Result table

This table was generated on 2025-12-11 at 08:23. See more results here. See last results here.

results
project_namegroup_namehostnamestatustimetime_per_image_msacc_natacc_pgdlinfacc_pgdl2aggerror_msg
jean-ponce
Master-IASD
upnquick
Success
5963.13
298.16
100.0
97.89
99.32
197.21
None
BestOf2023-1
profs
coktailjet
Success
187.96
9.4
50.0
70.2
70.72
140.92
None
gradient-hackers
Master-IASD
upnquick
Success
783.51
39.18
77.5
69.76
69.04
138.81
None
blast_attack
Master-IASD
coktailjet
Success
7216.8
360.84
57.5
58.68
69.28
127.97
None
attaqueoudefense
Master-IASD
upnquick
Success
4678.11
233.91
72.5
60.11
66.16
126.27
None
noeyedeer
Master-IASD
upnquick
Success
1456.77
72.84
50.0
51.17
68.72
119.88
None
rattataque
Master-IASD
coktailjet
Success
2621.14
131.06
53.75
48.56
70.99
119.55
None
exocet
Master-IASD
upnquick
Success
1285.16
64.26
72.5
51.63
65.94
117.57
None
BestOf2024-1
profs
coktailjet
Success
5750.97
287.55
51.25
51.93
63.37
115.3
None
BestOfMiles
profs
coktailjet
Success
12304.06
615.2
75.0
51.5
63.37
114.86
None
the-taithon-canon
Master-IASD
coktailjet
Success
3289.66
164.48
68.75
49.1
65.26
114.36
None
BestOf2024-2
profs
upnquick
Success
638.18
31.91
62.5
51.79
59.74
111.53
None
best_defense_is_attack
Master-IASD
coktailjet
Success
3500.73
175.04
93.75
50.92
59.24
110.16
None
counter_attack
Master-IASD
coktailjet
Success
3365.03
168.25
85.0
46.06
63.49
109.55
None
nyc
Master-IASD
upnquick
Success
1392.39
69.62
56.25
44.37
63.71
108.08
None
attackonpixels
Master-IASD
upnquick
Success
1788.76
89.44
62.5
44.22
52.45
96.67
None
neural-nightmare
Master-IASD
coktailjet
Success
2982.64
149.13
68.75
42.53
54.09
96.62
None
BestOf2023-2
profs
upnquick
Success
121.01
6.05
62.5
40.8
53.49
94.29
None
invisible_attack
Master-IASD
upnquick
Success
5273.39
263.67
92.5
31.85
51.93
83.78
None
the-advengers
Master-IASD
upnquick
Success
895.82
44.79
81.25
31.3
49.97
81.27
None
jogabonito
Master-IASD
coktailjet
Success
3832.4
191.62
81.25
31.8
48.45
80.25
None
attaquedestitans
Master-IASD
upnquick
Success
154.27
7.71
68.75
18.59
38.4
56.99
None
attack_mesonet
Master-IASD
coktailjet
Success
114.37
5.72
43.75
22.33
33.3
55.63
None
attackonnetworks
Master-IASD
coktailjet
Success
120.18
6.01
31.25
18.35
32.58
50.93
None
base_model
profs
upnquick
Success
118.63
5.93
56.25
6.04
25.14
31.18
None
attack-of-babrumen
Master-IASD
upnquick
Error
0
0
0
0
0
0
AttributeError: 'Net' object has no attribute 'load_for_testing'
attackus
Master-IASD
coktailjet
Error
0
0
0
0
0
0
FileNotFoundError: Model file not found: /home/lamsade/testplatform/test-platform-a3/repos/Master-IASD/attackus/models/robust_model.pth
ciclose-10
Master-IASD
coktailjet
Error
0
0
0
0
0
0
FileNotFoundError: [Errno 2] No such file or directory: '/home/lamsade/testplatform/test-platform-a3/repos/Master-IASD/ciclose-10/models/default_model.pth'
compo-4-3-3
Master-IASD
coktailjet
Error
0
0
0
0
0
0
FileNotFoundError: [Errno 2] No such file or directory: 'models/resnet_adv_finetune_8_pgd_3.pth'
harissa
Master-IASD
upnquick
Error
0
0
0
0
0
0
FileNotFoundError: The config file does not exist. Model could not be loaded properly.
madraf
Master-IASD
coktailjet
Error
0
0
0
0
0
0
FileNotFoundError: [Errno 2] No such file or directory: '/home/lamsade/testplatform/test-platform-a3/repos/Master-IASD/madraf/models/default_model.pth'
team_joie
Master-IASD
upnquick
Error
0
0
0
0
0
0
RuntimeError: Error(s) in loading state_dict for Net: Missing key(s) in state_dict: "conv1.weight", "conv1.bias", "conv2.weight", "conv2.bias", "conv3.weight", "conv3.bias", "conv4.weight", "conv4.bias", "fc1.weight", "fc1.bias", "fc2.weight", "fc2.bias", "fc3.weight", "fc3.bias". Unexpected key(s) in state_dict: "model.conv1.weight", "model.bn1.weight", "model.bn1.bias", "model.bn1.running_mean", "model.bn1.running_var", "model.bn1.num_batches_tracked", "model.layer1.0.conv1.weight", "model.layer1.0.bn1.weight", "model.layer1.0.bn1.bias", "model.layer1.0.bn1.running_mean", "model.layer1.0.bn1.running_var", "model.layer1.0.bn1.num_batches_tracked", "model.layer1.0.conv2.weight", "model.layer1.0.bn2.weight", "model.layer1.0.bn2.bias", "model.layer1.0.bn2.running_mean", "model.layer1.0.bn2.running_var", "model.layer1.0.bn2.num_batches_tracked", "model.layer1.1.conv1.weight", "model.layer1.1.bn1.weight", "model.layer1.1.bn1.bias", "model.layer1.1.bn1.running_mean", "model.layer1.1.bn1.running_var", "model.layer1.1.bn1.num_batches_tracked", "model.layer1.1.conv2.weight", "model.layer1.1.bn2.weight", "model.layer1.1.bn2.bias", "model.layer1.1.bn2.running_mean", "model.layer1.1.bn2.running_var", "model.layer1.1.bn2.num_batches_tracked", "model.layer2.0.conv1.weight", "model.layer2.0.bn1.weight", "model.layer2.0.bn1.bias", "model.layer2.0.bn1.running_mean", "model.layer2.0.bn1.running_var", "model.layer2.0.bn1.num_batches_tracked", "model.layer2.0.conv2.weight", "model.layer2.0.bn2.weight", "model.layer2.0.bn2.bias", "model.layer2.0.bn2.running_mean", "model.layer2.0.bn2.running_var", "model.layer2.0.bn2.num_batches_tracked", "model.layer2.0.downsample.0.weight", "model.layer2.0.downsample.1.weight", "model.layer2.0.downsample.1.bias", "model.layer2.0.downsample.1.running_mean", "model.layer2.0.downsample.1.running_var", "model.layer2.0.downsample.1.num_batches_tracked", "model.layer2.1.conv1.weight", "model.layer2.1.bn1.weight", "model.layer2.1.bn1.bias", "model.layer2.1.bn1.running_mean", "model.layer2.1.bn1.running_var", "model.layer2.1.bn1.num_batches_tracked", "model.layer2.1.conv2.weight", "model.layer2.1.bn2.weight", "model.layer2.1.bn2.bias", "model.layer2.1.bn2.running_mean", "model.layer2.1.bn2.running_var", "model.layer2.1.bn2.num_batches_tracked", "model.layer3.0.conv1.weight", "model.layer3.0.bn1.weight", "model.layer3.0.bn1.bias", "model.layer3.0.bn1.running_mean", "model.layer3.0.bn1.running_var", "model.layer3.0.bn1.num_batches_tracked", "model.layer3.0.conv2.weight", "model.layer3.0.bn2.weight", "model.layer3.0.bn2.bias", "model.layer3.0.bn2.running_mean", "model.layer3.0.bn2.running_var", "model.layer3.0.bn2.num_batches_tracked", "model.layer3.0.downsample.0.weight", "model.layer3.0.downsample.1.weight", "model.layer3.0.downsample.1.bias", "model.layer3.0.downsample.1.running_mean", "model.layer3.0.downsample.1.running_var", "model.layer3.0.downsample.1.num_batches_tracked", "model.layer3.1.conv1.weight", "model.layer3.1.bn1.weight", "model.layer3.1.bn1.bias", "model.layer3.1.bn1.running_mean", "model.layer3.1.bn1.running_var", "model.layer3.1.bn1.num_batches_tracked", "model.layer3.1.conv2.weight", "model.layer3.1.bn2.weight", "model.layer3.1.bn2.bias", "model.layer3.1.bn2.running_mean", "model.layer3.1.bn2.running_var", "model.layer3.1.bn2.num_batches_tracked", "model.layer4.0.conv1.weight", "model.layer4.0.bn1.weight", "model.layer4.0.bn1.bias", "model.layer4.0.bn1.running_mean", "model.layer4.0.bn1.running_var", "model.layer4.0.bn1.num_batches_tracked", "model.layer4.0.conv2.weight", "model.layer4.0.bn2.weight", "model.layer4.0.bn2.bias", "model.layer4.0.bn2.running_mean", "model.layer4.0.bn2.running_var", "model.layer4.0.bn2.num_batches_tracked", "model.layer4.0.downsample.0.weight", "model.layer4.0.downsample.1.weight", "model.layer4.0.downsample.1.bias", "model.layer4.0.downsample.1.running_mean", "model.layer4.0.downsample.1.running_var", "model.layer4.0.downsample.1.num_batches_tracked", "model.layer4.1.conv1.weight", "model.layer4.1.bn1.weight", "model.layer4.1.bn1.bias", "model.layer4.1.bn1.running_mean", "model.layer4.1.bn1.running_var", "model.layer4.1.bn1.num_batches_tracked", "model.layer4.1.conv2.weight", "model.layer4.1.bn2.weight", "model.layer4.1.bn2.bias", "model.layer4.1.bn2.running_mean", "model.layer4.1.bn2.running_var", "model.layer4.1.bn2.num_batches_tracked", "model.fc.weight", "model.fc.bias".
troublemakers
Master-IASD
coktailjet
Error
0
0
0
0
0
0
FileNotFoundError: [Errno 2] No such file or directory: '/home/lamsade/testplatform/test-platform-a3/repos/Master-IASD/troublemakers/models/ensemble_adp_model_0.pth'

Plots