Result table

This table was generated on 2025-11-27 at 06:34. See more results here. See last results here.

results
project_namegroup_namehostnamestatustimetime_per_image_msacc_natacc_pgdlinfacc_pgdl2aggerror_msg
BestOf2023-1
profs
upnquick
Success
191.42
9.57
75.0
70.2
70.81
141.01
None
BestOf2024-1
profs
upnquick
Success
2905.07
145.25
62.5
51.63
63.72
115.35
None
the-taithon-canon
Master-IASD
upnquick
Success
1222.61
61.13
68.75
49.17
65.54
114.71
None
BestOfMiles
profs
upnquick
Success
5567.04
278.35
73.75
51.51
63.13
114.64
None
BestOf2024-2
profs
coktailjet
Success
1157.59
57.88
81.25
52.12
59.58
111.7
None
exocet
Master-IASD
upnquick
Success
819.18
40.96
75.0
40.02
55.24
95.26
None
neural-nightmare
Master-IASD
upnquick
Success
833.14
41.66
62.5
41.84
53.08
94.92
None
BestOf2023-2
profs
coktailjet
Success
113.9
5.7
62.5
40.96
53.42
94.38
None
noeyedeer
Master-IASD
coktailjet
Success
10458.2
522.91
81.25
39.27
53.17
92.44
None
jean-ponce
Master-IASD
coktailjet
Success
7386.85
369.34
68.75
31.28
55.65
86.93
None
attack-of-babrumen
Master-IASD
coktailjet
Success
95.42
4.77
55.0
34.94
46.25
81.18
None
invisible_attack
Master-IASD
coktailjet
Success
5166.24
258.31
75.0
31.53
47.38
78.91
None
best_defense_is_attack
Master-IASD
coktailjet
Success
72.54
3.63
50.0
29.11
38.15
67.26
None
ciclose-10
Master-IASD
upnquick
Success
109.95
5.5
50.0
28.92
35.04
63.96
None
attack_mesonet
Master-IASD
upnquick
Success
84.37
4.22
50.0
25.68
32.93
58.61
None
attaquedestitans
Master-IASD
coktailjet
Success
73.77
3.69
68.75
18.67
38.4
57.07
None
attackonpixels
Master-IASD
coktailjet
Success
78.57
3.93
60.0
11.15
28.03
39.18
None
rattataque
Master-IASD
upnquick
Success
132.59
6.63
56.25
6.03
25.15
31.18
None
base_model
profs
coktailjet
Success
110.48
5.52
81.25
6.06
25.12
31.18
None
attaqueoudefense
Master-IASD
coktailjet
Success
72.22
3.61
43.75
6.04
25.13
31.17
None
attackus
Master-IASD
upnquick
Success
83.92
4.2
37.5
6.04
25.12
31.16
None
gradient-hackers
Master-IASD
coktailjet
Success
77.07
3.85
43.75
6.05
25.09
31.14
None
madraf
Master-IASD
upnquick
Success
151.78
7.59
56.25
5.99
25.14
31.13
None
nyc
Master-IASD
upnquick
Success
141.86
7.09
62.5
5.98
25.15
31.13
None
the-advengers
Master-IASD
upnquick
Success
132.88
6.64
75.0
6.0
25.13
31.13
None
jogabonito
Master-IASD
coktailjet
Success
98.59
4.93
25.0
6.0
25.12
31.12
None
attackonnetworks
Master-IASD
upnquick
Success
83.93
4.2
43.75
6.0
25.11
31.11
None
blast_attack
Master-IASD
upnquick
Success
109.46
5.47
37.5
5.98
25.11
31.09
None
counter_attack
Master-IASD
upnquick
Error
0
0
0
0
0
0
ModuleNotFoundError: No module named 'pandas'
harissa
Master-IASD
coktailjet
Error
0
0
0
0
0
0
FileNotFoundError: [Errno 2] No such file or directory: '/home/lamsade/testplatform/test-platform-a3/repos/Master-IASD/harissa/models/default_model.pth'
team_joie
Master-IASD
upnquick
Error
0
0
0
0
0
0
AttributeError: module 'model' has no attribute 'Net'
troublemakers
Master-IASD
upnquick
Error
0
0
0
0
0
0
RuntimeError: Error(s) in loading state_dict for Net: Missing key(s) in state_dict: "backbone.conv1.weight", "backbone.block1.layer.0.bn1.weight", "backbone.block1.layer.0.bn1.bias", "backbone.block1.layer.0.bn1.running_mean", "backbone.block1.layer.0.bn1.running_var", "backbone.block1.layer.0.conv1.weight", "backbone.block1.layer.0.bn2.weight", "backbone.block1.layer.0.bn2.bias", "backbone.block1.layer.0.bn2.running_mean", "backbone.block1.layer.0.bn2.running_var", "backbone.block1.layer.0.conv2.weight", "backbone.block1.layer.0.shortcut.weight", "backbone.block1.layer.1.bn1.weight", "backbone.block1.layer.1.bn1.bias", "backbone.block1.layer.1.bn1.running_mean", "backbone.block1.layer.1.bn1.running_var", "backbone.block1.layer.1.conv1.weight", "backbone.block1.layer.1.bn2.weight", "backbone.block1.layer.1.bn2.bias", "backbone.block1.layer.1.bn2.running_mean", "backbone.block1.layer.1.bn2.running_var", "backbone.block1.layer.1.conv2.weight", "backbone.block1.layer.2.bn1.weight", "backbone.block1.layer.2.bn1.bias", "backbone.block1.layer.2.bn1.running_mean", "backbone.block1.layer.2.bn1.running_var", "backbone.block1.layer.2.conv1.weight", "backbone.block1.layer.2.bn2.weight", "backbone.block1.layer.2.bn2.bias", "backbone.block1.layer.2.bn2.running_mean", "backbone.block1.layer.2.bn2.running_var", "backbone.block1.layer.2.conv2.weight", "backbone.block1.layer.3.bn1.weight", "backbone.block1.layer.3.bn1.bias", "backbone.block1.layer.3.bn1.running_mean", "backbone.block1.layer.3.bn1.running_var", "backbone.block1.layer.3.conv1.weight", "backbone.block1.layer.3.bn2.weight", "backbone.block1.layer.3.bn2.bias", "backbone.block1.layer.3.bn2.running_mean", "backbone.block1.layer.3.bn2.running_var", "backbone.block1.layer.3.conv2.weight", "backbone.block2.layer.0.bn1.weight", "backbone.block2.layer.0.bn1.bias", "backbone.block2.layer.0.bn1.running_mean", "backbone.block2.layer.0.bn1.running_var", "backbone.block2.layer.0.conv1.weight", "backbone.block2.layer.0.bn2.weight", "backbone.block2.layer.0.bn2.bias", "backbone.block2.layer.0.bn2.running_mean", "backbone.block2.layer.0.bn2.running_var", "backbone.block2.layer.0.conv2.weight", "backbone.block2.layer.0.shortcut.weight", "backbone.block2.layer.1.bn1.weight", "backbone.block2.layer.1.bn1.bias", "backbone.block2.layer.1.bn1.running_mean", "backbone.block2.layer.1.bn1.running_var", "backbone.block2.layer.1.conv1.weight", "backbone.block2.layer.1.bn2.weight", "backbone.block2.layer.1.bn2.bias", "backbone.block2.layer.1.bn2.running_mean", "backbone.block2.layer.1.bn2.running_var", "backbone.block2.layer.1.conv2.weight", "backbone.block2.layer.2.bn1.weight", "backbone.block2.layer.2.bn1.bias", "backbone.block2.layer.2.bn1.running_mean", "backbone.block2.layer.2.bn1.running_var", "backbone.block2.layer.2.conv1.weight", "backbone.block2.layer.2.bn2.weight", "backbone.block2.layer.2.bn2.bias", "backbone.block2.layer.2.bn2.running_mean", "backbone.block2.layer.2.bn2.running_var", "backbone.block2.layer.2.conv2.weight", "backbone.block2.layer.3.bn1.weight", "backbone.block2.layer.3.bn1.bias", "backbone.block2.layer.3.bn1.running_mean", "backbone.block2.layer.3.bn1.running_var", "backbone.block2.layer.3.conv1.weight", "backbone.block2.layer.3.bn2.weight", "backbone.block2.layer.3.bn2.bias", "backbone.block2.layer.3.bn2.running_mean", "backbone.block2.layer.3.bn2.running_var", "backbone.block2.layer.3.conv2.weight", "backbone.block3.layer.0.bn1.weight", "backbone.block3.layer.0.bn1.bias", "backbone.block3.layer.0.bn1.running_mean", "backbone.block3.layer.0.bn1.running_var", "backbone.block3.layer.0.conv1.weight", "backbone.block3.layer.0.bn2.weight", "backbone.block3.layer.0.bn2.bias", "backbone.block3.layer.0.bn2.running_mean", "backbone.block3.layer.0.bn2.running_var", "backbone.block3.layer.0.conv2.weight", "backbone.block3.layer.0.shortcut.weight", "backbone.block3.layer.1.bn1.weight", "backbone.block3.layer.1.bn1.bias", "backbone.block3.layer.1.bn1.running_mean", "backbone.block3.layer.1.bn1.running_var", "backbone.block3.layer.1.conv1.weight", "backbone.block3.layer.1.bn2.weight", "backbone.block3.layer.1.bn2.bias", "backbone.block3.layer.1.bn2.running_mean", "backbone.block3.layer.1.bn2.running_var", "backbone.block3.layer.1.conv2.weight", "backbone.block3.layer.2.bn1.weight", "backbone.block3.layer.2.bn1.bias", "backbone.block3.layer.2.bn1.running_mean", "backbone.block3.layer.2.bn1.running_var", "backbone.block3.layer.2.conv1.weight", "backbone.block3.layer.2.bn2.weight", "backbone.block3.layer.2.bn2.bias", "backbone.block3.layer.2.bn2.running_mean", "backbone.block3.layer.2.bn2.running_var", "backbone.block3.layer.2.conv2.weight", "backbone.block3.layer.3.bn1.weight", "backbone.block3.layer.3.bn1.bias", "backbone.block3.layer.3.bn1.running_mean", "backbone.block3.layer.3.bn1.running_var", "backbone.block3.layer.3.conv1.weight", "backbone.block3.layer.3.bn2.weight", "backbone.block3.layer.3.bn2.bias", "backbone.block3.layer.3.bn2.running_mean", "backbone.block3.layer.3.bn2.running_var", "backbone.block3.layer.3.conv2.weight", "backbone.bn1.weight", "backbone.bn1.bias", "backbone.bn1.running_mean", "backbone.bn1.running_var", "backbone.fc.weight", "backbone.fc.bias". Unexpected key(s) in state_dict: "conv1_1.weight", "conv1_1.bias", "bn1_1.weight", "bn1_1.bias", "bn1_1.running_mean", "bn1_1.running_var", "bn1_1.num_batches_tracked", "conv1_2.weight", "conv1_2.bias", "bn1_2.weight", "bn1_2.bias", "bn1_2.running_mean", "bn1_2.running_var", "bn1_2.num_batches_tracked", "conv2_1.weight", "conv2_1.bias", "bn2_1.weight", "bn2_1.bias", "bn2_1.running_mean", "bn2_1.running_var", "bn2_1.num_batches_tracked", "conv2_2.weight", "conv2_2.bias", "bn2_2.weight", "bn2_2.bias", "bn2_2.running_mean", "bn2_2.running_var", "bn2_2.num_batches_tracked", "conv3_1.weight", "conv3_1.bias", "bn3_1.weight", "bn3_1.bias", "bn3_1.running_mean", "bn3_1.running_var", "bn3_1.num_batches_tracked", "conv3_2.weight", "conv3_2.bias", "bn3_2.weight", "bn3_2.bias", "bn3_2.running_mean", "bn3_2.running_var", "bn3_2.num_batches_tracked", "fc1.weight", "fc1.bias", "fc2.weight", "fc2.bias".

Plots