Brice Mayag
Assistant professor
LAMSADE
University Paris Dauphine

Publications

Articles in journals

2015:

  1. Moroni, F., Ortega, A., Moroni, R., Lessi, E., Mayag, B., Souza de Jesus, R. (2015). Limitations in decision context for selection of amazonian armoured catfish acari-bodó (Pterygoplichthys pardalis) as candidate species for aquaculture. International Journal of Fisheries and Aquaculture, Volume 7 (8), 142-150. doi:DOI: 10.5897/IJFA15.0480.
  2. Labreuche C., Mayag B., Duqueroie B. Extension of the MACBETH approach to elicit an ordered weighted average operator. EURO Journal on Decision Processes, Volume 3, Issue 1-2 , pp 65-105.
  3. Rolland A., Ah-Pine J., Mayag B. Elicitation of 2-additive bi-capacity parameters. EURO Journal on Decision Processes. Volume 3, Issue 1-2 , pp 5-28
2014:
  1. Arduin P-E., Mayag B., Negre E., Rosenthal-Sabroux C. How to compromise on the best price? A group tacit knowledge-based multicriteria approach JDS (Journal of Decision Systems) 23(1): 99-112. Download
2013:
  1. O. Cailloux, B. Mayag, P. Meyer, and V. Mousseau. Operational tools to build a multicriteria territorial risk scale with multiple stakeholders. Reliability Engineering & System Safety, 120 :88–97, 2013 Download
2011:
  1. B. Mayag, M. Grabisch, and C. Labreuche. A representation of preferences by the Choquet integralwith respect to a 2-additive capacity. Theory and Decision, 71(3):297–324, 2011. Download
  2. B.Mayag, M. Grabisch, and C. Labreuche. A characterization of the 2-additive Choquet integral through cardinal information. Fuzzy Sets and Systems, 184(1):84–105, 2011. Download



Articles in conferences

2016:

  1. Fabien Labernia, Florian Yger, Brice Mayag and Jamal Atif. Query-based learning of acyclic conditional preference networks from noisy data. In From Multiple Criteria Decision Aid to Preference Learning, DA2PL2016, Paderborn, Germany, 2016.
  2. Mayag, B. (2016). A 2-Additive Choquet Integral Model for French Hospitals Rankings in Weight Loss Surgery. dans Joao Paulo Carvalho, Marie-Jeanne Lesot, Uzay Kaymak, Susana M. Vieira, Bernadette Bouchon-Meunier, Ronald R. Yager (Eds.), Information Processing and Management of Uncertainty in Knowledge-Based Systems - 16th International Conference, IPMU 2016, Eindhoven, The Netherlands, June 20-24, 2016, Proceedings (pp. 101-116).
  3. Arru, M., Mayag, B., & Negre, E. (2016). Early-Warning System Perception: a Study on Fire Safety. dans Andrea H. Tapia, Pedro Antunes, Victor A. Banuls, Kathleen Moore and Joao Porto de Albuquerque (Eds.), Proceedings of the 13th International Conference on Information Systems for Crisis Response and Managemen ISCRAM 2016, Brazil.
2015:
  1. B. Mayag. MOPIC properties in the representation of preferences by a 2-additive Choquet integral. 4th Algorithmic Decision Theory conference, September 2015, Lexington, Kentucky, USA
  2. C. Labreuche, S. Destercke, B. Mayag. Elicitation of a Utility from Uncertainty Equivalent Without Standard Gambles. ECSQARU 2015: 25-35
  3. Comes T., Mayag B., Negre E. Beyond Early: Decision Support for Improved Typhoon Warning Systems. ISCRAM2015, May 2015, Kristiansand, Norway, Volume: 12
2014:
  1. Mayag B. About the french hospitals rankings: a MCDA point of view. In From Multiple Criteria Decision Aid to Preference Learning, DA2PL 2014. Ecole Centrale Paris, France, November 2014. Download
  2. Comes T., Mayag B., Negre E. Decision Support for Disaster Risk Management: Integrating Vulnerabilities into Early-Warning Systems. ISCRAM-med 2014: 178-191
  3. Brice Mayag: A Characterization of the 2-Additive Symmetric Choquet Integral Using Trinary Alternatives. IPMU (1) 2014: 266-275 Download
2013:
  1. J. Ah-pine, B. Mayag, and A. Rolland. Identification of a 2-additive bi-capacity by using mathematical programming. In P. Perny, M. Pirlot, and A. Tsoukias, editors, Algorithmic Decision Theory, pages 15–29, Brussels, Belgium, November 2013. Download
2012:
  1. D. Bouyssou, M. Couceiro, C. Labreuche, J.-L. Marichal, and B. Mayag. Using choquet integral in machine learning : What can mcda bring ? In From Multiple Criteria Decision Aid to Preference Learning, DA2PL 2012, Mons, Belgique, 2012. Download
  2. B. Mayag, A. Rolland, and J. Ah-pine. Elicitation of a 2-additive bi-capacity through cardinal information on trinary actions. In S. Greco, B. Bouchon-Meunier, G. Coletti, M. Fedrizzi, B. Matarazzo, and R. Yager, editors, Advances in Computational Intelligence 14th International Conference on Information Processing and Management of Uncertainty, Catania, Italy, July 9-13 2012. Download
2011:
  1. Brice Mayag, Michel Grabisch, Christophe Labreuche: A Reduction of the Complexity of Inconsistencies Test in the MACBETH 2-Additive Methodology. ADT 2011: 178-189 Download
  2. Brice Mayag, Olivier Cailloux and Vincent Mousseau, MCDA tools and Risk Analysis: the Decision Deck Project. In ESREL, Conference of the European Safety and Reliability Association, pages 2324-2330, 2011. (Sept. 18-22, 2011, Troyes, France). Download
  3. Brice Mayag, Michel Grabisch, Christophe Labreuche: Dealing with inconsistencies in the representation of ordinal information by a 2-additive Choquet integral. EUSFLAT/LFA conf. 2011: 119-126 . Download
2010:
  1. Brice Mayag, Michel Grabisch, Christophe Labreuche: An Interactive Algorithm to Deal with Inconsistencies in the Representation of Cardinal Information. IPMU 2010:148-157 Download
2009:
  1. Brice Mayag, Michel Grabisch, Christophe Labreuche: A Link Between the 2-additive Choquet Integral and Belief Functions. IFSA/EUSFLAT Conf. 2009:363-368 Download
  2. B. Mayag, M. Grabisch, and C. Labreuche. A characterization of the 2-additive Choquet integral through cardinal information. In Proceedings of EUROFUSE2009 Workshop Preference Modeling and Decision Analysis, pages 155-160, Pamplona, Spain, 16-18 September 2009. Download
2008:
  1. B. Mayag, M. Grabisch, and C. Labreuche. A characterization of the 2-additive Choquet integral. In 12th Int. Conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU), pages 1512-1518, Malaga, Spain, June 2008. Download
  2. B.Mayag, M. Grabisch, and C. Labreuche. Un algorithme de détermination de la capacité pour l'intégrale de Choquet 2-additive. In Proceedings Rencontres Francophone sur la Logique Floue et ses Applications, pages 260-267, Lens, France, 16-17 October 2008. Download