Result table

This table was generated on 2025-12-10 at 06:27. See more results here. See last results here.

results
project_namegroup_namehostnamestatustimetime_per_image_msacc_natacc_pgdlinfacc_pgdl2aggerror_msg
jean-ponce
Master-IASD
upnquick
Success
5960.14
298.01
100.0
98.0
99.35
197.35
None
BestOf2023-1
profs
upnquick
Success
174.62
8.73
43.75
70.37
70.81
141.18
None
gradient-hackers
Master-IASD
upnquick
Success
784.59
39.23
87.5
70.05
68.38
138.43
None
blast_attack
Master-IASD
coktailjet
Success
7219.82
360.99
57.5
58.02
69.24
127.27
None
attaqueoudefense
Master-IASD
upnquick
Success
4703.44
235.17
80.0
60.33
65.76
126.09
None
noeyedeer
Master-IASD
upnquick
Success
1456.99
72.85
65.0
51.42
68.89
120.32
None
rattataque
Master-IASD
coktailjet
Success
2618.03
130.9
75.0
48.7
71.32
120.02
None
exocet
Master-IASD
upnquick
Success
1287.41
64.37
75.0
50.92
65.94
116.86
None
the-taithon-canon
Master-IASD
coktailjet
Success
3241.95
162.1
81.25
49.52
65.92
115.44
None
BestOfMiles
profs
upnquick
Success
5393.67
269.68
57.5
51.49
63.52
115.0
None
BestOf2024-1
profs
upnquick
Success
2800.64
140.03
55.0
51.36
63.45
114.81
None
BestOf2024-2
profs
coktailjet
Success
1367.97
68.4
56.25
52.15
59.44
111.59
None
best_defense_is_attack
Master-IASD
coktailjet
Success
3484.82
174.24
75.0
50.95
59.3
110.25
None
counter_attack
Master-IASD
coktailjet
Success
3355.43
167.77
78.75
46.06
63.19
109.25
None
nyc
Master-IASD
upnquick
Success
1395.93
69.8
82.5
43.64
63.21
106.85
None
attackonpixels
Master-IASD
upnquick
Success
1793.15
89.66
68.75
44.28
52.67
96.95
None
neural-nightmare
Master-IASD
coktailjet
Success
2966.26
148.31
75.0
42.49
54.1
96.59
None
BestOf2023-2
profs
coktailjet
Success
124.55
6.23
68.75
40.88
53.45
94.33
None
invisible_attack
Master-IASD
upnquick
Success
5247.24
262.36
80.0
32.29
52.0
84.29
None
the-advengers
Master-IASD
upnquick
Success
917.45
45.87
75.0
31.28
50.22
81.5
None
jogabonito
Master-IASD
coktailjet
Success
3816.2
190.81
68.75
31.04
48.76
79.8
None
attaquedestitans
Master-IASD
upnquick
Success
150.75
7.54
56.25
18.62
38.43
57.05
None
attack_mesonet
Master-IASD
coktailjet
Success
115.84
5.79
18.75
22.42
33.3
55.72
None
attackonnetworks
Master-IASD
coktailjet
Success
121.51
6.08
37.5
18.24
32.58
50.82
None
base_model
profs
coktailjet
Success
123.74
6.19
37.5
5.98
25.11
31.09
None
attack-of-babrumen
Master-IASD
upnquick
Error
0
0
0
0
0
0
AttributeError: 'Net' object has no attribute 'load_for_testing'
attackus
Master-IASD
coktailjet
Error
0
0
0
0
0
0
FileNotFoundError: Model file not found: /home/lamsade/testplatform/test-platform-a3/repos/Master-IASD/attackus/models/robust_model.pth
ciclose-10
Master-IASD
coktailjet
Error
0
0
0
0
0
0
FileNotFoundError: [Errno 2] No such file or directory: '/home/lamsade/testplatform/test-platform-a3/repos/Master-IASD/ciclose-10/models/default_model.pth'
compo-4-3-3
Master-IASD
coktailjet
Error
0
0
0
0
0
0
FileNotFoundError: [Errno 2] No such file or directory: 'models/resnet_adv_finetune_8_pgd_3.pth'
harissa
Master-IASD
upnquick
Error
0
0
0
0
0
0
FileNotFoundError: The config file does not exist. Model could not be loaded properly.
madraf
Master-IASD
coktailjet
Error
0
0
0
0
0
0
FileNotFoundError: [Errno 2] No such file or directory: '/home/lamsade/testplatform/test-platform-a3/repos/Master-IASD/madraf/models/default_model.pth'
team_joie
Master-IASD
upnquick
Error
0
0
0
0
0
0
RuntimeError: Error(s) in loading state_dict for Net: Missing key(s) in state_dict: "conv1.weight", "conv1.bias", "conv2.weight", "conv2.bias", "conv3.weight", "conv3.bias", "conv4.weight", "conv4.bias", "fc1.weight", "fc1.bias", "fc2.weight", "fc2.bias", "fc3.weight", "fc3.bias". Unexpected key(s) in state_dict: "model.conv1.weight", "model.bn1.weight", "model.bn1.bias", "model.bn1.running_mean", "model.bn1.running_var", "model.bn1.num_batches_tracked", "model.layer1.0.conv1.weight", "model.layer1.0.bn1.weight", "model.layer1.0.bn1.bias", "model.layer1.0.bn1.running_mean", "model.layer1.0.bn1.running_var", "model.layer1.0.bn1.num_batches_tracked", "model.layer1.0.conv2.weight", "model.layer1.0.bn2.weight", "model.layer1.0.bn2.bias", "model.layer1.0.bn2.running_mean", "model.layer1.0.bn2.running_var", "model.layer1.0.bn2.num_batches_tracked", "model.layer1.1.conv1.weight", "model.layer1.1.bn1.weight", "model.layer1.1.bn1.bias", "model.layer1.1.bn1.running_mean", "model.layer1.1.bn1.running_var", "model.layer1.1.bn1.num_batches_tracked", "model.layer1.1.conv2.weight", "model.layer1.1.bn2.weight", "model.layer1.1.bn2.bias", "model.layer1.1.bn2.running_mean", "model.layer1.1.bn2.running_var", "model.layer1.1.bn2.num_batches_tracked", "model.layer2.0.conv1.weight", "model.layer2.0.bn1.weight", "model.layer2.0.bn1.bias", "model.layer2.0.bn1.running_mean", "model.layer2.0.bn1.running_var", "model.layer2.0.bn1.num_batches_tracked", "model.layer2.0.conv2.weight", "model.layer2.0.bn2.weight", "model.layer2.0.bn2.bias", "model.layer2.0.bn2.running_mean", "model.layer2.0.bn2.running_var", "model.layer2.0.bn2.num_batches_tracked", "model.layer2.0.downsample.0.weight", "model.layer2.0.downsample.1.weight", "model.layer2.0.downsample.1.bias", "model.layer2.0.downsample.1.running_mean", "model.layer2.0.downsample.1.running_var", "model.layer2.0.downsample.1.num_batches_tracked", "model.layer2.1.conv1.weight", "model.layer2.1.bn1.weight", "model.layer2.1.bn1.bias", "model.layer2.1.bn1.running_mean", "model.layer2.1.bn1.running_var", "model.layer2.1.bn1.num_batches_tracked", "model.layer2.1.conv2.weight", "model.layer2.1.bn2.weight", "model.layer2.1.bn2.bias", "model.layer2.1.bn2.running_mean", "model.layer2.1.bn2.running_var", "model.layer2.1.bn2.num_batches_tracked", "model.layer3.0.conv1.weight", "model.layer3.0.bn1.weight", "model.layer3.0.bn1.bias", "model.layer3.0.bn1.running_mean", "model.layer3.0.bn1.running_var", "model.layer3.0.bn1.num_batches_tracked", "model.layer3.0.conv2.weight", "model.layer3.0.bn2.weight", "model.layer3.0.bn2.bias", "model.layer3.0.bn2.running_mean", "model.layer3.0.bn2.running_var", "model.layer3.0.bn2.num_batches_tracked", "model.layer3.0.downsample.0.weight", "model.layer3.0.downsample.1.weight", "model.layer3.0.downsample.1.bias", "model.layer3.0.downsample.1.running_mean", "model.layer3.0.downsample.1.running_var", "model.layer3.0.downsample.1.num_batches_tracked", "model.layer3.1.conv1.weight", "model.layer3.1.bn1.weight", "model.layer3.1.bn1.bias", "model.layer3.1.bn1.running_mean", "model.layer3.1.bn1.running_var", "model.layer3.1.bn1.num_batches_tracked", "model.layer3.1.conv2.weight", "model.layer3.1.bn2.weight", "model.layer3.1.bn2.bias", "model.layer3.1.bn2.running_mean", "model.layer3.1.bn2.running_var", "model.layer3.1.bn2.num_batches_tracked", "model.layer4.0.conv1.weight", "model.layer4.0.bn1.weight", "model.layer4.0.bn1.bias", "model.layer4.0.bn1.running_mean", "model.layer4.0.bn1.running_var", "model.layer4.0.bn1.num_batches_tracked", "model.layer4.0.conv2.weight", "model.layer4.0.bn2.weight", "model.layer4.0.bn2.bias", "model.layer4.0.bn2.running_mean", "model.layer4.0.bn2.running_var", "model.layer4.0.bn2.num_batches_tracked", "model.layer4.0.downsample.0.weight", "model.layer4.0.downsample.1.weight", "model.layer4.0.downsample.1.bias", "model.layer4.0.downsample.1.running_mean", "model.layer4.0.downsample.1.running_var", "model.layer4.0.downsample.1.num_batches_tracked", "model.layer4.1.conv1.weight", "model.layer4.1.bn1.weight", "model.layer4.1.bn1.bias", "model.layer4.1.bn1.running_mean", "model.layer4.1.bn1.running_var", "model.layer4.1.bn1.num_batches_tracked", "model.layer4.1.conv2.weight", "model.layer4.1.bn2.weight", "model.layer4.1.bn2.bias", "model.layer4.1.bn2.running_mean", "model.layer4.1.bn2.running_var", "model.layer4.1.bn2.num_batches_tracked", "model.fc.weight", "model.fc.bias".
troublemakers
Master-IASD
coktailjet
Error
0
0
0
0
0
0
FileNotFoundError: [Errno 2] No such file or directory: '/home/lamsade/testplatform/test-platform-a3/repos/Master-IASD/troublemakers/models/ensemble_adp_model_0.pth'

Plots