Result table

This table was generated on 2025-12-01 at 09:03. See more results here. See last results here.

results
project_namegroup_namehostnamestatustimetime_per_image_msacc_natacc_pgdlinfacc_pgdl2aggerror_msg
jean-ponce
Master-IASD
upnquick
Success
10960.33
548.02
100.0
97.84
99.36
197.2
None
BestOf2023-1
profs
upnquick
Success
255.75
12.79
50.0
70.27
70.84
141.11
None
exocet
Master-IASD
coktailjet
Success
1794.76
89.74
86.25
51.06
66.25
117.31
None
BestOf2024-1
profs
upnquick
Success
3865.44
193.27
83.75
51.86
63.58
115.44
None
the-taithon-canon
Master-IASD
coktailjet
Success
4860.27
243.01
81.25
49.41
65.8
115.21
None
BestOfMiles
profs
upnquick
Success
9489.7
474.49
71.25
51.47
63.27
114.74
None
BestOf2024-2
profs
coktailjet
Success
1158.27
57.91
62.5
52.14
60.17
112.31
None
best_defense_is_attack
Master-IASD
coktailjet
Success
2886.8
144.34
81.25
50.99
59.23
110.22
None
counter_attack
Master-IASD
coktailjet
Success
2765.91
138.3
75.0
46.29
62.94
109.23
None
invisible_attack
Master-IASD
upnquick
Success
15524.17
776.21
77.5
50.8
57.93
108.73
None
attackonpixels
Master-IASD
upnquick
Success
2148.66
107.43
75.0
43.83
52.57
96.4
None
neural-nightmare
Master-IASD
upnquick
Success
1317.63
65.88
68.75
41.82
53.1
94.92
None
BestOf2023-2
profs
coktailjet
Success
112.69
5.63
68.75
41.08
53.47
94.55
None
jogabonito
Master-IASD
coktailjet
Success
263.15
13.16
75.0
24.63
46.41
71.04
None
gradient-hackers
Master-IASD
upnquick
Success
222.55
11.13
31.25
29.17
34.91
64.08
None
the-advengers
Master-IASD
coktailjet
Success
109.12
5.46
50.0
28.62
34.61
63.23
None
attaquedestitans
Master-IASD
upnquick
Success
195.8
9.79
56.25
18.58
38.36
56.94
None
attack_mesonet
Master-IASD
coktailjet
Success
73.2
3.66
62.5
22.38
33.28
55.66
None
attack-of-babrumen
Master-IASD
upnquick
Success
198.54
9.93
62.5
13.44
31.38
44.82
None
troublemakers
Master-IASD
coktailjet
Success
9006.35
450.32
77.5
11.12
21.46
32.58
None
attackus
Master-IASD
coktailjet
Success
68.64
3.43
50.0
6.04
25.14
31.18
None
attackonnetworks
Master-IASD
coktailjet
Success
72.56
3.63
37.5
6.02
25.16
31.18
None
blast_attack
Master-IASD
coktailjet
Success
110.23
5.51
62.5
6.04
25.13
31.17
None
attaqueoudefense
Master-IASD
coktailjet
Success
110.16
5.51
50.0
6.0
25.15
31.15
None
nyc
Master-IASD
coktailjet
Success
84.02
4.2
68.75
6.01
25.14
31.15
None
base_model
profs
coktailjet
Success
110.91
5.55
62.5
6.01
25.12
31.13
None
rattataque
Master-IASD
coktailjet
Success
83.86
4.19
62.5
5.99
25.13
31.12
None
noeyedeer
Master-IASD
coktailjet
Success
1940.39
97.02
12.5
12.78
14.01
26.79
None
ciclose-10
Master-IASD
coktailjet
Error
0
0
0
0
0
0
FileNotFoundError: [Errno 2] No such file or directory: '/home/lamsade/testplatform/test-platform-a3/repos/Master-IASD/ciclose-10/models/default_model.pth'
harissa
Master-IASD
upnquick
Error
0
0
0
0
0
0
TypeError: stat: path should be string, bytes, os.PathLike or integer, not NoneType
madraf
Master-IASD
upnquick
Error
0
0
0
0
0
0
TypeError: Net.load() missing 1 required positional argument: 'device'
team_joie
Master-IASD
coktailjet
Error
0
0
0
0
0
0
RuntimeError: Error(s) in loading state_dict for Net: Missing key(s) in state_dict: "conv1.weight", "conv1.bias", "conv2.weight", "conv2.bias", "conv3.weight", "conv3.bias", "conv4.weight", "conv4.bias", "fc1.weight", "fc1.bias", "fc2.weight", "fc2.bias", "fc3.weight", "fc3.bias". Unexpected key(s) in state_dict: "model.conv1.weight", "model.bn1.weight", "model.bn1.bias", "model.bn1.running_mean", "model.bn1.running_var", "model.bn1.num_batches_tracked", "model.layer1.0.conv1.weight", "model.layer1.0.bn1.weight", "model.layer1.0.bn1.bias", "model.layer1.0.bn1.running_mean", "model.layer1.0.bn1.running_var", "model.layer1.0.bn1.num_batches_tracked", "model.layer1.0.conv2.weight", "model.layer1.0.bn2.weight", "model.layer1.0.bn2.bias", "model.layer1.0.bn2.running_mean", "model.layer1.0.bn2.running_var", "model.layer1.0.bn2.num_batches_tracked", "model.layer1.1.conv1.weight", "model.layer1.1.bn1.weight", "model.layer1.1.bn1.bias", "model.layer1.1.bn1.running_mean", "model.layer1.1.bn1.running_var", "model.layer1.1.bn1.num_batches_tracked", "model.layer1.1.conv2.weight", "model.layer1.1.bn2.weight", "model.layer1.1.bn2.bias", "model.layer1.1.bn2.running_mean", "model.layer1.1.bn2.running_var", "model.layer1.1.bn2.num_batches_tracked", "model.layer2.0.conv1.weight", "model.layer2.0.bn1.weight", "model.layer2.0.bn1.bias", "model.layer2.0.bn1.running_mean", "model.layer2.0.bn1.running_var", "model.layer2.0.bn1.num_batches_tracked", "model.layer2.0.conv2.weight", "model.layer2.0.bn2.weight", "model.layer2.0.bn2.bias", "model.layer2.0.bn2.running_mean", "model.layer2.0.bn2.running_var", "model.layer2.0.bn2.num_batches_tracked", "model.layer2.0.downsample.0.weight", "model.layer2.0.downsample.1.weight", "model.layer2.0.downsample.1.bias", "model.layer2.0.downsample.1.running_mean", "model.layer2.0.downsample.1.running_var", "model.layer2.0.downsample.1.num_batches_tracked", "model.layer2.1.conv1.weight", "model.layer2.1.bn1.weight", "model.layer2.1.bn1.bias", "model.layer2.1.bn1.running_mean", "model.layer2.1.bn1.running_var", "model.layer2.1.bn1.num_batches_tracked", "model.layer2.1.conv2.weight", "model.layer2.1.bn2.weight", "model.layer2.1.bn2.bias", "model.layer2.1.bn2.running_mean", "model.layer2.1.bn2.running_var", "model.layer2.1.bn2.num_batches_tracked", "model.layer3.0.conv1.weight", "model.layer3.0.bn1.weight", "model.layer3.0.bn1.bias", "model.layer3.0.bn1.running_mean", "model.layer3.0.bn1.running_var", "model.layer3.0.bn1.num_batches_tracked", "model.layer3.0.conv2.weight", "model.layer3.0.bn2.weight", "model.layer3.0.bn2.bias", "model.layer3.0.bn2.running_mean", "model.layer3.0.bn2.running_var", "model.layer3.0.bn2.num_batches_tracked", "model.layer3.0.downsample.0.weight", "model.layer3.0.downsample.1.weight", "model.layer3.0.downsample.1.bias", "model.layer3.0.downsample.1.running_mean", "model.layer3.0.downsample.1.running_var", "model.layer3.0.downsample.1.num_batches_tracked", "model.layer3.1.conv1.weight", "model.layer3.1.bn1.weight", "model.layer3.1.bn1.bias", "model.layer3.1.bn1.running_mean", "model.layer3.1.bn1.running_var", "model.layer3.1.bn1.num_batches_tracked", "model.layer3.1.conv2.weight", "model.layer3.1.bn2.weight", "model.layer3.1.bn2.bias", "model.layer3.1.bn2.running_mean", "model.layer3.1.bn2.running_var", "model.layer3.1.bn2.num_batches_tracked", "model.layer4.0.conv1.weight", "model.layer4.0.bn1.weight", "model.layer4.0.bn1.bias", "model.layer4.0.bn1.running_mean", "model.layer4.0.bn1.running_var", "model.layer4.0.bn1.num_batches_tracked", "model.layer4.0.conv2.weight", "model.layer4.0.bn2.weight", "model.layer4.0.bn2.bias", "model.layer4.0.bn2.running_mean", "model.layer4.0.bn2.running_var", "model.layer4.0.bn2.num_batches_tracked", "model.layer4.0.downsample.0.weight", "model.layer4.0.downsample.1.weight", "model.layer4.0.downsample.1.bias", "model.layer4.0.downsample.1.running_mean", "model.layer4.0.downsample.1.running_var", "model.layer4.0.downsample.1.num_batches_tracked", "model.layer4.1.conv1.weight", "model.layer4.1.bn1.weight", "model.layer4.1.bn1.bias", "model.layer4.1.bn1.running_mean", "model.layer4.1.bn1.running_var", "model.layer4.1.bn1.num_batches_tracked", "model.layer4.1.conv2.weight", "model.layer4.1.bn2.weight", "model.layer4.1.bn2.bias", "model.layer4.1.bn2.running_mean", "model.layer4.1.bn2.running_var", "model.layer4.1.bn2.num_batches_tracked", "model.fc.weight", "model.fc.bias".

Plots