model
(i.e. Adult, Mushroom and to some extent Spambase), the grid search did not yield many
integral or optimal models.

Figure 3 on the left, illustrates the accuracy on Mammography data set. Figure 3 in
the center shows integrity (the mean values of 10-fold CV) obtained on Mammography, and
on the same figure on the right we plot the values of the coe�cients as a function of the
parameters of the Mammography data set, for a 24 ⇥ 100 grid. We have noticed that the
Facets running time is comparable to the one of the Lasso (it depends on the optimisation
method used but we focused on the proximal gradient descent in our paper). The storage
cost is more similar to the Elastic Net.
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7. Discussion: Why Small Integer Weights?

Models with small integer weights have several clear advantages. We mention some of them
below.

• Accuracy and prevention of overfitting. The importance to control the magnitude of
the parameters is well explained in (Kakade et al., 2009), through the upper bound
on the Rademacher complexity of the hypothesis class. In the same vein, favouring
(small) integers prevents a learning algorithm from unnecessarily fine-grained solu-
tions.

• Reduced memory footprint. Small integers take little RAM. This is the motivation
behind the Google’s results described in (Golovin et al., 2013; McMahan et al., 2013).
The aim is to learn simple prediction models that can be replicated on highly dis-
tributed systems, and that require very little unitary bandwidth to process billions of
requests.

• Procedural regularity and user empowerment. Sparse linear models with small inte-
gers can be easily used to make quick predictions by human experts, without comput-
ers. Such models are transparent for users, and can be e�ciently used in criminalis-
tics (Rudin et al., 2019), and medicine (Ustun and Rudin, 2016).

• Sparsity and interpretability. Favouring integrity can be seen as an instance of struc-
tured risk minimisation (Vapnik, 1990). This intuition is made more explicit in (Be-
lahcene et al., 2019), where the positive integer weights of a linear model are inter-
preted as a number of repetitions of premises of a ceteris paribus reasoning, similarly
to the coe�cients mentioned by Benjamin Franklin in his Moral Algebra. Integrity is
a requirement for interpretability, while magnitude is a proxy for simplicity.

• Explainable AI. There exists theoretical and practical importance to be able to explain
power indices, such as the Shapley’s index, in order to interpret the importance of
a feature. To illustrate this issue, consider a linear model with three features taking
values in {0, 1}, with the corresponding weights w1 = w2 = 0.49, and w3 = 0.02,
and an intercept equal to �0.5. One could conclude that features 1 and 2 are far
more important than feature 3. In a game-theoretic approach, one considers various
combinations of features. It then becomes clear that this model is equivalent to the
decision rule “at least two features present”. While magnitude alone does not help
(consider dividing the weights by 100), nor integrity (consider multiplying the weights
by 100), their cumulative e↵ect could lead to a model with weights w1 = w2 = w3 = 1,
and an intercept of �2, that faithfully reflects the respective influence of each feature.

• Knowledge discovery. Very small integers can be directly interpreted, such as 0/1 –
presence/absence, or 1/� 1/0 – friend/foe/neutral, and to reveal biologically relevant
relationships in complex ecosystems.
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8. Conclusion

We proposed a novel principled method to learn models with integer weights via soft con-
straints. We introduced a new penalty term called Facets. Our main theoretical results
provide some theoretical foundations for our approach.

The main claim of our contribution is that the novel Facets penalisation can be used to
e�ciently learn sparse linear models with small integer weights.

The numerical experiments – and a detailed study of variations of the accuracy and
integrity, as well as the regularisation path, in a real-world medical application – illustrate
practical e�ciency of the proposed method. Currently we challenge to accelerate and to
increase the stability of the optimisation procedure. Another important research direction
is to apply our novel methodology to real hospital data, and to construct real medical scores
which can be integrated into clinical routines.
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