Result table

This table was generated on 2025-11-24 at 03:45. See more results here. See last results here.

results
project_namegroup_namehostnamestatustimetime_per_image_msacc_natacc_pgdlinfacc_pgdl2aggerror_msg
BestOf2023-1
profs
upnquick
Success
172.73
8.64
62.5
70.27
70.78
141.05
None
BestOf2024-1
profs
upnquick
Success
2603.47
130.17
52.5
51.86
63.57
115.43
None
BestOfMiles
profs
upnquick
Success
5188.41
259.42
70.0
51.27
63.15
114.42
None
BestOf2024-2
profs
coktailjet
Success
1159.73
57.99
75.0
51.98
59.69
111.67
None
troublemakers
Master-IASD
coktailjet
Success
163.66
8.18
75.0
48.51
54.98
103.49
None
exocet
Master-IASD
upnquick
Success
737.57
36.88
90.0
41.33
58.2
99.53
None
noeyedeer
Master-IASD
upnquick
Success
884.12
44.21
68.75
39.66
55.05
94.71
None
BestOf2023-2
profs
coktailjet
Success
113.04
5.65
81.25
40.99
53.54
94.53
None
ciclose-10
Master-IASD
coktailjet
Success
69.74
3.49
50.0
28.94
35.07
64.01
None
attack_mesonet
Master-IASD
upnquick
Success
81.76
4.09
68.75
25.66
32.91
58.57
None
attaquedestitans
Master-IASD
coktailjet
Success
71.72
3.59
62.5
18.65
38.41
57.06
None
invisible_attack
Master-IASD
coktailjet
Success
77.81
3.89
43.75
27.3
29.71
57.01
None
attackonpixels
Master-IASD
coktailjet
Success
71.99
3.6
62.5
6.05
25.14
31.19
None
jogabonito
Master-IASD
coktailjet
Success
68.42
3.42
50.0
6.05
25.13
31.18
None
attaqueoudefense
Master-IASD
coktailjet
Success
74.32
3.72
43.75
6.03
25.14
31.17
None
neural-nightmare
Master-IASD
upnquick
Success
126.27
6.31
56.25
5.99
25.17
31.16
None
harissa
Master-IASD
upnquick
Success
94.57
4.73
43.75
6.03
25.12
31.15
None
madraf
Master-IASD
coktailjet
Success
68.96
3.45
37.5
6.02
25.13
31.15
None
base_model
profs
coktailjet
Success
112.99
5.65
50.0
6.03
25.12
31.15
None
counter_attack
Master-IASD
upnquick
Success
95.44
4.77
62.5
6.02
25.12
31.14
None
team_joie
Master-IASD
coktailjet
Success
75.98
3.8
43.75
6.0
25.13
31.13
None
blast_attack
Master-IASD
coktailjet
Success
73.05
3.65
62.5
6.01
25.11
31.12
None
the-advengers
Master-IASD
coktailjet
Success
70.11
3.51
43.75
5.98
25.14
31.12
None
nyc
Master-IASD
coktailjet
Success
72.99
3.65
43.75
6.01
25.11
31.12
None
attackonnetworks
Master-IASD
upnquick
Success
80.12
4.01
56.25
5.99
25.12
31.11
None
attackus
Master-IASD
upnquick
Success
79.08
3.95
56.25
5.98
25.12
31.1
None
best_defense_is_attack
Master-IASD
coktailjet
Success
70.18
3.51
62.5
6.0
25.08
31.08
None
attack-of-babrumen
Master-IASD
coktailjet
Error
0
0
0
0
0
0
RuntimeError: Error(s) in loading state_dict for Net: Missing key(s) in state_dict: "fc1_stoch.mu.weight", "fc1_stoch.mu.bias", "fc1_stoch.sigma_pre_softplus.weight", "fc1_stoch.sigma_pre_softplus.bias", "fc2_stoch.mu.weight", "fc2_stoch.mu.bias", "fc2_stoch.sigma_pre_softplus.weight", "fc2_stoch.sigma_pre_softplus.bias".
jean-ponce
Master-IASD
coktailjet
Error
0
0
0
0
0
0
ModuleNotFoundError: No module named 'kornia'
the-taithon-canon
Master-IASD
coktailjet
Error
0
0
0
0
0
0
RuntimeError: Error(s) in loading state_dict for Net: Missing key(s) in state_dict: "backbone.bn1.weight", "backbone.bn1.bias", "backbone.bn1.running_mean", "backbone.bn1.running_var", "backbone.layer2.0.downsample.0.weight", "backbone.layer2.0.downsample.1.weight", "backbone.layer2.0.downsample.1.bias", "backbone.layer2.0.downsample.1.running_mean", "backbone.layer2.0.downsample.1.running_var", "backbone.layer3.0.downsample.0.weight", "backbone.layer3.0.downsample.1.weight", "backbone.layer3.0.downsample.1.bias", "backbone.layer3.0.downsample.1.running_mean", "backbone.layer3.0.downsample.1.running_var", "backbone.layer4.0.downsample.0.weight", "backbone.layer4.0.downsample.1.weight", "backbone.layer4.0.downsample.1.bias", "backbone.layer4.0.downsample.1.running_mean", "backbone.layer4.0.downsample.1.running_var", "backbone.fc.weight", "backbone.fc.bias". Unexpected key(s) in state_dict: "backbone.linear.weight", "backbone.linear.bias", "backbone.layer2.0.shortcut.0.weight", "backbone.layer3.0.shortcut.0.weight", "backbone.layer4.0.shortcut.0.weight". size mismatch for backbone.layer2.0.bn1.weight: copying a param with shape torch.Size([64]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for backbone.layer2.0.bn1.bias: copying a param with shape torch.Size([64]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for backbone.layer2.0.bn1.running_mean: copying a param with shape torch.Size([64]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for backbone.layer2.0.bn1.running_var: copying a param with shape torch.Size([64]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for backbone.layer3.0.bn1.weight: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([256]). size mismatch for backbone.layer3.0.bn1.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([256]). size mismatch for backbone.layer3.0.bn1.running_mean: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([256]). size mismatch for backbone.layer3.0.bn1.running_var: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([256]). size mismatch for backbone.layer4.0.bn1.weight: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([512]). size mismatch for backbone.layer4.0.bn1.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([512]). size mismatch for backbone.layer4.0.bn1.running_mean: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([512]). size mismatch for backbone.layer4.0.bn1.running_var: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([512]).

Plots