Latest


2026.01.28: Material session 3.
2026.01.27: Material sessions 1-2.
2026.01.26: Course webpage online.

Instructor

Clément Royer
clement.royer@lamsade.dauphine.fr

Back to the general teaching page

Optimization for Machine Learning

M2 IASD Apprentissage, Université Paris Dauphine-PSL, 2025-2026


Aim of the course

     Study the main optimization techniques used in machine learning and data science, as well as their underlying principles.

Course material (in French)

     Exercises (Jan. 28 version) PDF

Session 1: Introduction and gradient methods

     Virtual board (Gradient methods) PDF

     Companion notebook (Gradient methods) [Sources]

Session 2: Optimizers

     Virtual board (Stochastic methods and optimizers) PDF

     Companion notebook (Pytorch methods) [Sources]

Session 3: Computing derivatives

     Virtual board (Exercises and differentiation) PDF

     Companion notebook (automatic differentiation) [Sources]



Materials on this page are available under Creative Commons CC BY-NC 4.0 license.
La version française de cette page se trouve ici.