Result table

This table was generated on 2025-12-03 at 09:05. See more results here. See last results here.

results
project_namegroup_namehostnamestatustimetime_per_image_msacc_natacc_pgdlinfacc_pgdl2aggerror_msg
jean-ponce
Master-IASD
coktailjet
Success
10012.09
500.6
100.0
97.96
99.23
197.19
None
BestOf2023-1
profs
coktailjet
Success
172.92
8.65
68.75
70.31
70.81
141.12
None
gradient-hackers
Master-IASD
upnquick
Success
1529.16
76.46
90.0
70.16
69.09
139.25
None
attaqueoudefense
Master-IASD
upnquick
Success
11016.16
550.81
61.25
60.37
66.32
126.69
None
noeyedeer
Master-IASD
coktailjet
Success
2838.02
141.9
85.0
51.86
68.77
120.63
None
rattataque
Master-IASD
upnquick
Success
3373.37
168.67
80.0
48.01
71.24
119.25
None
blast_attack
Master-IASD
coktailjet
Success
5360.5
268.03
53.75
56.81
62.03
118.84
None
exocet
Master-IASD
upnquick
Success
2742.82
137.14
57.5
50.86
66.44
117.3
None
the-taithon-canon
Master-IASD
coktailjet
Success
5288.63
264.43
75.0
49.73
65.95
115.68
None
BestOf2024-1
profs
coktailjet
Success
5319.34
265.97
78.75
51.61
63.51
115.12
None
BestOfMiles
profs
coktailjet
Success
11105.08
555.25
75.0
51.5
63.18
114.68
None
BestOf2024-2
profs
upnquick
Success
2447.16
122.36
56.25
52.45
59.93
112.38
None
best_defense_is_attack
Master-IASD
coktailjet
Success
3491.83
174.59
75.0
50.95
59.25
110.2
None
counter_attack
Master-IASD
coktailjet
Success
3239.79
161.99
81.25
46.46
62.95
109.41
None
neural-nightmare
Master-IASD
upnquick
Success
3233.55
161.68
81.25
42.51
54.1
96.61
None
attackonpixels
Master-IASD
upnquick
Success
3739.67
186.98
75.0
43.54
52.64
96.18
None
BestOf2023-2
profs
upnquick
Success
314.65
15.73
68.75
40.83
53.41
94.24
None
invisible_attack
Master-IASD
coktailjet
Success
10763.84
538.19
73.75
31.83
51.6
83.43
None
the-advengers
Master-IASD
upnquick
Success
3442.65
172.13
81.25
31.68
49.91
81.59
None
jogabonito
Master-IASD
upnquick
Success
3665.11
183.26
62.5
31.29
48.73
80.02
None
attaquedestitans
Master-IASD
upnquick
Success
345.74
17.29
75.0
18.7
38.4
57.1
None
attack_mesonet
Master-IASD
coktailjet
Success
73.23
3.66
43.75
22.34
33.25
55.59
None
attackonnetworks
Master-IASD
coktailjet
Success
75.56
3.78
56.25
18.31
32.57
50.88
None
attackus
Master-IASD
coktailjet
Success
70.56
3.53
56.25
5.99
25.14
31.13
None
base_model
profs
upnquick
Success
307.72
15.39
56.25
6.02
25.11
31.13
None
attack-of-babrumen
Master-IASD
upnquick
Error
0
0
0
0
0
0
AttributeError: 'Net' object has no attribute 'load_for_testing'
ciclose-10
Master-IASD
coktailjet
Error
0
0
0
0
0
0
FileNotFoundError: [Errno 2] No such file or directory: '/home/lamsade/testplatform/test-platform-a3/repos/Master-IASD/ciclose-10/models/default_model.pth'
compo-4-3-3
Master-IASD
coktailjet
Error
0
0
0
0
0
0
FileNotFoundError: [Errno 2] No such file or directory: 'models/resnet_adv_finetune_8_pgd_3.pth'
harissa
Master-IASD
coktailjet
Error
0
0
0
0
0
0
FileNotFoundError: The config file does not exist. Model could not be loaded properly.
madraf
Master-IASD
upnquick
Error
0
0
0
0
0
0
FileNotFoundError: [Errno 2] No such file or directory: '/home/lamsade/testplatform/test-platform-a3/repos/Master-IASD/madraf/models/default_model.pth'
nyc
Master-IASD
upnquick
Error
0
0
0
0
0
0
FileNotFoundError: [Errno 2] No such file or directory: '/home/lamsade/testplatform/test-platform-a3/repos/Master-IASD/nyc/models/model_resnet_norm_pni_pgd_mixed_6epochs.pth'
team_joie
Master-IASD
upnquick
Error
0
0
0
0
0
0
RuntimeError: Error(s) in loading state_dict for Net: Missing key(s) in state_dict: "conv1.weight", "conv1.bias", "conv2.weight", "conv2.bias", "conv3.weight", "conv3.bias", "conv4.weight", "conv4.bias", "fc1.weight", "fc1.bias", "fc2.weight", "fc2.bias", "fc3.weight", "fc3.bias". Unexpected key(s) in state_dict: "model.conv1.weight", "model.bn1.weight", "model.bn1.bias", "model.bn1.running_mean", "model.bn1.running_var", "model.bn1.num_batches_tracked", "model.layer1.0.conv1.weight", "model.layer1.0.bn1.weight", "model.layer1.0.bn1.bias", "model.layer1.0.bn1.running_mean", "model.layer1.0.bn1.running_var", "model.layer1.0.bn1.num_batches_tracked", "model.layer1.0.conv2.weight", "model.layer1.0.bn2.weight", "model.layer1.0.bn2.bias", "model.layer1.0.bn2.running_mean", "model.layer1.0.bn2.running_var", "model.layer1.0.bn2.num_batches_tracked", "model.layer1.1.conv1.weight", "model.layer1.1.bn1.weight", "model.layer1.1.bn1.bias", "model.layer1.1.bn1.running_mean", "model.layer1.1.bn1.running_var", "model.layer1.1.bn1.num_batches_tracked", "model.layer1.1.conv2.weight", "model.layer1.1.bn2.weight", "model.layer1.1.bn2.bias", "model.layer1.1.bn2.running_mean", "model.layer1.1.bn2.running_var", "model.layer1.1.bn2.num_batches_tracked", "model.layer2.0.conv1.weight", "model.layer2.0.bn1.weight", "model.layer2.0.bn1.bias", "model.layer2.0.bn1.running_mean", "model.layer2.0.bn1.running_var", "model.layer2.0.bn1.num_batches_tracked", "model.layer2.0.conv2.weight", "model.layer2.0.bn2.weight", "model.layer2.0.bn2.bias", "model.layer2.0.bn2.running_mean", "model.layer2.0.bn2.running_var", "model.layer2.0.bn2.num_batches_tracked", "model.layer2.0.downsample.0.weight", "model.layer2.0.downsample.1.weight", "model.layer2.0.downsample.1.bias", "model.layer2.0.downsample.1.running_mean", "model.layer2.0.downsample.1.running_var", "model.layer2.0.downsample.1.num_batches_tracked", "model.layer2.1.conv1.weight", "model.layer2.1.bn1.weight", "model.layer2.1.bn1.bias", "model.layer2.1.bn1.running_mean", "model.layer2.1.bn1.running_var", "model.layer2.1.bn1.num_batches_tracked", "model.layer2.1.conv2.weight", "model.layer2.1.bn2.weight", "model.layer2.1.bn2.bias", "model.layer2.1.bn2.running_mean", "model.layer2.1.bn2.running_var", "model.layer2.1.bn2.num_batches_tracked", "model.layer3.0.conv1.weight", "model.layer3.0.bn1.weight", "model.layer3.0.bn1.bias", "model.layer3.0.bn1.running_mean", "model.layer3.0.bn1.running_var", "model.layer3.0.bn1.num_batches_tracked", "model.layer3.0.conv2.weight", "model.layer3.0.bn2.weight", "model.layer3.0.bn2.bias", "model.layer3.0.bn2.running_mean", "model.layer3.0.bn2.running_var", "model.layer3.0.bn2.num_batches_tracked", "model.layer3.0.downsample.0.weight", "model.layer3.0.downsample.1.weight", "model.layer3.0.downsample.1.bias", "model.layer3.0.downsample.1.running_mean", "model.layer3.0.downsample.1.running_var", "model.layer3.0.downsample.1.num_batches_tracked", "model.layer3.1.conv1.weight", "model.layer3.1.bn1.weight", "model.layer3.1.bn1.bias", "model.layer3.1.bn1.running_mean", "model.layer3.1.bn1.running_var", "model.layer3.1.bn1.num_batches_tracked", "model.layer3.1.conv2.weight", "model.layer3.1.bn2.weight", "model.layer3.1.bn2.bias", "model.layer3.1.bn2.running_mean", "model.layer3.1.bn2.running_var", "model.layer3.1.bn2.num_batches_tracked", "model.layer4.0.conv1.weight", "model.layer4.0.bn1.weight", "model.layer4.0.bn1.bias", "model.layer4.0.bn1.running_mean", "model.layer4.0.bn1.running_var", "model.layer4.0.bn1.num_batches_tracked", "model.layer4.0.conv2.weight", "model.layer4.0.bn2.weight", "model.layer4.0.bn2.bias", "model.layer4.0.bn2.running_mean", "model.layer4.0.bn2.running_var", "model.layer4.0.bn2.num_batches_tracked", "model.layer4.0.downsample.0.weight", "model.layer4.0.downsample.1.weight", "model.layer4.0.downsample.1.bias", "model.layer4.0.downsample.1.running_mean", "model.layer4.0.downsample.1.running_var", "model.layer4.0.downsample.1.num_batches_tracked", "model.layer4.1.conv1.weight", "model.layer4.1.bn1.weight", "model.layer4.1.bn1.bias", "model.layer4.1.bn1.running_mean", "model.layer4.1.bn1.running_var", "model.layer4.1.bn1.num_batches_tracked", "model.layer4.1.conv2.weight", "model.layer4.1.bn2.weight", "model.layer4.1.bn2.bias", "model.layer4.1.bn2.running_mean", "model.layer4.1.bn2.running_var", "model.layer4.1.bn2.num_batches_tracked", "model.fc.weight", "model.fc.bias".
troublemakers
Master-IASD
upnquick
Error
0
0
0
0
0
0
FileNotFoundError: [Errno 2] No such file or directory: '/home/lamsade/testplatform/test-platform-a3/repos/Master-IASD/troublemakers/models/ensemble_adp_model_0.pth'

Plots