Result table

This table was generated on 2025-12-09 at 08:39. See more results here. See last results here.

results
project_namegroup_namehostnamestatustimetime_per_image_msacc_natacc_pgdlinfacc_pgdl2aggerror_msg
jean-ponce
Master-IASD
upnquick
Success
10361.62
518.08
100.0
98.17
99.29
197.46
None
BestOf2023-1
profs
coktailjet
Success
175.05
8.75
56.25
70.22
70.71
140.93
None
gradient-hackers
Master-IASD
upnquick
Success
922.74
46.14
97.5
69.92
68.97
138.89
None
blast_attack
Master-IASD
coktailjet
Success
7059.48
352.97
57.5
58.1
69.08
127.18
None
attaqueoudefense
Master-IASD
coktailjet
Success
11241.69
562.08
71.25
60.42
66.35
126.78
None
noeyedeer
Master-IASD
upnquick
Success
2145.28
107.26
62.5
51.36
69.01
120.37
None
rattataque
Master-IASD
upnquick
Success
1852.23
92.61
92.5
48.28
70.83
119.11
None
exocet
Master-IASD
upnquick
Success
1767.92
88.4
81.25
51.06
65.73
116.79
None
BestOf2024-1
profs
coktailjet
Success
5343.89
267.19
76.25
51.53
63.55
115.09
None
the-taithon-canon
Master-IASD
upnquick
Success
2660.61
133.03
68.75
49.11
65.76
114.87
None
BestOfMiles
profs
coktailjet
Success
11120.03
556.0
86.25
51.45
63.4
114.84
None
BestOf2024-2
profs
upnquick
Success
1320.66
66.03
87.5
52.28
59.68
111.96
None
best_defense_is_attack
Master-IASD
upnquick
Success
1887.44
94.37
75.0
51.0
59.21
110.21
None
counter_attack
Master-IASD
coktailjet
Success
3275.36
163.77
75.0
46.22
63.13
109.34
None
nyc
Master-IASD
coktailjet
Success
3848.38
192.42
56.25
44.04
63.34
107.38
None
attackonpixels
Master-IASD
upnquick
Success
2445.55
122.28
75.0
44.3
52.49
96.79
None
neural-nightmare
Master-IASD
coktailjet
Success
2915.57
145.78
87.5
42.54
54.1
96.64
None
BestOf2023-2
profs
upnquick
Success
196.83
9.84
43.75
40.75
53.46
94.21
None
invisible_attack
Master-IASD
upnquick
Success
7499.94
375.0
95.0
31.79
52.0
83.78
None
the-advengers
Master-IASD
coktailjet
Success
3354.69
167.73
81.25
31.46
50.37
81.83
None
jogabonito
Master-IASD
upnquick
Success
2034.65
101.73
62.5
31.24
48.6
79.84
None
attaquedestitans
Master-IASD
upnquick
Success
220.14
11.01
56.25
18.62
38.38
57.0
None
attack_mesonet
Master-IASD
coktailjet
Success
108.3
5.42
56.25
22.34
33.31
55.65
None
attackonnetworks
Master-IASD
coktailjet
Success
112.98
5.65
62.5
18.31
32.56
50.87
None
base_model
profs
upnquick
Success
191.26
9.56
68.75
6.0
25.14
31.14
None
attackus
Master-IASD
coktailjet
Error
0
0
0
0
0
0
FileNotFoundError: Model file not found: /home/lamsade/testplatform/test-platform-a3/repos/Master-IASD/attackus/models/robust_model.pth
attack-of-babrumen
Master-IASD
upnquick
Error
0
0
0
0
0
0
AttributeError: 'Net' object has no attribute 'load_for_testing'
ciclose-10
Master-IASD
coktailjet
Error
0
0
0
0
0
0
FileNotFoundError: [Errno 2] No such file or directory: '/home/lamsade/testplatform/test-platform-a3/repos/Master-IASD/ciclose-10/models/default_model.pth'
compo-4-3-3
Master-IASD
coktailjet
Error
0
0
0
0
0
0
FileNotFoundError: [Errno 2] No such file or directory: 'models/resnet_adv_finetune_8_pgd_3.pth'
harissa
Master-IASD
upnquick
Error
0
0
0
0
0
0
FileNotFoundError: The config file does not exist. Model could not be loaded properly.
madraf
Master-IASD
coktailjet
Error
0
0
0
0
0
0
FileNotFoundError: [Errno 2] No such file or directory: '/home/lamsade/testplatform/test-platform-a3/repos/Master-IASD/madraf/models/default_model.pth'
team_joie
Master-IASD
coktailjet
Error
0
0
0
0
0
0
RuntimeError: Error(s) in loading state_dict for Net: Missing key(s) in state_dict: "conv1.weight", "conv1.bias", "conv2.weight", "conv2.bias", "conv3.weight", "conv3.bias", "conv4.weight", "conv4.bias", "fc1.weight", "fc1.bias", "fc2.weight", "fc2.bias", "fc3.weight", "fc3.bias". Unexpected key(s) in state_dict: "model.conv1.weight", "model.bn1.weight", "model.bn1.bias", "model.bn1.running_mean", "model.bn1.running_var", "model.bn1.num_batches_tracked", "model.layer1.0.conv1.weight", "model.layer1.0.bn1.weight", "model.layer1.0.bn1.bias", "model.layer1.0.bn1.running_mean", "model.layer1.0.bn1.running_var", "model.layer1.0.bn1.num_batches_tracked", "model.layer1.0.conv2.weight", "model.layer1.0.bn2.weight", "model.layer1.0.bn2.bias", "model.layer1.0.bn2.running_mean", "model.layer1.0.bn2.running_var", "model.layer1.0.bn2.num_batches_tracked", "model.layer1.1.conv1.weight", "model.layer1.1.bn1.weight", "model.layer1.1.bn1.bias", "model.layer1.1.bn1.running_mean", "model.layer1.1.bn1.running_var", "model.layer1.1.bn1.num_batches_tracked", "model.layer1.1.conv2.weight", "model.layer1.1.bn2.weight", "model.layer1.1.bn2.bias", "model.layer1.1.bn2.running_mean", "model.layer1.1.bn2.running_var", "model.layer1.1.bn2.num_batches_tracked", "model.layer2.0.conv1.weight", "model.layer2.0.bn1.weight", "model.layer2.0.bn1.bias", "model.layer2.0.bn1.running_mean", "model.layer2.0.bn1.running_var", "model.layer2.0.bn1.num_batches_tracked", "model.layer2.0.conv2.weight", "model.layer2.0.bn2.weight", "model.layer2.0.bn2.bias", "model.layer2.0.bn2.running_mean", "model.layer2.0.bn2.running_var", "model.layer2.0.bn2.num_batches_tracked", "model.layer2.0.downsample.0.weight", "model.layer2.0.downsample.1.weight", "model.layer2.0.downsample.1.bias", "model.layer2.0.downsample.1.running_mean", "model.layer2.0.downsample.1.running_var", "model.layer2.0.downsample.1.num_batches_tracked", "model.layer2.1.conv1.weight", "model.layer2.1.bn1.weight", "model.layer2.1.bn1.bias", "model.layer2.1.bn1.running_mean", "model.layer2.1.bn1.running_var", "model.layer2.1.bn1.num_batches_tracked", "model.layer2.1.conv2.weight", "model.layer2.1.bn2.weight", "model.layer2.1.bn2.bias", "model.layer2.1.bn2.running_mean", "model.layer2.1.bn2.running_var", "model.layer2.1.bn2.num_batches_tracked", "model.layer3.0.conv1.weight", "model.layer3.0.bn1.weight", "model.layer3.0.bn1.bias", "model.layer3.0.bn1.running_mean", "model.layer3.0.bn1.running_var", "model.layer3.0.bn1.num_batches_tracked", "model.layer3.0.conv2.weight", "model.layer3.0.bn2.weight", "model.layer3.0.bn2.bias", "model.layer3.0.bn2.running_mean", "model.layer3.0.bn2.running_var", "model.layer3.0.bn2.num_batches_tracked", "model.layer3.0.downsample.0.weight", "model.layer3.0.downsample.1.weight", "model.layer3.0.downsample.1.bias", "model.layer3.0.downsample.1.running_mean", "model.layer3.0.downsample.1.running_var", "model.layer3.0.downsample.1.num_batches_tracked", "model.layer3.1.conv1.weight", "model.layer3.1.bn1.weight", "model.layer3.1.bn1.bias", "model.layer3.1.bn1.running_mean", "model.layer3.1.bn1.running_var", "model.layer3.1.bn1.num_batches_tracked", "model.layer3.1.conv2.weight", "model.layer3.1.bn2.weight", "model.layer3.1.bn2.bias", "model.layer3.1.bn2.running_mean", "model.layer3.1.bn2.running_var", "model.layer3.1.bn2.num_batches_tracked", "model.layer4.0.conv1.weight", "model.layer4.0.bn1.weight", "model.layer4.0.bn1.bias", "model.layer4.0.bn1.running_mean", "model.layer4.0.bn1.running_var", "model.layer4.0.bn1.num_batches_tracked", "model.layer4.0.conv2.weight", "model.layer4.0.bn2.weight", "model.layer4.0.bn2.bias", "model.layer4.0.bn2.running_mean", "model.layer4.0.bn2.running_var", "model.layer4.0.bn2.num_batches_tracked", "model.layer4.0.downsample.0.weight", "model.layer4.0.downsample.1.weight", "model.layer4.0.downsample.1.bias", "model.layer4.0.downsample.1.running_mean", "model.layer4.0.downsample.1.running_var", "model.layer4.0.downsample.1.num_batches_tracked", "model.layer4.1.conv1.weight", "model.layer4.1.bn1.weight", "model.layer4.1.bn1.bias", "model.layer4.1.bn1.running_mean", "model.layer4.1.bn1.running_var", "model.layer4.1.bn1.num_batches_tracked", "model.layer4.1.conv2.weight", "model.layer4.1.bn2.weight", "model.layer4.1.bn2.bias", "model.layer4.1.bn2.running_mean", "model.layer4.1.bn2.running_var", "model.layer4.1.bn2.num_batches_tracked", "model.fc.weight", "model.fc.bias".
troublemakers
Master-IASD
upnquick
Error
0
0
0
0
0
0
FileNotFoundError: [Errno 2] No such file or directory: '/home/lamsade/testplatform/test-platform-a3/repos/Master-IASD/troublemakers/models/ensemble_adp_model_0.pth'

Plots